Problem 6.1 Let τ_1, τ_2, \ldots be i.i.d., $\sim \text{Exp}(\rho)$, put $T_0 := 0$, $T_n := \tau_1 + \cdots + \tau_n$, $n \in \mathbb{N}$ and let

$$N_t := \sum_{n=1}^{\infty} \mathbf{1}(T_n \leqslant t), \quad t \geqslant 0$$
 (1)

 $((N_t)_{t\geq 0})$ is a Poisson point process with rate ρ). Check that

$$\mathcal{L}(N_{t+h} - N_t) = \text{Poi}_{\rho h} \quad \text{for } t, h \geqslant 0$$
 (2)

and that for any $s \ge 0$,

 $\tilde{N}_t := N_{t+s} - N_s, \ t \geqslant 0$ is a Poisson point process with rate ρ and is indep. from $(N_r : r \leqslant s)$.

[Hint. The crucial property is the memorylessness of the exponential distribution: Check that

$$\mathbb{P}(\tau_i > t + s \mid \tau_i > s) = \mathbb{P}(\tau_i > t) = \int_t^\infty \rho e^{-\rho x} \, dx = e^{-\rho t}. \tag{4}$$

Now let $s \ge 0$, $m \in \mathbb{N}_0$, consider the event

$$A(s,m) := \{N_s = m\} = \{T_m \leqslant s < T_{m+1}\} = \{T_m \leqslant s\} \cap \{\tau_{m+1} > s - T_m\}.$$

Argue that on A(s,m), $N_r = \sum_{k=1}^m \mathbf{1}(T_k \leq r)$ for $0 \leq r \leq s$ and the jump times of (\tilde{N}_t) are $\tilde{T}_1 = \tau_{m+1} - (s - T_m)$, $\tilde{T}_n = T_{n+m} - s$, $n \geq 2$. Use this and (4) to verify that for every $m \in \mathbb{N}_0$, conditioned on A(s,m), the sequence $\tilde{T}_1, \tilde{T}_2 - \tilde{T}_1, \tilde{T}_3 - \tilde{T}_2, \ldots$ is i.i.d., $\sim \text{Exp}(\rho)$. This proves claim (3) (why?).

To check (2) note that it suffices to consider t=0 (why?), use the fact that $T_m \sim \Gamma_{m,\rho}$ and $\{N_h=m\}=\{T_m \leqslant h, \tau_{m+1} > h-T_m\}$.

Problem 6.2 a) Let E be a finite set, $Q = (Q_{x,y})_{x,y \in E}$ a generator matrix, i.e., $Q_{x,y} \ge 0$ for all $x \ne y$ and $\sum_y Q_{x,y} = 0$ for all x. Then $P(t) := \exp(tQ) = \sum_{k=0}^{\infty} \frac{t^k}{k!} Q^k$, $t \ge 0$ defines a semigroup of stochastic matrices. Check that P(t) solves

$$\frac{\partial}{\partial t}P(t) = P(t)Q, \text{ i.e., } \forall x,y \in E : \frac{\partial}{\partial t}P_{x,y}(t) = \sum_{z}P_{x,z}(t)Q_{z,y} = P_{x,y}(t)Q_{y,y} + \sum_{z \neq y}P_{x,z}(t)Q_{z,y}(5)$$

$$\frac{\partial}{\partial t}P(t) = QP(t), \text{ i.e., } \forall x,y \in E : \frac{\partial}{\partial t}P_{x,y}(t) = \sum_{z}Q_{x,z}P_{z,y}(t) = \sum_{z}Q_{x,z}\left(P_{z,y}(t) - P_{x,y}(t)\right), \quad (6)$$

with initial condition $P(0) = I_E$, where I_E is the identity matrix on E.

[Remark. (5) are known as Kolmogorov forward equations, (6) as Kolmogorov backward equations.]

b) Let $E = \{0, 1\}$, $(X_t)_{t \ge 0}$ a Markov chain on E with generator matrix $Q = \begin{pmatrix} -a & a \\ b & -b \end{pmatrix}$, where $a, b \in (0, \infty)$. Check that

$$\mathbb{P}_0(X_t = 0) = e^{-(a+b)t} + \left(1 - e^{-(a+b)t}\right) \frac{b}{a+b},\tag{7}$$

$$\mathbb{P}_1(X_t = 1) = e^{-(a+b)t} + \left(1 - e^{-(a+b)t}\right) \frac{a}{a+b}.$$
 (8)

[Hint. Solve for example the Kolmogorov backward equations.]

Problem 6.3 (Discrete martingale problems) Let E be (at most) countable, $p = (p_{x,y})_{x,y \in E}$ a stochastic matrix. For bounded $f: E \to \mathbb{R}$ define $Pf: E \to \mathbb{R}$ via $Pf(x) := \sum_{y \in E} p_{x,y} f(y)$. a) If $(X_n)_{n \in \mathbb{N}_0}$ is a Markov chain with transition matrix p then for every bounded $f: E \to \mathbb{R}$, the process

$$M_0 := 0, \ M_n := f(X_n) - f(X_0) - \sum_{k=0}^{n-1} (Pf - f)(X_k), \ n \in \mathbb{N}$$
 (9)

is a martingale (w.r.t. the filtration $\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)$) under each $\mathbb{P}_{x_0}, x_0 \in E$.

b) The following converse holds: Let $X = (X_n)_{n \in \mathbb{N}_0}$ be a stochastic process with values in E and a family of distributions \mathbb{P}_{x_0} , $x_0 \in E$ with $\mathbb{P}_{x_0}(X_0 = x_0) = 1$ so that for every bounded $f : E \to \mathbb{R}$, (9) defines a martingale under each \mathbb{P}_{x_0} . Check that then X is a Markov chain with transition matrix p.

[Hint. Use (9) with functions $f = 1_{\{y\}}$.]

Problem 6.4 Let $X_1, X_2,...$ be i.i.d. \mathbb{Z} -valued, $p(x) := \mathbb{P}(X_1 = x) < 1$ for all $x \in \mathbb{Z}$. Put $S_0 := 0$, $S_n := X_1 + \cdots + X_n$, $\mathcal{F}_n := \sigma(S_1,...,S_n)$, $M_n := \max_{0 \le j \le n} S_j$, $Z_n := M_n - S_n$, n = 0, 1, 2,... Check that:

- a) $(M_n)_{n=0,1,2,...}$ is not a Markov chain (with respect to any filtration).
- b) $(M_n, S_n)_{n=0,1,2,...}$ is a Markov chain with values in \mathbb{Z}^2 (w.r.t. $(\mathcal{F}_n)_{n=0,1,2,...}$). Compute its transition probabilities $\mathbb{P}((M_{n+1}, S_{n+1}) = (x', y') | (M_n, S_n) = (x, y)), x, y, x', y' \in \mathbb{Z}$.
- c) $(Z_n)_{n=0,1,2,...}$ is a Markov chain with values in \mathbb{Z}_+ w.r.t. to $(\sigma(Z_k:k\leqslant n))_{n=0,1,2,...}$