Übungen zur Stochastik II

Problem 3.1 a) Let $n \in \mathbb{N}$, $n \ge 2$, assume that X_1, \ldots, X_n are exchangeable real-valued random variables with $\mathbb{E}[X_1^2] < \infty$. Then we have

$$\operatorname{Cov}(X_1, X_2) \ge -\frac{1}{n-1} \operatorname{Var}(X_1).$$
(1)

Find an example where equality holds in (1).

[*Hint*: Consider the variance of $X_1 + \cdots + X_n$.]

b) Let X_1, X_2, \ldots be exchangeable real-valued random variables with $\mathbb{E}[X_1^2] < \infty$. Show that $\operatorname{Cov}(X_1, X_2) \ge 0$.

c) Give an example of a finite exchangeable family (X_1, X_2, \ldots, X_n) which can not be extended to an infinite exchangeable family X_1, X_2, \ldots

Problem 3.2 Let $X_1, X_2, ...$ i.i.d. with values in \mathbb{Z} , put $S_0 := 0, S_n := X_1 + \cdots + X_n, R_n := \{S_n = 0\}$ for $n \in \mathbb{N}$.

Show that $\mathbb{P}(\limsup_{n\to\infty} R_n) \in \{0,1\}.$

Problem 3.3 ("Ballot theorem") Let X_1, X_2, \ldots be i.i.d. with values in \mathbb{N}_0 , put $S_0 := 0$, $S_n := X_1 + \cdots + X_n$ for $n \in \mathbb{N}$. Show that

$$\mathbb{P}(S_j < j \text{ for all } j = 1, \dots, n \mid S_n) \ge (1 - S_n/n)^+.$$

$$\tag{2}$$

Furthermore, if $\mathbb{P}(X_1 \in \{0, 1, 2\}) = 1$ then equality holds in (2).

[*Hint:* Check that $Y_k := S_{-k}/(-k)$, $k = -n, -n + 1, \dots, 1$ is a martingale w.r.t. the filtration $\mathscr{F}_k = \sigma(S_{-k}, S_{-k+1}, \dots, S_n)$, $T := \inf \{k \in \{-n, -n + 1, \dots, -1\} : Y_k \ge 1\} \land (-1)$ is a stopping time, with $G := \{S_j < j \text{ for all } j = 1, \dots, n\}$ we have $1_{G^c} \le Y_T$, then use optional sampling.

Furthermore, if $\mathbb{P}(X_1 \in \{0, 1, 2\}) = 1$ check that with $\varrho := \max\{0 \le j \le n : S_j - j \ge 0\}$, $\{S_n - n < 0\} \subset \{S_{\varrho} - \varrho = 0\}$ a.s. and conclude that $\{S_n - n < 0\} \cap G^c \subset \{Y_T = 1\}$ a.s.]

Problem 3.4 (On the limit composition in Pólya's urn) Recall Pólya's urn model: Initially, there are, say, M black and N - M white balls in the urn $(M, N \in \mathbb{N}, N \ge M)$. In each draw, we pick at random one of the balls currently in the urn and put it back together with a new ball of the same colour. (Apart from the colour, the balls are identical.) Then

$$X_n := 1_{\{\text{ball in } n-\text{th draw is black}\}}, n = 1, 2, \dots$$

are exchangeable and the asymptotic fraction of black balls

$$Z := \lim_{n \to \infty} \frac{M + X_1 + \dots + X_n}{N + n} \quad \text{exists a.s.}$$

a) Compute $\mathbb{E}[Z^k]$ for $k \in \mathbb{N}$.

[*Hint:* Consider the joint law of X_1, \ldots, X_k conditional on the terminal (or the exchangeable) σ -algebra.]

b) The beta distribution $\beta_{a,b}$ with parameters a, b > 0 has density

$$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} 1_{(0,1)}(x) x^{a-1} (1-x)^{b-1}.$$

For which choice of a, b (depending on M, N) do the moments of Z agree with those of $\beta_{a,b}$?

Abgabe der Aufgaben: 2.12.2014 (Es findet keine Bewertung statt.)