Blatt 5

Problem 5.1 A function $f : \mathbb{R}^d \to \mathbb{C}$ is called *positive semi-definite* if

$$\sum_{i,j=1}^{n} \alpha_i \overline{\alpha_j} f(t_i - t_j) \ge 0 \quad \text{holds for all } n \in \mathbb{N}, t_1, \dots, t_n \in \mathbb{R}^d, \alpha_1, \dots, \alpha_n \in \mathbb{C}$$

Check that the characteristic function φ_{μ} of a finite measure $\mu \in \mathcal{M}_f(\mathbb{R}^d)$ is positive semi-definite. [*Note.* Bochner's theorem shows that every continuous positive semi-definite function is the characteristic function for some measure, see, e.g., W. Feller, An Introduction to Probability Theory, Vol. 2, Wiley 1971, Ch. XIX.2.]

Problem 5.2 a) Let (Y_1, \ldots, Y_n) be an *n*-dimensional multivariate normal random vector, $1 \leq m < n$. Show that

i) Y_1, \ldots, Y_n are independent $\iff \operatorname{Cov}(Y_i, Y_j) = 0$ for $1 \leq i \neq j \leq n$, and

 $ii) \ (Y_1, \ldots, Y_m) \text{ is independ. from } (Y_{m+1}, \ldots, Y_n) \iff \operatorname{Cov}(Y_i, Y_j) = 0 \text{ for } 1 \leqslant i \leqslant m < j \leqslant n.$

b) Let X_1, \ldots, X_n be i.i.d. $\sim \mathcal{N}(\mu, \sigma^2), \overline{M} := \frac{1}{n} \sum_{i=1}^n X_i$ the empirical mean and $S^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{M})^2$ the (corrected) sample variance. Check that \overline{M} and S^2 are independent. [*Hint.* Consider the random vector $(\overline{M}, X_1 - \overline{M}, X_2 - \overline{M}, \ldots, X_n - \overline{M})$.

Problem 5.3 a) Let X be a \mathbb{Z}^d -valued random variable with characteristic function φ_X . Check that φ_X has period $2\pi\mathbb{Z}^d$, i.e., $\varphi_X(t+2\pi m) = \varphi_X(t)$ for $t \in \mathbb{R}^d$, $m \in \mathbb{Z}^d$ and

$$\mathbb{P}(X=x) = \frac{1}{(2\pi)^d} \int_{(-\pi,\pi]^d} e^{-i\langle x,t\rangle} \varphi_X(t) \, dt \quad \text{holds for } x \in \mathbb{Z}^d.$$

b) Let X be a real-valued random variable and assume that its characteristic function $\varphi_X \in \mathcal{L}^1(\lambda)$ (with λ the Lebesgue measure on \mathbb{R}). Then X has a continuous, bounded density $f_X = \frac{d\mathscr{L}(X)}{d\lambda}$ which is given by

$$f_X(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \varphi_X(t) \, dt.$$

[*Hint.* Consider first $X \sim \mathcal{N}(0,\varepsilon)$, $\varepsilon > 0$, for the general case let $\mu_{\varepsilon} := \mathscr{L}(X) * \mathcal{N}(0,\varepsilon)$. Check that μ_{ε} has density f_{ϵ} and $f_{\epsilon} \to f_X$ pointwise as $\epsilon \downarrow 0$.]

Problem 5.4 Let X_1, X_2, \ldots i.i.d. \mathbb{Z} -valued with $\mu := \mathbb{E}[X_1]$ and $0 < \sigma^2 := \operatorname{Var}[X_1] < \infty$, satisfying the aperiodicity condition

$$gcd\{i-j: i, j \in \mathbb{Z}, \mathbb{P}(X_1=i)\mathbb{P}(X_1=j) > 0\} = 1.$$

a) Check that for all $\varepsilon \in (0, \pi)$,

$$\sup_{\varepsilon \leqslant |t| \leqslant \pi} |\varphi_{X_1}(t)| < 1.$$

[*Hint.* Check that $|\varphi_{X_1}(t)| = 1$ implies $t \in 2\pi\mathbb{Z}$.]

b) (A local CLT) Let $S_n := X_1 + \cdots + X_n$. Check that for every $K \in (0, \infty)$

$$\lim_{n \to \infty} \sup_{k \in \mathbb{Z}, |k-n\mu| \leq K\sigma\sqrt{n}} \left| \sqrt{2\pi n\sigma^2} \mathbb{P}(S_n = k) - \exp\left(-(k-n\mu)^2/(2n\sigma^2)\right) \right| = 0.$$

[*Hint.* Use discrete Fourier inversion (cf Problem 5.3 a)) and Taylor expansion of $\varphi_{X_1}(t)$ around t = 0, using part a) to bound the contributions from t outside a small neighbourhood of 0.]

Please turn over

Problem 5.5 a) The negative binomial distribution with parameters $r > 0, p \in (0, 1)$ has weights

$$b_{r,p}^{-}(k) = \binom{-r}{k} (-1)^{k} p^{r} (1-p)^{k}, \ k \in \{0, 1, 2, \dots\}$$

(with $\binom{-r}{k} = (-r)(-r-1)\cdots(-r-k+1)/k!$; for $r \in \mathbb{N}$ is the number of failures before the *r*-th success in a *p*-coin tossing sequences $b_{r,p}^-$ -distributed). Express $b_{r,p}^-$ as CPoi_{ν} for a suitable $\nu \in \mathcal{M}_f(\mathbb{Z}_+)$ and deduce that $b_{r,p}^-$ is infinitely divisible.

[*Hint.* Compute the characteristic function.]

b) Find the canonical triplet of the Gamma distribution $\Gamma_{r,\lambda}$ (whose density is $\frac{\lambda^r}{\Gamma(r)}x^{r-1}e^{-\lambda x}\mathbf{1}_{(0,\infty)}(x)$). [*Hint.* It suffices to consider $r = 1 = \lambda$ (why?).]

Problem 5.6 a) Let X be a real-valued, infinitely divisible random variable with $\mathbb{P}(|X| \leq K) = 1$ for some $K \in (0, \infty)$. Check that X is a.s. constant.

[*Hint.* W.l.o.g. assume $\mathbb{E}[X] = 0$. By assumption, for any $n \in \mathbb{N}$ there are i.i.d. $X_{n,1}, X_{n,2}, \ldots, X_{n,n}$ such that $X = {}^{d} X_{n,1} + \cdots + X_{n,n}$, hence $\mathbb{P}(X_{n,1} < -K/n) + \mathbb{P}(X_{n,1} > K/n) = 0$; use this to bound the variance of X.]

b) Check that for $\alpha > 2$ there is no probability measure on \mathbb{R} with characteristic function $t \mapsto e^{-|t|^{\alpha}}$. [*Hint.* If there was a random X with $\varphi_X(t) = e^{-|t|^{\alpha}}$, what would its mean and variance be?]

Problem 5.7 Let $\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy$ be the distribution function of the standard normal distribution and define F for $x \in \mathbb{R}$ via

$$F(x) := \begin{cases} 2\left(1 - \Phi(1/\sqrt{x})\right), & \text{if } x > 0, \\ 0, & \text{else.} \end{cases}$$

Check that F is the distribution function of a strictly stable distribution $\mu \in \mathcal{M}_1(\mathbb{R}_+)$ of index 1/2, in particular, μ is infinitely divisible.

[*Hint.* Compute the density of μ and check that its Laplace transform has the form $\lambda \mapsto e^{-\sqrt{2\lambda}}$.]