Stochastik II

Wintersemester 14/15

Institut für Mathematik, FB 08 Johannes Gutenberg-Universität Mainz

gehalten von Matthias Birkner

Vorlesungsskript mitgeschrieben und in LATFX gesetzt von Matthias Muth

Version vom 11. Juli 2015

Hinweise auf Fehler, Korrektur- und Verbesserungsvorschläge gerne per Email an birkner@mathematik.uni-mainz.de

Dieses Werk ist unter einem Creative Commons Namensnennung-NichtKommerziell-Weitergabe unter gleichen Bedingungen-Lizenzvertrag lizensiert (CC BY-NC-SA 3.0 DE). Die vollständige Lizenz ist einzusehen unter:

http://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.de

Inhaltsverzeichnis

1	Mar	tingale	4
	1.1	Grundlegendes	4
	1.2	Martingalkonvergenzsatz	9
	1.3	Gleichgradig integrierbare Martingale und optionales Stoppen	11
	1.4	\mathcal{L}^2 -Martingale	15
2	Austauschbarkeit		20
	2.1	Grundsätzliches	20
	2.2	Rückwärtsmartingale	23
	2.3	Struktur unendlicher austauschbarer Familien	25
3	Schwache Konvergenz und charakteristische Funktionen		28
	3.1	Vorbemerkungen zur mengentheoretischen Topologie	28
	3.2	Schwache und vage Konvergenz	30
	3.3	Straffheit	33
	3.4	Charakteristische Funktionen	37
4	Zentrale Grenzwertsätze		45
	4.1	Der mehrdimensionale Fall	47
5	Unendlich teilbare Verteilungen		50
	5.1	Ein Bericht über stabile Verteilungen	57
6	Markovprozesse		60
	6.1	Grundlegendes: Stochastische Kerne, projektive Familien	60
	6.2	Markov-Prozesse und Markov-Halbgruppen	66
	6.3	Die starke Markov-Eigenschaft	72
	6.4	Diskrete Markov-Ketten	74
7	(Etv	vas) Ergodentheorie	90
8 Brownsche Bewegung		97	

1 Martingale

Hinweis: Zur farbigen Geschichte des Begriffs Martingal siehe beispielsweise den Artikel von Roger Mansuy, The origins of the word "martingale", Electronic Journal for History of Probability and Statistics, Vol. 5 no. 1, (2009), http://www.jehps.net.

Beispiel 1.1. Betrachte einen fairen Münzwurf, d.h. seien W_1, W_2, \ldots unabhängig und identisch uniform verteilt auf $\{K, Z\}$. Sei

$$R := \min \{k \in \mathbb{N} \mid (W_k, W_{k+1}, W_{k+2}, W_{k+3}) = (Z, K, Z, K)\}.$$

R+3 ist eine sog. Stoppzeit. Aber was ist $\mathbf{E}[R]$?

Betrachte ein faires Casino: Setze vor dem i-ten Wurf x Euro, erhalte 2x Euro oder 0 Euro je nach Ausgang. Spieler i steigt in Runde i in das Spiel ein und setzt einen Euro auf Z. Falls er gewinnt, setzt er in Runde i+1 zwei Euro auf K. Gewinnt er wieder, setzt er in Runde i+2 vier Euro auf Z. Sollte er wieder gewinnen, setzt er in Runde i+3 acht Euro auf K. Gewinnt er auch dieses Spiel, hört er auf. Sei nun $X_{i,n}$ der Gewinn des i-ten Spielers nach der n-ten Runde. Sei weiter $X_n := \sum_{i=1}^{\infty} X_{i,n}$ der Gesamtgewinn aller Spieler nach Runde n. Aufgrund der "Fairness" gilt

$$0 = \mathbf{E}[X_0] = \mathbf{E}[X_n] = \mathbf{E}[X_{R+3}]. \tag{1.1}$$

Zum Zeitpunkt R+3 hat Spieler R einen Gewinn von 15 Euro, Spieler R+3 hat einen Gewinn von 3 Euro und die anderen R+1 Spieler, die bisher mitgespielt haben, haben einen Gewinn von -1 Euro, das heißt

$$X_{R+3} = 15 + 3 - (R+1).$$

(1.1) liefert

$$0 = \mathbf{E}[X_{R+3}] = \mathbf{E}[R-17],$$

und damit $\mathbf{E}[R] = 17$.

1.1 Grundlegendes

Im Folgenden sei $(\Omega, \mathcal{F}, \mathbf{P})$ ein Wahrscheinlichkeitsraum.

Definition 1.2. Eine Familie $(\mathcal{F}_n)_{n=0,1,\dots}$ von (Teil-) σ -Algebra mit

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \subset \mathcal{F}$$

heißt Filtration. $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n=0,1,\ldots}, \mathbf{P})$ heißt filtrierter Wahrscheinlichkeitsraum.

Bemerkung 1.3. i) Interpretation: \mathcal{F}_n enthält diejenigen Ereignisse, die bis zum Zeitpunkt n entschieden sind.

ii) Ist $X = (X_n)_{n=0,1,...}$ eine Familie von Zufallsvariablen (ein sog. stochastischer Prozess), so ist $\mathcal{F}_n = \sigma(X_1,...X_n)$, $n \in \mathbb{N}_0$ eine Filtration (die von X erzeugte Filtration).

Definition 1.4. Es sei $X = (Xn)_n$ ein stochastischer Prozess und $(\mathcal{F}_n)_n$ eine Filtration. X heißt adaptiert $(an (\mathcal{F}_n)_n)$, wenn X_n \mathcal{F}_n -messbar ist für alle $n \in \mathbb{N}_0$.

Definition 1.5. Es sei $X = (X_n)_n$ ein (reellwertiger) stochastischer Prozess und $(\mathcal{F}_n)_n$ eine Filtration. X heißt ein Martingal (bzgl. $(\mathcal{F}_n)_n$ unter \mathbf{P}), wenn gilt:

- i) X ist adaptiert (an $(\mathcal{F}_n)_n$).
- $ii) X_n \in \mathcal{L}^1(\mathbf{P}).$
- iii) $\mathbf{E}[X_{n+1} \mid \mathcal{F}_n] = X_n$ f.s. für jedes $n \in \mathbb{N}_0$.

Falls in iii) $\mathbf{E}[X_{n+1} \mid \mathcal{F}_n] \ge X_n$ gilt, so hei β t X ein Submartingal. Falls $\mathbf{E}[X_{n+1} \mid \mathcal{F}_n] \le X_n$ gilt, so hei β t X ein Supermartingal.

Bemerkung 1.6. Induktiv folgt für ein Martingal X

$$\mathbf{E}[X_n \mid \mathcal{F}_m] = X_m$$
 f.s. für alle $0 \le m \le n$.

Beispiel 1.7. i) Seien $Y_1, Y_2, ...$ unabhängige, reelle Zufallsvariablen mit $Y_n \in \mathcal{L}^1(\mathbf{P})$ und $\mathbf{E}[Y_n] = 0$ für alle $n \in \mathbb{N}$. Sei $S_0 \coloneqq 0$ und $S_n \coloneqq Y_1 + Y_2 + ... + Y_n = S_{n-1} + Y_n$ für $n \in \mathbb{N}$. Dann ist $(S_n)_n$ ein Martingal bezgl. $(F_n)_n$ mit $\mathcal{F}_n = \sigma(S_1, ... S_n) = \sigma(Y_1, ... Y_n)$, denn $S_n \in \mathcal{L}^1(\mathbf{P})$ als Summe von $\mathcal{L}^1(\mathbf{P})$ -Variablen und es gilt

$$\mathbf{E}[S_{n+1} \mid \mathcal{F}_n] = \mathbf{E}[S_n + Y_{n+1} \mid \mathcal{F}_n] = \underbrace{\mathbf{E}[S_n \mid \mathcal{F}_n]}_{=S_n \text{ f.s.}} + \underbrace{\mathbf{E}[Y_{n+1} \mid \mathcal{F}_n]}_{=\mathbf{E}[Y_{n+1}]=0 \text{ f.s.}} = S_n \text{ f.s.}$$

ii) Seien Z_1, Z_2, \ldots unabhängige, positive Zufallsvariablen mit $Z_n \in \mathcal{L}^1(\mathbf{P})$ und $\mathbf{E}[Z_n] = 1$ für alle $n \in \mathbb{N}$. Sei $M_0 \coloneqq 1$ und $M_n \coloneqq Z_1 \cdot Z_2 \cdot \ldots \cdot Z_n = M_{n-1} \cdot Z_n$ für $n \in \mathbb{N}$. Dann ist $(M_n)_n$ ein Martingal bezgl. $(F_n)_n$ mit $\mathcal{F}_n = \sigma(M_1, \ldots M_n)$, denn $M_n \in \mathcal{L}^1(\mathbf{P})$ als Produkt von

unabhängigen $\mathcal{L}^1(\mathbf{P})$ -Variablen und es gilt

$$\mathbf{E}[M_{n+1} \mid \mathcal{F}_n] = \mathbf{E}[M_n \cdot Z_{n+1} \mid \mathcal{F}_n] = M_n \cdot \underbrace{\mathbf{E}[Z_{n+1} \mid \mathcal{F}_n]}_{=\mathbf{E}[Z_{n+1}] = 1 \text{ f.s.}} = M_n \text{ f.s.}$$

iii) Pólyas Urne: Eine Urne enthalte anfangs s>0 schwarze und w>0 weiße Kugeln. Ziehe jeweils eine Kugel rein zufällig und lege sie zusammen mit einer neuen Kugel der selben Farbe zurück. Sei X_n die Anzahl weißer Kugeln nach n Zügen und $A_n \coloneqq \frac{X_n}{s+w+n}$ der Anteil weißer Kugeln in der Urne. Dann ist $(A_n)_n$ ein Martingal bzgl. $\mathcal{F}_n = \sigma(A_0, \ldots, A_n)$, denn auf $\{X_n = k\}$ gilt

$$\mathbf{E}[A_{n+1} \mid \mathcal{F}_n] = \frac{k}{s+w+n} \cdot \frac{k+1}{s+w+n+1} + \frac{w+s+n-k}{s+w+n} \cdot \frac{k}{s+w+n+1}$$

$$= \frac{k}{s+w+n} \cdot \underbrace{\frac{k+1+w+s+n-k}{w+s+n-k}}_{=1} = A_n.$$

Definition 1.8. Sei $(\mathcal{F}_n)_n$ eine Filtration. Ein stochastischer Prozess $(C_n)_n$ heißt previsibel (bzgl. $(\mathcal{F}_n)_n$), auch vorhersagbar, wenn C_n \mathcal{F}_{n-1} -messbar ist für jedes $n \in \mathbb{N}$ (C_0 spielt hier keine Rolle).

Definition 1.9. Sei $(X_n)_n$ adaptiert und $(C_n)_n$ previsibel bzgl. $(\mathcal{F}_n)_n$. Sei

$$(C \bullet X)_0 := 0, \quad (C \bullet X)_n := \sum_{m=1}^n C_m(X_m - X_{m-1}), \quad n \in \mathbb{N}.$$
 (1.2)

Der Prozess $C \bullet X = ((C \bullet X)_n)_{n \in \mathbb{N}_0}$ heißt (diskretes) stochastisches Integral von C bezüglich $X. C \bullet X$ ist adaptiert.

Spielinterpretation: $C \bullet X$ ist ein akkumulierter Gewinnprozess für einen Spieler, der in der m-ten Runde jeweils C_m -fachen Einsatz setzt.

Lemma 1.10. Es sei $(X_n)_n$ ein Martingal und $(C_n)_n$ ein previsibler Prozess bzgl. $(\mathcal{F}_n)_n$. Es gelte mindestens eine der folgenden drei Bedingungen

- i) $(C_n)_n$ ist lokal beschränkt, d.h. es gibt Konstanten c_n mit $|C_n| \le c_n$ f.s. für alle $n \in \mathbb{N}$.
- ii) $(X_n X_{n-1})_n$ ist lokal beschränkt und $C_n \in \mathcal{L}^1(\mathbf{P})$ für alle $n \in \mathbb{N}$.
- iii) $X_n, C_n \in \mathcal{L}^2(\mathbf{P})$ für alle $n \in \mathbb{N}_0$.

Dann ist $C \bullet X$ ein Martingal. Ist $C_n \ge 0$ für alle $n \in \mathbb{N}_0$ und X ein Sub- bzw. Supermartingal, so auch $C \bullet X$.

Beweis. i), ii) oder iii) garantieren, dass $C_m(X_m - X_{m-1}) \in \mathcal{L}^1(\mathbf{P})$, denn für iii) gilt mit der Cauchy-Schwarz-Ungleichung

$$\mathbf{E}[|C_m(X_m - X_{m-1})|] \le (\mathbf{E}[C_m^2])^{\frac{1}{2}} (\mathbf{E}[(X_m - X_{m-1})^2])^{\frac{1}{2}} < \infty.$$

Also gilt

$$\mathbf{E}[(C \bullet X)_{n+1} \mid \mathcal{F}_n] = \underbrace{\mathbf{E}[C_{n+1}(X_{n+1} - X_n) \mid \mathcal{F}_n]}_{=C_{n+1}} + \underbrace{\mathbf{E}[(C \bullet X)_n \mid \mathcal{F}_n]}_{=(C \bullet X)_n \text{ f.s.}} = (C \bullet X)_n \text{ f.s.}$$

Definition 1.11. Sei $(\mathcal{F}_n)_n$ eine Filtration. Eine Zufallsvariable T mit Werten in $\mathbb{N}_0 \cup \{\infty\}$ heißt eine $((\mathcal{F}_n)_n$ -) Stoppzeit, wenn $\{T \leq n\} \in \mathcal{F}_n$ für alle $n \in \mathbb{N}_0$ gilt. Für eine Stoppzeit T ist

$$\mathcal{F}_T := \{ A \in \mathcal{F} \mid A \cap \{ T \leq n \} \in \mathcal{F}_n \text{ für alle } n \in \mathbb{N} \}$$

eine σ -Algebra, sie heißt die (σ -Algebra der) T-Vergangenheit.

Interpretation: \mathcal{F}_T enthält diejenigen Ereignisse, die sich zu dem (zufälligen) Zeitpunkt T entscheiden lassen.

Bemerkung 1.12. T ist genau dann eine Stoppzeit, wenn $\{T = n\} \in \mathcal{F}_n$ für alle $n \in \mathbb{N}_0$, denn $\{T = n\} = \{T \le n\} \cap \{T \le n - 1\}^{\mathsf{c}}$.

Beispiel 1.13. i) Jede Konstante t_0 ist eine Stoppzeit.

ii) Es sei $(X_n)_n$ ein adaptierter stochastischer Prozess mit Werten in (E, \mathcal{B}) und $K \in \mathcal{B}$. Dann ist

$$T := \inf \{ n \in \mathbb{N}_0 \mid X_n \in K \}$$

eine Stoppzeit, denn $\{T \leq n\} = \bigcup_{m=0}^{n} \{X_m \in K\} \in \mathcal{F}_n$.

Bemerkung 1.14. $L := \sup \{ n \in \mathbb{N}_0 \mid X_n \in K \}$ ist im Allgemeinen keine Stoppzeit!

Lemma 1.15. Sind σ, τ Stoppzeiten, so sind auch $\sigma \wedge \tau$, $\sigma \vee \tau$ und $\sigma + \tau$ Stoppzeiten.

Beweis. Sei $n \in \mathbb{N}_0$. Es gilt

$$\{\sigma \vee \tau \leq n\} = \{\sigma \leq n\} \cap \{\tau \leq n\} \in \mathcal{F}_n, \quad \{\sigma \wedge \tau \leq n\} = \{\sigma \leq n\} \cup \{\tau \leq n\} \in \mathcal{F}_n.$$

Also sind $\sigma \wedge \tau$ und $\sigma \vee \tau$ Stoppzeiten. Dann sind auch $\sigma \wedge n$ und $\tau \wedge n$ Stoppzeiten, also gilt

insbesondere für $m \le n$: $\{\sigma \land n \le m\}$, $\{\tau \land n \le m\} \in \mathcal{F}_m \subset \mathcal{F}_n$. Dann sind

$$\sigma' \coloneqq \sigma \wedge n + \mathbb{1}_{\{\sigma > n\}}, \quad \tau' \coloneqq \tau \wedge n + \mathbb{1}_{\{\tau > n\}}$$

 \mathcal{F}_n -messbar, also ist auch $\sigma' + \tau' \mathcal{F}_n$ -messbar. Somit gilt

$$\{\sigma + \tau \le n\} = \{\sigma' + \tau' \le n\} \in \mathcal{F}_n,$$

also ist auch $\sigma + \tau$ eine Stoppzeit.

Bemerkung 1.16. $\sigma - \tau$ ist im Allgemeinen keine Stoppzeit!

Lemma 1.17. Sind σ, τ Stoppzeiten mit $\sigma \leq \tau$, dann gilt $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$.

Beweis. Sei $A \in \mathcal{F}_{\sigma}$ und $n \in \mathbb{N}_0$. Da $\{\tau \leq n\} \subset \{\sigma \leq n\}$, gilt

$$A \cap \{\tau \le n\} = \underbrace{(A \cap \{\sigma \le n\})}_{\in \mathcal{F}_n} \cap \{\tau \le n\} \in \mathcal{F}_n.$$

Beobachtung 1.18. Sei $(F_n)_n$ eine Filtration, T eine Stoppzeit mit $T < \infty$ f.s. und $(X_n)_n$ ein adaptierter stochastischer Prozess mit Werten in (E, \mathcal{B}) . Dann ist $X_T = X_{T(\omega)}(\omega)$ eine $\mathcal{F}_{T^{-m}}$ -messbare Zufallsvariable und $X^{(T)} = (X_n^{(T)})_{n \in \mathbb{N}_0} = (X_{T \wedge n})_{n \in \mathbb{N}_0}$ ein adaptierter stochastischer Prozess.

Beweis. Sei $B \in \mathcal{B}$. Dann ist

$$\{X_T \in B\} = \bigcup_{n=0}^{\infty} \underbrace{\{T = n, X_n \in B\}}_{\in \mathcal{F}_n \subset \mathcal{F}} \in \mathcal{F},$$

also ist X_T \mathcal{F} -messbar. Ebenso gilt

$$\{X_T \in B\} \cap \{T \le n\} = \bigcup_{k=0}^n \underbrace{\{T = k, X_k \in B\}}_{\in \mathcal{F}_k} \subset \mathcal{F}_n,$$

also ist X_T \mathcal{F}_T -messbar. Weiter ist $X_n^{(T)} = X_{T \wedge n} \in \mathcal{F}_{T \wedge n} \subset \mathcal{F}_n$, das heißt $(X_n^{(T)})_n$ ist adaptiert.

Bemerkung 1.19. $(X_n^{(T)})_n$ ist auch adaptiert an $\mathcal{F}^{(T)} := (\mathcal{F}_{T \wedge n})_n$.

Lemma 1.20. Sei T eine Stoppzeit. Ist $(X_n)_n$ ein (Sub-/Super-) Martingal, so auch $(X_n^{(T)})_n$.

Beweis. Sei $C_n := \mathbb{1}_{\{T \ge n\}}, n \in \mathbb{N}$. $(C_n)_n$ ist previsibel, denn $\{T \ge n\} = \{T \le n - 1\}^{\mathsf{C}} \in \mathcal{F}_{n-1}$. Schreibe

$$X_{T\wedge n} = X_0 + \sum_{m=1}^{T\wedge n} (X_m - X_{m-1}) = X_0 + \sum_{m=1}^n \mathbb{1}_{\{T \ge m\}} (X_m - X_{m-1}) = (C \bullet X)_n + X_0.$$

Damit folgt die Behauptung aus Lemma 1.10.

Korollar 1.21. Sei X ein Supermartingal und T eine Stoppzeit. Es gelte mindestens eine der folgenden beiden Bedingungen

- i) T ist beschränkt.
- ii) $\mathbf{E}[T] < \infty$ und $\sup_{n \in \mathbb{N}} |X_n X_{n-1}| \le c \ f\ddot{u}r \ ein \ c \in \mathbb{R}_+.$

Dann gilt $\mathbf{E}[X_T] \leq \mathbf{E}[X_0]$. (Im Falle eines Martingals gilt Gleichheit.)

Beweis. Angenommen i) gilt, dann existiert ein $m \in \mathbb{N}$ mit $T \leq m$. Nach Lemma 1.20 ist $(X_{T \wedge n})_n$ ein Supermartingal, also gilt

$$\mathbf{E}[X_0] = \mathbf{E}[X_{T \wedge 0}] \ge \mathbf{E}[X_{T \wedge m}] = \mathbf{E}[X_T].$$

Gilt ii), dann folgt $T < \infty$ f.s. und $X_{T \wedge m} \xrightarrow[m \to \infty]{} X_T$ f.s. Es gilt

$$\sup_{m \in \mathbb{N}_0} |X_{T \wedge m}| \le |X_0| + (T \wedge m) \cdot c \le |X_0| + cT.$$

Da $|X_0| + cT \in \mathcal{L}^1(\mathbf{P})$, ist dies eine integrable Majorante für $X_{T \wedge m}$ und es folgt mit dem Satz der majorisierten Konvergenz

$$\mathbf{E}[X_T] = \lim_{m \to \infty} \mathbf{E}[X_{T \wedge m}] \stackrel{i)}{\leq} \lim_{m \to \infty} \mathbf{E}[X_0] = \mathbf{E}[X_0].$$

1.2 Martingalkonvergenzsatz

Sei $(X_n)_n$ ein adaptierter, reellwertiger Prozess und $-\infty < a < b < \infty$. Setze $C_1 := \mathbb{1}_{\{X_0 < a\}}$ und für n > 1 rekursiv (siehe auch Abbildung 1.1)

$$C_n \coloneqq \mathbb{1}_{\{C_{n-1}=1,\ X_{n-1} \le b\}} + \mathbb{1}_{\{C_{n-1}=0,\ X_{n-1} < a\}}.$$

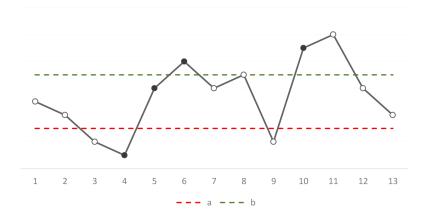


Abbildung 1.1: Aufkreuzungen

 $(C_n)_n$ ist previsibel. Sei weiter

$$U_n^{(a,b)} := \sum_{k=1}^n \mathbb{1}_{\{C_k=1, C_{k+1}=0\}}$$

die Anzahl der abgeschlossenen Aufkreuzungen von unter a nach über b bis zur Zeit n. $U_n^{(a,b)}$ ist \mathcal{F}_n -messbar. Setze $Y \coloneqq C \bullet X$, so gilt

$$Y_n \ge (b-a)U_n^{(a,b)} - (X_n - a)^-.$$

Lemma 1.22 (Doobs¹ Aufkreuzungslemma). Sei X ein Supermartingal. Dann gilt für alle $n \in \mathbb{N}$

$$\mathbf{E}[U_n^{(a,b)}] \le \frac{1}{b-a} \mathbf{E}[(X_n - a)^-].$$

Beweis. Nach Lemma 1.10 ist $Y = C \bullet X$ ein Supermartingal. Also gilt

$$0 = \mathbf{E}[Y_0] \ge \mathbf{E}[Y_n] \ge (b-a)\mathbf{E}[U_n^{(a,b)}] - \mathbf{E}[(X_n-a)^-].$$

Satz 1.23 (Doobs (Super-) Martingalkonvergenzsatz). Ist $(X_n)_n$ ein Supermartingal mit $\sup_n \mathbf{E}[X_n^-] < \infty$, dann gibt es ein $X_\infty \in \mathcal{L}^1(\mathbf{P})$ mit $X_n \to X_\infty$ f.s.

¹Joseph L. Doob (1910-2004)

Beweis. Sei a < b. Es gilt $U_n^{(a,b)} \nearrow U_\infty^{(a,b)}$ nach Konstruktion. Da

$$\mathbf{E}\big[U_{\infty}^{(a,b)}\big] = \lim_{n \to \infty} \mathbf{E}\big[U_n^{(a,b)}\big] \le \sup_n \frac{1}{b-a} \mathbf{E}\big[(X_n - a)^-\big] \le \sup_n \frac{1}{b-a} (\mathbf{E}\big[X_n^-\big] + |a|) < \infty$$

ist $U_{\infty}^{(a,b)} < \infty$ f.s. Für

$$O_{a,b} \coloneqq \left\{ \liminf_{n \to \infty} X_n < a \right\} \cap \left\{ \limsup_{n \to \infty} X_n > b \right\} \subset \left\{ U_{\infty}^{(a,b)} = \infty \right\}$$

gilt also $\mathbf{P}(O_{a,b})=0$. Damit folgt

$$\mathbf{P}(\liminf_{n\to\infty} X_n < \limsup_{n\to\infty} X_n) = \mathbf{P}\left(\bigcup_{\substack{a< b\\a,b\in\mathbb{Q}}} O_{a,b}\right) = 0.$$

Mit $X_{\infty} \coloneqq \limsup_n X_n$ gilt also $X_n \to X_{\infty}$ f.s. Es bleibt $X_{\infty} \in \mathcal{L}^1(\mathbf{P})$ zu zeigen. Es gilt:

$$\mathbf{E}[X_{\infty}^{-}] = \mathbf{E}[\liminf_{n \to \infty} X_{n}^{-}] \overset{\text{Fatou}}{\leq} \liminf_{n \to \infty} \mathbf{E}[X_{n}^{-}] < \infty$$

nach Voraussetzung und

$$\mathbf{E}[X_{\infty}^{+}] = \mathbf{E}[\liminf_{n \to \infty} X_{n}^{+}] \leq \liminf_{n \to \infty} \mathbf{E}[X_{n}^{+}] = \liminf_{n \to \infty} (\mathbf{E}[X_{n}^{-}] + \mathbf{E}[X_{n}]) \leq \mathbf{E}[X_{0}] + \sup_{n} \mathbf{E}[X_{n}^{-}] < \infty.$$

Bemerkung 1.24. Die analoge Aussage von Satz 1.23 gilt für ein Submartingal $(X_n)_n$ mit $\sup_n \mathbf{E}[X_n^+] < \infty$.

Bemerkung 1.25. Falls $X_n \ge c > -\infty$ für ein festes c, so gilt $\mathbf{E}[X_\infty] \le \lim_n \mathbf{E}[X_n]$. Im Allgemeinen gilt $\mathbf{E}[X_\infty] \ne \lim_n \mathbf{E}[X_n]$, betrachte zum Beispiel die symmetrische gewöhnliche Irrfahrt startend in 1, gestoppt bei Erreichen der 0.

1.3 Gleichgradig integrierbare Martingale und optionales Stoppen

Erinnerung 1.26. Eine Familie reeller Zufallsvariablen $(X_n)_n$ heißt gleichgradig integrierbar, falls

$$\lim_{k \to \infty} \sup_{n} \mathbf{E}[|X_n| \cdot \mathbb{1}_{\{|X_n| \ge k\}}] = 0.$$

Es gilt:

i) $(X_n)_n$ ist genau dann gleichgradig integrierbar, falls ein $h:[0,\infty) \to [0,\infty)$ existiert mit $\frac{h(x)}{x} \xrightarrow[x\to\infty]{} \infty$ und $\sup_n \mathbf{E}[h(|X_n|)] < \infty$. (Man kann annehmen, dass h monoton wachsend und konvex ist, vgl. [Kle13, Satz 6.19])

ii) Sei $X_n \xrightarrow{\mathbf{P}} X_{\infty}$. Dann gilt $X_n \xrightarrow{\mathcal{L}^1(\mathbf{P})} X_{\infty}$ genau dann, wenn $(X_n)_n$ gleichgradig integrierbar ist

Satz 1.27. Sei $(X_n)_n$ ein gleichgradig integrierbares Supermartingal. Dann existiert $X_\infty \in \mathcal{L}^1(\mathbf{P})$ mit $X_n \to X_\infty$ f.s. und in $\mathcal{L}^1(\mathbf{P})$. Es gilt

$$\mathbf{E}[X_{\infty} \mid \mathcal{F}_n] \leq X_n \text{ f.s. für alle } n \in \mathbb{N}.$$

(Analog gilt $\mathbf{E}[X_{\infty} \mid \mathcal{F}_n] \ge X_n$, falls $(X_n)_n$ ein gleichgradig integrierbares Submartingal, und $\mathbf{E}[X_{\infty} \mid \mathcal{F}_n] = X_n$, falls $(X_n)_n$ ein gleichgradig integrierbares Martingal.)

Beweis. Die Existenz von X_{∞} mit $X_n \to X_{\infty}$ f.s. folgt aus Satz 1.23. Aufgrund der gleichgradigen Integrierbarkeit gilt $\mathbf{E}[|X_n - X_{\infty}|] \xrightarrow[n \to \infty]{} 0$. Weiter gilt für $n \ge m$:

$$\mathbf{E}[|\mathbf{E}[X_{\infty} \mid \mathcal{F}_m] - \mathbf{E}[X_n \mid \mathcal{F}_m]|] = \mathbf{E}[|\mathbf{E}[X_{\infty} - X_n \mid \mathcal{F}_m]|] \le \mathbf{E}[\mathbf{E}[|X_{\infty} - X_n| \mid \mathcal{F}_m]]$$

$$= \mathbf{E}[|X_{\infty} - X_n|] \xrightarrow{n \to \infty} 0$$

und damit ist

$$\mathbf{E}\big[\big(\mathbf{E}\big[X_{\infty}\mid\mathcal{F}_{m}\big]-X_{m}\big)^{+}\big]\leq \underbrace{\mathbf{E}\big[\big(\mathbf{E}\big[X_{\infty}\mid\mathcal{F}_{m}\big]-\mathbf{E}\big[X_{n}\mid\mathcal{F}_{m}\big]\big)^{+}\big]}_{\to 0}+\mathbf{E}\big[\big(\underbrace{\mathbf{E}\big[X_{n}\mid\mathcal{F}_{m}\big]}_{\leq X_{m}\text{ für }n>m}-X_{m}\big)^{+}\big].$$

Also gilt $\mathbf{E}[X_{\infty} \mid \mathcal{F}_m] \leq X_m$ f.s.

Satz 1.28. Sei $Y \in \mathcal{L}^1(\mathbf{P})$ und $(\mathcal{F}_n)_n$ eine Filtration. Sei $\mathcal{F}_{\infty} := \sigma(\mathcal{F}_n \mid n \in \mathbb{N})$ und $X_n := \mathbf{E}[Y \mid \mathcal{F}_n]$. Dann ist $(X_n)_n$ ein gleichgradig integrierbares Martingal und es gilt

$$X_n \xrightarrow[n \to \infty]{} X_\infty := \mathbf{E}[Y \mid \mathcal{F}_\infty] \text{ f.s. und in } \mathcal{L}^1(\mathbf{P}).$$

Lemma 1.29. Ist $Y \in \mathcal{L}^1(\mathbf{P})$ und $\mathcal{F}_n \subset \mathcal{F}$ σ -Algebran. Dann ist $(\mathbf{E}[Y \mid \mathcal{F}_n])_{n \in \mathbb{N}}$ gleichgradig integrierbar.

Beweis. Es existiert ein $h:[0,\infty)\to[0,\infty)$ konvex und monoton wachsend mit $\frac{h(x)}{x}\xrightarrow[x\to\infty]{}\infty$ und $\mathbf{E}[h(|Y|)]<\infty$. Es gilt mit der Jensen-Ungleichung

$$\sup_{n} \mathbf{E}[h(|\mathbf{E}[Y \mid \mathcal{F}_{n}]|)] \leq \sup_{n} \mathbf{E}[\mathbf{E}[h(|Y|) \mid \mathcal{F}_{n}]] = \mathbf{E}[h(|Y|)] < \infty.$$

Beweis von Satz 1.28. $(X_n)_n$ ist ein Martingal und nach Lemma 1.29 gleichgradig integrier-

bar. Nach Satz 1.27 gilt $X_n \to X_\infty := \limsup_{n \to \infty} X_n$ f.s. und in $\mathcal{L}^1(\mathbf{P})$. X_∞ ist \mathcal{F}_∞ -messbar. Es bleibt $X_\infty = \mathbf{E}[Y \mid \mathcal{F}_\infty]$ zu zeigen. Ohne Einschränkung können wir $Y \ge 0$ annehmen (ansonsten betrachte Y^+ , Y^- separat). Insbesondere ist dann $X_\infty \ge 0$ f.s. Für $A \in \mathcal{F}_\infty$ sind $\mu_1(A) := \mathbf{E}[X_\infty \mathbb{1}_A]$ und $\mu_2(A) := \mathbf{E}[Y \mathbb{1}_A]$ endliche Maße auf $(\Omega, \mathcal{F}_\infty, \mathbf{P})$. Sei $A \in \mathcal{F}_m \subset \mathcal{F}_\infty$. Dann gilt

$$\mu_1(A) = \mathbf{E}[X_{\infty} \mathbb{1}_A] = \lim_{n \to \infty} \mathbf{E}[X_n \mathbb{1}_A] \stackrel{n \ge m}{=} \mathbf{E}[Y \mathbb{1}_A] = \mu_2(A).$$

Da $\bigcup_{m \in \mathbb{N}} F_m$ ein schnittstabiler Erzeuger von \mathcal{F}_{∞} ist, folgt $\mu_1 = \mu_2$ mit [Dep14, Satz 1.37]. \square

Bemerkung 1.30. Für ein gleichgradig integrierbares Martingal $(X_n)_n$ gilt

$$\mathbf{E}[X_{\infty} \mid \mathcal{F}_n] = X_n$$
 für alle $n \in \mathbb{N}$.

Solche Martingale heißen Doobsche Martingale.

Lemma 1.31. Sei $(X_n)_n$ ein Supermartingal und T eine Stoppzeit mit $T \leq m$ f.s. für ein $m \in \mathbb{N}$. Dann ist $X_T \in \mathcal{L}^1(\mathbf{P})$ und es gilt $\mathbf{E}[X_m \mid \mathcal{F}_T] \leq X_T$ f.s. Im Falle eines Martingals gilt Gleichheit.

Beweis. Nach Lemma 1.20 ist $(X_{T \wedge n})_n$ ein Supermartingal. Es gilt $X_T \in \mathcal{L}^1(\mathbf{P})$, denn $X_T = X_{T \wedge m}$ f.s. Für $A \in \mathcal{F}_T$ gilt

$$\mathbf{E}[X_m \mathbb{1}_A] = \sum_{n=0}^m \mathbf{E}[X_m \mathbb{1}_{\underbrace{A \cap \{T=n\}}}] \leq \sum_{n=0}^m \mathbf{E}[X_n \mathbb{1}_{A \cap \{T=n\}}] = \mathbf{E}\left[\left(\sum_{n=0}^m X_n \mathbb{1}_{\{T=n\}}\right) \mathbb{1}_A\right] = \mathbf{E}[X_T \mathbb{1}_A].$$

Lemma 1.32. Ist $(X_n)_n$ ein gleichgradig integrierbares Martingal, so ist $\{X_T \mid T \text{ Stoppzeit}\}$ gleichgradig integrierbar.

Beweis. Da $(X_n)_n$ gleichgradig integrierbar ist, existiert ein $h:[0,\infty) \to [0,\infty)$ konvex und monoton wachsend mit $\frac{h(x)}{x} \xrightarrow[x \to \infty]{} \infty$ und $\mathbf{E}[h(|X_n|)] =: M < \infty$. Sei T eine Stoppzeit und $n \in \mathbb{N}$. Es gilt

$$\mathbf{E}[h(|X_T|)\mathbb{1}_{\{T\leq n\}}] = \mathbf{E}[h(|X_{T\wedge n}|)\mathbb{1}_{\{T\leq n\}}] \stackrel{1.31}{=} \mathbf{E}[h(|\mathbf{E}[X_n \mid \mathcal{F}_{T\wedge n}]|)\mathbb{1}_{\{T\leq n\}}]$$

$$\leq \mathbf{E}[h(\mathbf{E}[|X_n| \mid \mathcal{F}_{T\wedge n}])\mathbb{1}_{\{T\leq n\}}] = \mathbf{E}[\mathbf{E}[h(|X_n|)\mathbb{1}_{\{T\leq n\}} \mid \mathcal{F}_{T\wedge n}]]$$

$$\leq M.$$

Mit $n \to \infty$ folgt $\mathbf{E}[h(|X_T|)\mathbb{1}_{\{T<\infty\}}] \le M$, das heißt

$$\sup_{T \text{ Stoppzeit}} \mathbf{E}[h(|X_T|)] \le 2M < \infty.$$

Satz 1.33 (optional-sampling-Theorem). Es sei $(X_n)_n$ ein gleichgradig integrierbares Martingal, $X_{\infty} := \lim X_n$ und T eine Stoppzeit. Dann ist $X_T \in \mathcal{L}^1(\mathbf{P})$ und es gilt $\mathbf{E}[X_{\infty} \mid \mathcal{F}_T] = X_T$ f.s. Insbesondere gilt $\mathbf{E}[X_T] = \mathbf{E}[X_{\infty}] = \mathbf{E}[X_0]$. Ist S eine Stoppzeit mit $S \leq T$, so gilt $\mathbf{E}[X_T \mid \mathcal{F}_S] = X_S$ f.s.

Beweis. Nach Satz 1.28 gilt $\mathbf{E}[X_{\infty} \mid \mathcal{F}_m] = X_m$ f.s. und nach Lemma 1.31 ist $\mathbf{E}[X_m \mid \mathcal{F}_{T \wedge m}] = X_{T \wedge m}$ f.s. Also ist $\mathbf{E}[X_{\infty} \mid \mathcal{F}_{T \wedge m}] = \mathbf{E}[\mathbf{E}[X_{\infty} \mid \mathcal{F}_m] \mid \mathcal{F}_{T \wedge m}] = X_{T \wedge m}$ f.s. Sei nun $A \in \mathcal{F}_T$. Dann ist $A \cap \{T \leq m\} \in \mathcal{F}_{T \wedge m}$, denn für $n \in N_0$ gilt $A \cap \{T \leq m\} \cap \{T \leq n\} = A \cap \{T \leq m \wedge n\} \in \mathcal{F}_{m \wedge n} \subset \mathcal{F}_n$. Somit gilt

$$\mathbf{E}\big[X_{\infty} \mathbb{1}_{A \cap \{T \le m\}}\big] = \mathbf{E}\big[\mathbf{E}\big[X_{\infty} \mathbb{1}_{A \cap \{T \le m\}} \mid \mathcal{F}_{T \wedge m}\big]\big] = \mathbf{E}\big[X_{T \wedge m} \mathbb{1}_{A \cap \{T \le m\}}\big] = \mathbf{E}\big[X_{T} \mathbb{1}_{A \cap \{T \le m\}}\big]. \tag{1.3}$$

Sei ohne Einschränkung $X_{\infty} \geq 0$ (sonst betrachte X_{∞}^+ , X_{∞}^- separat). $m \to \infty$ in (1.3) mit monotoner Konvergenz liefert $\mathbf{E}[X_{\infty}\mathbbm{1}_{A\cap\{T<\infty\}}] = \mathbf{E}[X_{T}\mathbbm{1}_{A\cap\{T<\infty\}}]$. Nach Definition gilt aber auch $\mathbf{E}[X_{\infty}\mathbbm{1}_{A\cap\{T=\infty\}}] = \mathbf{E}[X_{T}\mathbbm{1}_{A\cap\{T=\infty\}}]$, d.h. $\mathbf{E}[X_{\infty}\mathbbm{1}_{A}] = \mathbf{E}[X_{T}\mathbbm{1}_{A}]$.

Sei $S \leq T$ eine Stoppzeit. Dann ist $\mathcal{F}_S \subset \mathcal{F}_T$, also gilt

$$\mathbf{E}[X_T \mid \mathcal{F}_S] = \mathbf{E}[\mathbf{E}[X_\infty \mid \mathcal{F}_T] \mid \mathcal{F}_S] = \mathbf{E}[X_\infty \mid \mathcal{F}_S] = X_S \quad \text{f.s.}$$

Bemerkung und Definition 1.34. Sei $(X_n)_n$ ein adaptierter Prozess mit $X_n \in \mathcal{L}^1(\mathbf{P})$ für $n \in \mathbb{N}_0$. Dann ist $X_n = M_n + A_n$ mit

$$M_0 := X_0, \quad M_n := X_0 + \sum_{k=1}^n (X_k - \mathbf{E}[X_k \mid \mathcal{F}_{k-1}]),$$

$$A_0 := 0, \quad A_n := \sum_{k=1}^n (\mathbf{E}[X_k \mid \mathcal{F}_{k-1}] - X_{k-1}).$$

wobei $(M_n)_n$ ein Martingal und $(A_n)_n$ previsibel ist. Die Darstellung X = M + A als Summe eines Martingals M und eines previsiblen Prozesses A mit $A_0 = 0$ heißt Doob-Zerlegung, sie ist f.s. eindeutig.

 $(X_n)_n$ ist genau dann ein Super- bzw. Submartingal, wenn $(A_n)_n$ nicht-wachsend bzw. nicht-fallend ist.

Beweis. Wir zeigen nur die Eindeutigkeit. Angenommen X = M + A = M' + A'. Sei $\tilde{M}_n := M_n - M'_n = A'_n - A_n$. Dann ist $(\tilde{M}_n)_n$ ein previsibles Martingal mit $\tilde{M}_0 = 0$. Also ist $\tilde{M}_n \equiv \tilde{M}_0 \equiv 0$, denn $\tilde{M}_{n-1} = \mathbf{E}[\tilde{M}_n \mid \mathcal{F}_{n-1}] = \tilde{M}_n$ f.s.

Satz 1.35. Sei $(X_n)_n$ ein gleichgradig integrierbares Supermartingal und seien S,T Stoppzeiten mit $S \leq T$. Dann gilt $\mathbf{E}[X_T \mid \mathcal{F}_S] \leq X_S$ f.s.

Beweis. Sei $X_n=M_n+A_n$ die Doob-Zerlegung. Dann gilt $A_n \searrow A_\infty \leq 0$. Es ist

$$\mathbf{E}[|A_n|] = \mathbf{E}[-A_n] = \mathbf{E}[M_n - X_n] = \mathbf{E}[M_n - M_0 + X_0 - X_n] \le \mathbf{E}[|X_n| + \mathbf{E}[|X_0|]] \le M$$

für alle n für ein geeignetes M. Somit ist $(A_n)_n$ gleichgradig integrierbar und damit auch $(M_n)_n = (X_n - A_n)_n$. Also gilt

$$\mathbf{E}[X_T \mid \mathcal{F}_S] = \underbrace{\mathbf{E}[M_T \mid \mathcal{F}_S]}_{=M_S \text{ f.s.}} + \mathbf{E}[A_T \mid \mathcal{F}_S] \leq M_S + \mathbf{E}[A_S \mid \mathcal{F}_S] = M_S + A_S = X_S.$$

1.4 \mathcal{L}^2 -Martingale

Bemerkung 1.36. Sei $(X_n)_n$ ein Martingal und $\varphi: \mathbb{R} \to \mathbb{R}$ konvex, sodass $\mathbf{E}[\varphi(X_n)]$ für alle n existiert. Dann ist $(\varphi(X_n))_n$ ein Submartingal, denn

$$\mathbf{E}[\varphi(X_{n+1}) \mid \mathcal{F}_n] \ge \varphi\left(\mathbf{E}[X_{n+1} \mid \mathcal{F}_n]\right) = \varphi(X_n).$$

Die Aussage gilt ebenso, wenn $(X_n)_n$ ein Submartingal und φ konvex und nicht fallend ist. Bemerkung 1.37. Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ heißt harmonisch, wenn

$$f(x) = \frac{1}{2a} \int_{x-a}^{x+a} f(y) \, \mathrm{d}y \quad \forall x \in \mathbb{R}, a > 0.$$

 $f: \mathbb{R} \to \mathbb{R}$ heißt subharmonisch, wenn $f(x) \leq \frac{1}{2a} \int_{x-a}^{x+a} f(y) \, \mathrm{d}y$ und superharmonisch, wenn $f(x) \geq \frac{1}{2a} \int_{x-a}^{x+a} f(y) \, \mathrm{d}y$ für alle $x \in \mathbb{R}, a > 0$. Konvexe Funktionen sind subharmonisch, zusammen mit Bemerkung 1.36 motiviert dies den Namen Submartingal (und entsprechend auch den Namen Supermartingal).

Beobachtung 1.38. Sei $(X_n)_n$ ein quadratintegrables Martingal, d.h. $X_n \in \mathcal{L}^2(\mathbf{P})$ für alle

 $n \in \mathbb{N}$. Dann gilt $\mathbf{E}[(X_k - X_l)(X_l - X_m)] = 0$ für alle $0 \le m \le l \le k$, denn

$$\mathbf{E}[(X_k - X_l)(X_l - X_m)] = \mathbf{E}[\mathbf{E}[(X_k - X_l)(X_l - X_m) \mid \mathcal{F}_l]] = \mathbf{E}[(X_l - X_m)(\mathbf{E}[X_k \mid \mathcal{F}_l] - X_l)]$$
$$= \mathbf{E}[(X_l - X_m)(X_l - X_l)] = \mathbf{E}[0] = 0.$$

Bemerkung 1.39. $\|X\|_2 := \sqrt{\mathbf{E}[X^2]}$ ist eine Norm und $\langle X, Y \rangle := \mathbf{E}[XY]$ ist ein Skalarpodukt, $\mathcal{L}^2(\mathbf{P})$ ist ein Hilbertraum.

Man sagt auch: Martingalinkremente über disjunkte Zeitintervalle sind orthogonal.

Lemma und Definition 1.40. Sei $(X_n)_n$ ein quadratintegrables Martingal.

$$A_n := \sum_{k=1}^n \mathbf{E}[(X_k - X_{k-1})^2 \mid \mathcal{F}_{k-1}]$$

ist der eindeutig bestimmte previsible Prozess mit $A_0 := 0$, sodass $(X_n^2 - A_n)_n$ ein Martingal ist. Man schreibt auch $(\langle X \rangle_n)_n = (A_n)_n$. $\langle X \rangle$ heißt quadratische Variation von X. (In der Literatur werden auch folgende Namen verwendet: Wachsender Prozess, previsible quadratische Variation, Spitzklammerprozess von X.)

Beweis. Es gilt:

$$\mathbf{E}[X_{n+1}^{2} - A_{n+1} \mid \mathcal{F}_{n}] = \mathbf{E}[(X_{n+1} - X_{n})^{2} + 2(X_{n+1} - X_{n})X_{n} + X_{n}^{2} - A_{n+1} \mid \mathcal{F}_{n}]$$

$$= \underbrace{\mathbf{E}[(X_{n+1} - X_{n})^{2} \mid \mathcal{F}_{n}] - A_{n+1}}_{=-A_{n}} + X_{n}^{2} + 2X_{n} \underbrace{\mathbf{E}[X_{n+1} - X_{n} \mid \mathcal{F}_{n}]}_{=0}$$

$$= X_{n}^{2} - A_{n}.$$

Die Eindeutigkeit folgt aus der Eindeutigkeit der Doob-Zerlegung 1.34.

Insbesondere gilt also:

$$\mathbf{E}[X_n^2] = \mathbf{E}[X_0^2] + \mathbf{E}[\langle X \rangle_n] = \mathbf{E}[X_0^2] + \sum_{k=1}^n \mathbf{E}[(X_k - X_{k-1})^2]$$

und

$$\sup_{n} \mathbf{E}[X_n^2] < \infty \quad \Leftrightarrow \quad \sup_{n} \mathbf{E}[\langle X \rangle_n] < \infty.$$

Satz 1.41. Sei $(M_n)_n$ ein \mathcal{L}^2 -Martingal. Dann gilt:

$$i) \ \{\langle M \rangle_{\infty} < \infty\} \overset{f.s.}{\subset} \left\{ \lim_{n \to \infty} M_n \ existient \right\}.$$

ii) Wenn $|M_n - M_{n-1}| \le c$ für alle n für ein $c < \infty$, so gilt auch $\left\{ \lim_{n \to \infty} M_n \text{ existient} \right\} \stackrel{f.s.}{\subset}$

$$\{\langle M\rangle_{\infty}<\infty\}.$$

$$iii) \ \big\{ \big\langle M \big\rangle_{\infty} = \infty \big\} \overset{f.s.}{\subset} \bigg\{ \tfrac{M_n}{\langle M \rangle_n} \xrightarrow[n \to \infty]{} 0 \bigg\}.$$

Bemerkung 1.42. iii) impliziert das Starke Gesetz der großen Zahlen für $M_n = Y_1 + \ldots + Y_n$ mit Y_i unabhängig und identisch verteilt mit $\mathbf{E}[Y_1] = 0$ und $\mathbf{Var}[Y_1] < \infty$.

Lemma 1.43 (Kroneckers Lemma). Sei $(x_n)_n \subset \mathbb{R}$ mit $s_k = \sum_{n=1}^k X_n \to s_\infty \in \mathbb{R}$. Ist $0 \le b_n \nearrow \infty$, dann gilt $\frac{1}{b_n} \sum_{k=1}^n b_k x_k \xrightarrow[n \to \infty]{} 0$.

Beweis von Satz 1.41. Sei $k \in \mathbb{R}^+$. $S_k := \inf\{n \in \mathbb{N}_0 \mid \{M\}_{n+1} > k\}$ ist eine Stoppzeit. Nach Lemma 1.20 und Lemma 1.40 ist $(M_{n \wedge S_k}^2 - \langle M \rangle_{n \wedge S_k})_n$ ein Martingal, also gilt

$$\sup_{n} \mathbf{E}[M_{n \wedge S_{k}}^{2}] = \mathbf{E}[M_{0}] + \sup_{n} \mathbf{E}[\langle M \rangle_{n \wedge S_{k}}] \leq \infty,$$

das heißt $(M_{n \wedge S_k})_n$ ist \mathcal{L}^2 -beschränkt. Also existiert $\lim_n M_{n \wedge S_k}$ f.s. für jedes $k \in \mathbb{R}^+$. Es gilt $\{\langle M \rangle_{\infty} < \infty\} = \bigcup_{k \in \mathbb{N}} \{S_k = \infty\}$ und $\bigcup_{k \in \mathbb{N}} \{S_k = \infty, \lim_n M_{n \wedge S_k} \text{ existiert}\} \subset \{\lim_n M_n \text{ existiert}\}$, damit gilt i).

Sei K>0. $T_K\coloneqq\inf\{n\in\mathbb{N}_0\mid |M_n|>K\}$ ist eine Stoppzeit und es gilt

$$\mathbf{E}\big[\underbrace{M_{n\wedge T_K}^2}_{\leq (K+c)^2} - \langle M \rangle_{n\wedge T_K}\big] = \mathbf{E}\big[M_0^2\big].$$

Also folgt mit monotoner Konvergenz

$$\mathbf{E}[\langle M \rangle_{T_K}] = \sup_n \mathbf{E}[\langle M \rangle_{n \wedge T_K}] \le \mathbf{E}[M_0^2] + (K + c)^2 < \infty.$$

Demnach ist $\langle M \rangle_{T_K} < \infty$ f.s. und es gilt

$$\mathbf{P}\left(\underbrace{\lim_{n\to\infty} M_n \text{ existiert}}_{\subset \bigcup_{k\in\mathbb{N}} \{T_k=\infty\}} \cap \{\langle M \rangle_{\infty} = \infty\}\right)$$

$$\leq \mathbf{P}\left(\bigcup_{K\in\mathbb{N}}\left\{T_K=\infty\right\}\cap\left\{\langle M\rangle_{\infty}=\infty\right\}\cap\left\{\langle M\rangle_{T_K}<\infty\right\}\right)=0.$$

Also gilt ii).

Weiter sei $W_n := \sum_{k=1}^n \frac{M_k - M_{k-1}}{1 + \langle M \rangle_k} = ((1 + \langle M \rangle)^{-1} \bullet M)_n$. Nach Lemma 1.10 ist $(W_n)_n$ ein

Martingal und es gilt

$$\mathbf{E}[(W_{n} - W_{n-1})^{2} \mid \mathcal{F}_{n-1}] = \frac{1}{(1 + \langle M \rangle_{n})^{2}} \mathbf{E}[(M_{n} - M_{n-1})^{2} \mid \mathcal{F}_{n-1}] = \frac{\langle M \rangle_{n} - \langle M \rangle_{n-1}}{(1 + \langle M \rangle_{n})^{2}}$$

$$\leq \frac{(\langle M \rangle_{n} + 1) - (\langle M \rangle_{n-1} + 1)}{(1 + \langle M \rangle_{n})(1 + \langle M \rangle_{n-1})} = \frac{1}{1 + \langle M \rangle_{n-1}} - \frac{1}{1 + \langle M \rangle_{n}}.$$

Also gilt

$$\langle W \rangle_{\infty} = \lim_{N \to \infty} \langle W \rangle_N = \lim_{N \to \infty} \left(\frac{1}{1 + \langle M \rangle_{n-1}} - \frac{1}{1 + \langle M \rangle_n} \right) \le 1$$

und somit $W_n \to W_\infty$ f.s. nach i). Wähle nun $b_n = 1 + \langle M \rangle_n$ und $x_n = \frac{M_n - M_{n-1}}{1 + \langle M \rangle_n}$ in Lemma 1.43, dann folgt $\sum_{k=1}^n b_k x_k = \sum_{k=1}^n M_k - M_{k-1} = M_n - M_0$, d.h. iii) gilt.

Im Folgenden sei $(X_n)_n$ ein stochastischer Prozess mit Werten in \mathbb{R} und

$$X_n^* := \max_{0 \le k \le n} X_k, \quad |X|_n^* := \max_{0 \le k \le n} |X_k|.$$

Lemma 1.44. Sei $(X_n)_n$ ein Submartingal und $\lambda \geq 0$. Dann gilt

$$\lambda \mathbf{P}(X_n^* \ge \lambda) \le \mathbf{E} \left[X_n \mathbb{1}_{\{X_n^* \ge \lambda\}} \right] \le \mathbf{E} \left[|X_n| \mathbb{1}_{\{X_n^* \ge \lambda\}} \right] \ (\le \mathbf{E}[|X_n|]).$$

Beweis. Sei $T := \inf \{ k \in \mathbb{N}_0 \mid X_k \ge \lambda \} \wedge n$. T ist eine beschränkte Stoppzeit und es gilt mit Korollar 1.21

$$\mathbf{E}\big[X_n\mathbbm{1}_{\{X_n^* \geq \lambda\}}\big] + \mathbf{E}\big[X_n\mathbbm{1}_{\{X_n^* < \lambda\}}\big] = \mathbf{E}\big[X_n\big] \overset{1.21}{\geq} \mathbf{E}\big[X_T\big] = \mathbf{E}\big[X_T\mathbbm{1}_{\{X_n^* \geq \lambda\}}\big] + \mathbf{E}\big[X_T\mathbbm{1}_{\{X_n^* < \lambda\}}\big] \\ \geq \lambda \mathbf{P}\big(X_n^* \geq \lambda\big) + \mathbf{E}\big[X_n\mathbbm{1}_{\{X_n^* < \lambda\}}\big].$$

Satz 1.45 (Doobs \mathcal{L}^p -Ungleichungen). Sei $(X_n)_n$ ein Martingal oder ein nichtnegatives Submartingal.

 $i) \ \ F\ddot{u}r \ p \geq 1 \ \ und \ \lambda > 0 \ \ gilt \ \lambda^p \mathbf{P}\big(|X|_n^* \geq \lambda\big) \leq \mathbf{E}\big[|X_n|^p\big].$

$$ii) \ \ F\ddot{u}r \ p>1 \ \ gilt \ \mathbf{E}[|X_n|^p] \leq \mathbf{E}[(|X|_n^*)^p] \leq \left(\frac{p}{p-1}\right)^p \mathbf{E}[|X_n|^p].$$

Bemerkung 1.46. Für ein \mathcal{L}^2 -Martingal gestattet dies, $\mathbf{E}[(|X|_n^*)^2]$ durch $\mathbf{E}[\langle X \rangle_n]$ zu kontrollieren, denn $\mathbf{E}[X_n^2] = \mathbf{E}[X_0^2] + \mathbf{E}[\langle X \rangle_n]$.

Beweis von Satz 1.45. i) $(|X_n|^p)_n$ ist ein Submartingal, also folgt die Aussage durch Anwenden von Lemma 1.44 auf $(|X_n|^p)_n$.

ii) Sei c > 0. Es gilt:

$$\mathbf{E}[(|X|_{n}^{*} \wedge c)^{p}] = \mathbf{E}\left[\int_{0}^{|X|_{n}^{*} \wedge c} p\lambda^{p-1} d\lambda\right] = \mathbf{E}\left[\int_{0}^{c} p\lambda^{p-1} \mathbb{1}_{\{|X|_{n}^{*} \geq \lambda\}} d\lambda\right]$$

$$\stackrel{\text{Fubini}}{=} \int_{0}^{c} p\lambda^{p-1} \mathbf{P}(|X|_{n}^{*} \geq \lambda) d\lambda \leq \int_{0}^{c} p\lambda^{p-1} \frac{1}{\lambda} \mathbf{E}[|X_{n}| \mathbb{1}_{\{|X|_{n}^{*} \geq \lambda\}}] d\lambda$$

$$\stackrel{\text{Fubini}}{=} p\mathbf{E}\left[|X_{n}| \int_{0}^{c \wedge |X|_{n}^{*}} \lambda^{p-2} d\lambda\right] = \frac{p}{p-1} \mathbf{E}[|X_{n}|(|X|_{n}^{*} \wedge c)^{p-1}]$$

$$\stackrel{\text{H\"older}}{\leq} \frac{p}{p-1} E[(|X|_{n}^{*} \wedge c)^{p}]^{\frac{p-1}{p}} \mathbf{E}[|X_{n}|^{p}]^{\frac{1}{p}}.$$

Für $c \to \infty$ folgt mit monotoner Konvergenz

$$\mathbf{E}[(|X|_n^*)^p] \le \frac{p}{p-1} \mathbf{E}[(|X|_n^*)^p]^{\frac{p-1}{p}} \mathbf{E}[|X_n|^p]^{\frac{1}{p}}$$

und durch Umstellen und Potenzieren dieser Ungleichung erhält man

$$\mathbf{E}[(|X|_n^*)^p] \le \left(\frac{p}{p-1}\right)^p \mathbf{E}[|X_n|^p].$$

Bemerkung 1.47. Für p=2 impliziert i) die Kolmogorovsche Ungleichung. ii) legt für p=2 nahe: Ist $X_n=Y_1+\ldots+Y_n$, wobei Y_i unabhängig und identisch verteilt mit $\mathbf{E}[Y_1]=0$ und $\sigma^2:=\mathbf{E}[Y_1^2]\leq\infty$, so ist typischerweise $\max_{k\leq n}|X_k|=\mathcal{O}(\sqrt{n})$.

2 Austauschbarkeit

2.1 Grundsätzliches

Sei I eine Indexmenge und X_i , $i \in I$ Zufallsvariablen mit Wertebereich E. E sei ein polnischer Raum (d.h. E ist ein topologischer Raum, der so metrisiert werden kann, dass (E,d) ein vollständiger und separabler metrischer Raum ist, beispielsweise E abzählbar, $E = \mathbb{R}$, $E = \mathbb{R}^d$, $E = \mathcal{C}([0,1])$.

Definition 2.1. $(X_i)_{i \in I}$ heißt austauschbar, wenn $\mathcal{L}((X_i)_{i \in I}) = \mathcal{L}((X_{\pi(i)})_{i \in I})$ für jede endliche Permutation $\pi: I \to I$ (das heißt π ist bijektiv und $|\{i \mid \pi(i) \neq i\}| < \infty$) gilt.

Bemerkung 2.2. $(X_i)_{i\in I}$ ist genau dann austauschbar, wenn für alle $n \in \mathbb{N}$, $i_1, \ldots, i_n, j_1, \ldots, j_n \in I$ gilt: $\mathcal{L}((X_{i_1}, \ldots, X_{i_n})) = \mathcal{L}((X_{j_1}, \ldots, X_{j_n}))$.

Beweis. Ist $(X_i)_{i\in I}$ austauschbar, so gilt $\mathcal{L}((X_{i_1},\ldots,X_{i_n})) = \mathcal{L}((X_{j_1},\ldots,X_{j_n}))$ nach Definition mit $\pi(i_k) = j_k$. Andererseits ist $\mathcal{L}((X_i)_{i\in I})$ festgelegt durch $\{\mathcal{L}((X_j)_{j\in J}) \mid J \subset I \text{ endlich}\}$, denn "endliche Zylindermengen" $B_{i_1} \times \ldots \times B_{i_k} \times \bigotimes_{i\in I \setminus \{i_1,\ldots i_k\}} E_i$ erzeugen die Produkt- σ -Algebra auf $\bigotimes_{i\in I} E_i$.

Insbesondere haben X_i und X_j dieselbe Verteilung für alle $i, j \in I$. Die Umkehrung gilt im Allgemeinen nicht!

Beispiel 2.3. i) Sind X_i , $i \in I$ unabhängig und identisch verteilt, so sind sie auch austauschbar.

- ii) Teilfamilien austauschbarer Zufallsvariablen sind austauschbar.
- iii) (Ziehen ohne Zurücklegen) Es seien N Kugeln in einer Urne, M schwarze und N-M weiße. Ziehe ohne Zurücklegen. Sei $X_i \coloneqq \mathbbm{1}_{\{i-\text{te Kugel ist schwarz}\}}$. Für $x_1,\ldots,x_N \in \{0,1\}$ mit $x_1+\ldots+x_N=M$ gilt

$$\mathbf{P}(X_1 = x_1, \dots, X_N = x_N) = \frac{1}{\binom{N}{M}} = \mathbf{P}(X_1 = x_{\pi^{-1}(1)}, \dots, X_N = x_{\pi^{-1}(N)}),$$

also sind die X_i austauschbar.

iv) (Münzwurf mit zufälliger Erfolgswahrscheinlichkeit) Sei Y eine Zufallsvariable mit Werten in [0,1]. Gegeben Y=y seien $X_1,X_2,\ldots\sim \mathbf{Ber}(y)$ unabhängig und identisch verteilt (zum Beispiel realisierbar als $X_i=\mathbbm{1}_{\{U_i\leq Y\}}$ mit $U_1,U_2,\ldots\sim \mathbf{Unif}([0,1])$ u.i.v. und unabhängig von Y). Für $n\in\mathbb{N}$ und $x_1,\ldots,x_n\in\{0,1\}$ mit $x_1+\ldots+x_n=s$ gilt:

$$\mathbf{P}(X_1 = x_1, \dots, X_n = x_n) = \mathbf{E}[\mathbf{P}(X_1 = x_1, \dots, X_n = x_n \mid Y)]$$

$$= \mathbf{E} \left[\prod_{i=1}^n Y^{x_i} (1 - Y)^{1 - x_i} \right]$$

$$= \mathbf{E}[Y^s (1 - Y)^{n - s}]$$

$$= \mathbf{E} \left[\prod_{i=1}^n Y^{x_{\pi^{-1}(i)}} (1 - Y)^{1 - x_{\pi^{-1}(i)}} \right]$$

$$= \mathbf{P}(X_1 = x_{\pi^{-1}(1)}, \dots, X_n = x_{\pi^{-1}(n)}).$$

Wir benutzen folgende Sprechweisen: Ein $\pi \in S_n$ fassen wir auch auf als (endliche) Permutation von \mathbb{N} via $\pi(j) = j$ für j > n.

Ist $x = (x_1, \ldots, x_n) \in E^n$, so definieren wir $x^{\pi} := (x_{\pi(1)}, \ldots, x_{\pi(n)})$. Ist $x = (x_1, x_2, \ldots) \in E^{\mathbb{N}}$, so definieren wir $x^{\pi} := (x_{\pi(1)}, x_{\pi(2)}, \ldots)$. Für $f: E^n \to E$ definieren wir $f^{\pi}((x_1, \ldots, x_n)) := f(x^{\pi})$.

Definition 2.4. $f: E^n \to E'$ heißt (n-) symmetrisch, wenn $f = f^{\pi}$ für alle $\pi \in S_n$ gilt. $f: E^{\mathbb{N}} \to E'$ heißt n-symmetrisch, wenn $f = f^{\pi}$ für alle $\pi \in S_n$. f heißt symmetrisch, falls f n-symmetrisch ist für jedes $n \in \mathbb{N}$.

Beispiel 2.5. i) Ist $E = \mathbb{R}$, $E' = \overline{\mathbb{R}}$, so sind die Funktionen $f((x_1, x_2, \ldots)) := \limsup_{n \to \infty} x_n$ und $f((x_1, x_2, \ldots)) := \limsup_{n \to \infty} \frac{x_1 + \ldots + x_n}{n}$ symmetrisch.

- ii) $a_n: \mathbb{R}^{\infty} \to \mathbb{R}$, $a_n(x) = \frac{1}{n} \sum_{i=1}^n x_i$ ist *n*-symmetrisch, aber nicht *m*-symmetrisch für alle m > n.
- iii) $s: \mathbb{R}^{\infty} \to \overline{\mathbb{R}}_+, \ s(x) = \sum_{n=1}^{\infty} |x_n| \text{ ist symmetrisch.}$
- iv) Für $x \in E^{\infty}$ ist $\xi(x) = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ n-symmetrisch (n-te empirische Verteilung).

Beispiel 2.6. Sei $k \in N$, $\varphi: E^k \to R$ und $A_n(\varphi): E^{\mathbb{N}} \to \mathbb{R}$ mit

$$A_n(\varphi)(x) = \frac{1}{n!} \sum_{\pi \in S_n} \varphi(x^{\pi}).$$

Dann ist $A_n(\varphi)(x) = A_n(\varphi)(x^{\pi'})$ für alle $\pi' \in S_n$, d.h. A_n ist n-symmetrisch.

Definition 2.7. Sei $X = (X_n)_n$ ein stochastischer Prozess mit Werten in E.

$$\mathcal{E}_n := \sigma \left(F \circ X \mid F : E^{\mathbb{N}} \to \mathbb{R} \text{ messbar und } n\text{-symmetrisch} \right)$$

ist die σ -Algebra der unter Permutation der ersten n Koordinaten invarianten Ereignisse.

$$\mathcal{E} := \bigcap_{n \in \mathbb{N}} \mathcal{E}_n = \sigma \left(F \circ X \mid F : E^{\mathbb{N}} \to R \text{ messbar und symmetrisch} \right)$$

 $hei\beta t$ die σ -Algebra der austauschbaren Ereignisse für X (kurz: die austauschbare σ -Algebra).

Bemerkung 2.8. $\mathcal{E} = \{X^{-1}(B) \mid B \in \mathcal{B}(E)^{\otimes \mathbb{N}} \text{ mit } B^{\pi} = B \text{ für alle } \pi \in S_n, n \in \mathbb{N} \}, \text{ wobei } B^{\pi} = \{x^{\pi} \mid x \in B\}.$

Beobachtung 2.9. Es sei $\mathcal{T} = \bigcap_{n \in \mathbb{N}} \sigma(X_n, X_{n+1}, ...)$ die terminale σ-Algebra für X. Dann gilt $\mathcal{T} \notin \mathcal{E}$.

Beweis. Es gilt
$$\sigma(X_n, X_{n+1}, ...) \subset \mathcal{E}_{n-1}$$
, also $\mathcal{T} \subset \mathcal{E}$. Betrachte $|E| > 1$ und wähle $B \in \mathcal{B}(E) \setminus \{\emptyset, E\}$. $S := \sum_{n=1}^{\infty} \mathbb{1}_B(X_n)$ ist \mathcal{E} -messbar, aber $\{S = s\} \notin \mathcal{T}$ für $s \in \mathbb{N}_0$.

Lemma 2.10. Es sei $X = (X_n)_n$ eine Folge austauschbarer Zufallsvariablen mit Werten in E und $\varphi: E^k \to \mathbb{R}$ messbar mit $\mathbf{E}[|\varphi(X)|] < \infty$. Dann gilt für alle $n \ge k$ und $\pi \in S_n$:

i)
$$\mathbf{E}[\varphi(X) \mid \mathcal{E}_n] = \mathbf{E}[\varphi(X^{\pi}) \mid \mathcal{E}_n] f.s.$$

ii)
$$\mathbf{E}[\varphi(X) \mid \mathcal{E}_n] = \frac{1}{n!} \sum_{\pi \in S_n} \varphi(X^{\pi}) = A_n(\varphi)(X).$$

Beweis. Betrachte zunächst $A \in \mathcal{E}_n$ der Form

$$A = \{F_1(X) \in B_1, \dots, F_k(X) \in B_k\}$$

für *n*-symmetrische, messbare Funktionen $F_1, \ldots, F_k : E^{\mathbb{N}} \to \mathbb{R}$ und $B_1, \ldots, B_k \in \mathcal{B}(\mathbb{R}), k \in \mathbb{N}$. Sei $\pi \in S_n$. Dann ist

$$\mathbf{E}[\mathbb{1}_{A}\varphi(X)] = \mathbf{E}[\mathbb{1}_{B_{1}}(F_{1}(X))\cdots\mathbb{1}_{B_{k}}(F_{k}(X))\varphi(X)]$$

$$= \mathbf{E}[\mathbb{1}_{B_{1}}(F_{1}(X^{\pi}))\cdots\mathbb{1}_{B_{k}}(F_{k}(X^{\pi}))\varphi(X^{\pi})]$$

$$= \mathbf{E}[\mathbb{1}_{B_{1}}(F_{1}(X))\cdots\mathbb{1}_{B_{k}}(F_{k}(X))\varphi(X^{\pi})] = \mathbf{E}[\mathbb{1}_{A}\varphi(X^{\pi})].$$

Solche As bilden einen \cap -stabilen Erzeuger von \mathcal{E}_n , daher gilt $\mathbf{E}[\varphi(X) \mid \mathcal{E}_n] = \mathbf{E}[\varphi(X^{\pi}) \mid \mathcal{E}_n]$

f.s. Damit gilt auch (f.s.)

$$\mathbf{E}[\varphi(X) \mid \mathcal{E}_n] = \frac{1}{n!} \sum_{\pi \in S_n} \mathbf{E}[\varphi(X^{\pi}) \mid \mathcal{E}_n] = \mathbf{E}\left[\frac{1}{n!} \sum_{\pi \in S_n} \varphi(X^{\pi}) \mid \mathcal{E}_n\right] = \mathbf{E}[A_n(\varphi)(X) \mid \mathcal{E}_n]$$
$$= A_n(\varphi)(X),$$

da $A_n(\varphi)$ als *n*-symmetrische Funktion \mathcal{E}_n -messbar ist.

2.2 Rückwärtsmartingale

Definition 2.11. Sei $\mathcal{F} = (\mathcal{F}_{-n})_{n \in \mathbb{N}_0}$ eine absteigende Filtration, d.h. $\mathcal{F}_0 \supset F_{-1} \supset \mathcal{F}_{-2} \supset \dots$ $X = (X_{-n})_{n \in \mathbb{N}_0}$ heißt ein \mathcal{F} -Rückwärtsmartingal (unter \mathbf{P}), wenn

- i) $\mathbf{E}[|X_i|] < \infty$ für alle $i \in \mathbb{N}_0$.
- *ii*) $\mathbf{E}[X_{-n} \mid \mathcal{F}_{-n-1}] = X_{-n-1}$ f.s. für alle $n \in \mathbb{N}$.

Wir nehmen implizit an, dass X_{-n} \mathcal{F}_{-n} -messbar ist für alle $n \in \mathbb{N}_0$.

Beispiel 2.12. Sei $X = (X_1, X_2, ...)$ eine austauschbare Folge von Zufallsvariablen mit Werten in \mathbb{R} und $\mathbf{E}[|X_1|] < \infty$. Sei $\mathcal{F}_{-n} \coloneqq \mathcal{E}_n$ und $Y_{-n} \coloneqq \frac{1}{n} \sum_{i=1}^n X_i, n \in \mathbb{N}$. Es gilt mit Lemma 2.10:

$$\mathbf{E}[Y_{-n+1} \mid \mathcal{F}_{-n}] = \mathbf{E}\left[\frac{1}{n-1} \sum_{i=1}^{n-1} X_i \mid \mathcal{E}_n\right] = \frac{1}{n-1} \sum_{i=1}^{n-1} \mathbf{E}[X_i \mid \mathcal{E}_n] = \frac{1}{n-1} \sum_{i=1}^{n-1} \frac{1}{n!} \sum_{\pi \in S_n} X_{\pi(i)}$$
$$= \frac{1}{n-1} \sum_{i=1}^{n-1} \frac{1}{n!} (n-1)! \sum_{i=1}^{n} X_i = \frac{1}{n} \sum_{i=1}^{n} X_i = Y_{-n}.$$

Bemerkung 2.13. Wegen $X_{-n} = \mathbf{E}[X_0 \mid \mathcal{F}_{-n}], n \in \mathbb{N}$ ist ein Rückwärtsmartingal stets gleichgradig integrierbar (vgl. Lemma 1.29).

Satz 2.14. Sei $(X_{-n})_n$ ein Rückwärtsmartingal bezüglich $(\mathcal{F}_{-n})_n$. Dann existiert ein $X_{-\infty}$ mit $X_{-n} \to X_{-\infty}$ f.s. und in $\mathcal{L}^1(\mathbf{P})$. Es gilt $X_{-\infty} = \mathbf{E}[X_0 \mid \mathcal{F}_{-\infty}]$ mit $\mathcal{F}_{-\infty} := \bigcap_n \mathcal{F}_{-n}$.

Beweis. Sei $-\infty < a < b < \infty$ und $U_{-n}^{(a,b)}$ die Anzahl abgeschlossener Aufkreuzungen von unter a nach über b im Zeitintervall $-n, -n+1, \ldots, -1, 0$. Nach Lemma 1.22 gilt:

$$\mathbf{E}[U_{-n}^{(a,b)}] \le \frac{1}{b-a} \mathbf{E}[(X_{-n}-a)^{-}] \le \frac{1}{b-a} (|a| + \mathbf{E}[|X_{-n}|]) \le \frac{1}{b-a} (|a| + \mathbf{E}[|X_{0}|]).$$

Also existiert $U^{(a,b)} := \lim_n U_{-n}^{(a,b)}$ mit $\mathbf{E}[U^{(a,b)}] < \infty$. Analog zum Beweis von Satz 1.23 existiert damit auch $X_{-\infty} := \lim_n X_{-n}$ f.s. Mit Bemerkung 2.13 folgt $X_{-n} \to X_{-\infty}$ in $\mathcal{L}^1(\mathbf{P})$.

 $X_{-\infty}$ ist $\mathcal{F}_{-\infty}$ -messbar (denn für jedes $k \in \mathbb{N}$ ist $\limsup_{n \to \infty} X_{-n} = \inf_{n \ge k} \sup_{m \ge n} X_{-m}$ nach Definition \mathcal{F}_{-k} -messbar). Sei $A \in \mathcal{F}_{-\infty}$. Dann gilt

$$\mathbf{E}[\mathbb{1}_A X_0] = \mathbf{E}[\mathbb{1}_A \mathbf{E}[X_0 \mid \mathcal{F}_{-n}]] = \mathbf{E}[\mathbb{1}_A X_{-n}] \xrightarrow[n \to \infty]{} \mathbf{E}[\mathbb{1}_A X_{-\infty}].$$

Korollar 2.15. Sei $X = (X_1, X_2, ...)$ eine austauschbare Folge von Zufallsvariablen mit Werten in \mathbb{R} und $\mathbf{E}[|X_1|] < \infty$. Sei $\mathcal{F}_{-n} \coloneqq \mathcal{E}_n$, $\mathcal{T} = \bigcap_n \sigma(X_n, X_{n+1}, ...)$ die terminale σ -Algebra und $\mathcal{E} = \bigcap_n \mathcal{F}_{-n}$ die austauschbare σ -Algebra. Dann gilt

$$\mathbf{E}[X_1 \mid \mathcal{E}] = \mathbf{E}[X_1 \mid \mathcal{T}] \text{ f.s.} \quad und \quad \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow[n \to \infty]{} \mathbf{E}[X_1 \mid \mathcal{E}] \text{ f.s. und in } \mathcal{L}^1(\mathbf{P}).$$

Beweis. $Y_{-n} := \frac{1}{n} \sum_{i=1}^{n} X_i$ ist ein Rückwärtsmartingal. Es gilt $Y_{-n} \to Y_{-\infty} := \mathbf{E}[X_1 \mid \mathcal{E}]$ f.s. und in $\mathcal{L}^1(\mathbf{P})$ nach Satz 2.14 (wobei wir aus Notationsbequemlichkeit den Index um 1 verschoben haben). $Y_{-\infty}$ ist \mathcal{T} -messbar, denn es ist ein Grenzwert. Also gilt

$$\mathbf{E}[X_1 \mid \mathcal{E}] = Y_{-\infty} = \mathbf{E}[Y_{-\infty} \mid \mathcal{T}] = \mathbf{E}[\mathbf{E}[X_1 \mid \mathcal{E}] \mid \mathcal{T}] = \mathbf{E}[X_1 \mid \mathcal{T}].$$

Korollar 2.16 (Starkes Gesetz der großen Zahlen). Seien X_1, X_2, \ldots unabhängige und identisch verteilte, reelle Zufallsvariablen mit $\mathbf{E}[|X_1|] < \infty$. Dann gilt

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow[n \to \infty]{} \mathbf{E}[X_1] \quad \text{f.s. und in } \mathcal{L}^1(\mathbf{P}),$$

denn gemäß Kolmogorovs 0-1-Gesetz gilt $P(A) \in \{0,1\}$ für alle $A \in \mathcal{T}$, demnach $\mathbf{E}[X_1 \mid \mathcal{T}] = \mathbf{E}[X_1]$ f.s. (vgl. [Dep14, Satz 3.48]).

Satz 2.17. Sei $(X_n)_n$ austauschbar mit Werten in E und $\varphi: E^k \to \mathbb{R}$ eine messbare Funktion mit $\mathbf{E}[|\varphi(X_1,\ldots,X_k)|] < \infty$. Dann gilt

$$\lim_{n\to\infty} A_n(\varphi)(X) = \mathbf{E}[\varphi(X) \mid \mathcal{E}] = \mathbf{E}[\varphi(X) \mid \mathcal{T}] \quad \text{f.s. und in } \mathcal{L}^1(\mathbf{P}).$$

Beweis. Nach Lemma 2.10 gilt $A_n(\varphi)(X) = \mathbf{E}[\varphi(X) \mid \mathcal{E}]$. Es gilt $\mathcal{E}_1 \supset \mathcal{E}_2 \supset \ldots \supset \mathcal{E} = \bigcap_n \mathcal{E}_n$, also ist $(A_n(\varphi)(X))_n$ ein Rückwärtsmartingal. Dann gilt nach Satz 2.14: $\lim_n A_n(\varphi)(X) = \mathbf{E}[\varphi(X) \mid \mathcal{E}]$.

Zeige, dass $\lim_n A_n(\varphi)(X)$ \mathcal{T} -messbar ist. Sei $l \in \mathbb{N}$ und $S_{n,l} := \{\pi \in S_n \mid \pi(1), \dots, \pi(k) \ge l\}$. Dann ist $S_n \setminus S_{n,l} = \bigcup_{i=1}^k \{\pi \in S_n \mid \pi(i) < l\}$ und es gilt $|S_n \setminus S_{n,l}| \le k(l-1)(n-1)!$. Weiter sei

 $A_{n,l}(\varphi) := \frac{1}{n!} \sum_{\pi \in S_{n,l}} \varphi^{\pi}$. Dann gilt

$$\mathbf{E}[|A_{n,l}(\varphi)(X) - A_n(\varphi)(X)|] \le \frac{1}{n!} |S_n \setminus S_{n,l}| \cdot \mathbf{E}[|\varphi(X)|] \xrightarrow[n \to \infty]{} 0,$$

das heißt $A_{n,l}(\varphi)(X) - A_n(\varphi)(X) \to 0$ in $\mathcal{L}^1(\mathbf{P})$ und damit auch stochastisch. Wähle eine Teilfolge $n_m \nearrow \infty$ mit $A_{n,l}(\varphi)(X) - A_n(\varphi)(X) \to 0$ f.s. Dann ist $\lim_n A_n(\varphi)(X) = \lim_m A_{n_m}(\varphi)(X) \sigma(X_l, X_{l+1}, \ldots)$ -messbar für jedes $l \in \mathbb{N}$, also \mathcal{T} -messbar. Mit der Turmeigenschaft folgt

$$\lim_{n\to\infty} A_n(\varphi)(X) = \mathbf{E}\left[\lim_{n\to\infty} A_n(\varphi)(X) \mid \mathcal{T}\right] = \mathbf{E}\left[\mathbf{E}\left[\varphi(X) \mid \mathcal{E}\right] \mid \mathcal{T}\right] = \mathbf{E}\left[\varphi(X) \mid \mathcal{T}\right].$$

Korollar 2.18. $Sei(X_n)_n$ austauschbar. Dann gibt es für alle $A \in \mathcal{E}$ ein $B \in \mathcal{T}$ mit $\mathbf{P}(A \triangle B) = 0$.

Beweis. Sei $A \in \mathcal{E} \subset \sigma(X_1, X_2, ...)$. Wähle $A_k \in \sigma(X_1, ..., X_k)$ mit $P(A \triangle A_k) \to 0$ für $k \to \infty$. Dies ist möglich nach dem Approximationssatz für Maße (vgl. [Dep14, Satz 1.54]). Sei $C_k \subset E^k$ messbar, sodass $A_k = \{(X_1, ..., X_k) \in C_k\}$ und sei $\varphi_k := \mathbb{1}_{C_k}$. Dann gilt $\varphi_k(X) \to \mathbb{1}_A$ (ggf. wähle eine Teilfolge k_m mit $\sum_m \mathbf{P}(A \triangle A_{k_m}) < \infty$). Dann gilt mit der dominierten Konvergenz für bedingte Erwartungen:

$$\mathbb{1}_{A} = \mathbf{E}[\mathbb{1}_{A} \mid \mathcal{E}] = \mathbf{E}\left[\lim_{k \to \infty} \varphi_{k}(X) \mid \mathcal{E}\right] = \lim_{k \to \infty} \mathbf{E}[\varphi_{k}(X) \mid \mathcal{E}] = \lim_{k \to \infty} \mathbf{E}[\varphi_{k}(X) \mid \mathcal{T}] =: \psi \quad \text{f.s.}$$

 ψ ist \mathcal{T} -messbar mit $\psi = \mathbb{1}_A$ f.s. Sei $N := \{\psi \neq \mathbb{1}\}$. Dann ist $\mathbf{P}(N) = 0$ und es folgt $P(\{\psi = 1\} \triangle A) \leq \mathbf{P}(N) = 0$.

Korollar 2.19 (0-1-Gesetz von Hewitt und Savage). Seien $X_1, X_2, ...$ unabhängig und identisch verteilt, so gilt $\mathbf{P}(A) \in \{0,1\}$ für alle $A \in \mathcal{E}$.

Beweis. Der Beweis folgt aus Korollar 2.18 und aus Kolmogorovs 0-1-Gesetz. \Box

2.3 Struktur unendlicher austauschbarer Familien

Eine Heuristik: Sei $E = \{1, 2, ..., k\}$ und seien $X_1, X_2, ...$ austauschbare, E-wertige Zufallsvariablen. Sei $\xi_N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$ die N-te empirische Verteilung. Gegeben ξ_N sind $(X_1, X_2, ..., X_N)$ verteilt wie Züge ohne Zurücklegen aus einer Urne. Für $m_l := |\{1 \le i \le n \mid x_i = l\}|$ mit $m_1 + ... + m_k = n$ und der Notation $(a)_n := a(a-1)...(a-n+1)$

gilt

$$\mathbf{P}(X_{1} = x_{1}, \dots, X_{n} = x_{n} \mid \xi_{N}) = \frac{(N\xi_{N}(\{1\}))_{m_{1}} \dots (N\xi_{N}(\{k\}))_{m_{k}}}{(N)_{n}}$$

$$\approx \frac{(N\xi_{N}(\{1\}))^{m_{1}} \dots (N\xi_{N}(\{k\}))^{m_{k}}}{N^{n}}$$

$$= (\xi_{N}(\{1\}))^{m_{1}} \dots (\xi_{N}(\{k\}))_{m_{k}}$$

$$\approx (\xi_{\infty}(\{1\}))^{m_{1}} \dots (\xi_{\infty}(\{k\}))^{m_{k}},$$

wenn wir für den Moment annehmen, dass sich die empirische Verteilung für $N \to \infty$ stabilisiert mit Grenzwert ξ_{∞} (was aus Satz 2.22 folgen wird).

Zum Beispiel für k = 2, $j_1 + j_2 = N$ ist

$$\mathbf{P}(X_1 = 1, X_2 = 1, X_3 = 2) = \frac{j_1}{N} \cdot \frac{j_1 - 1}{N - 1} \cdot \frac{j_2}{N - 2} = \frac{(j_1)_2(j_2)_1}{(N)_2}.$$

Definition 2.20. Es sei $(\Omega, \mathcal{F}, \mathbf{P})$ ein Wahrscheinlichkeitsraum. Seien $\mathcal{G}, \mathcal{G}_i \subset \mathcal{F}, i \in I$ Teil- σ -Algebren. Die Familie $(\mathcal{G}_i)_{i \in I}$ heißt unabhängig gegeben \mathcal{G} , wenn für alle endlichen $J \subset I$, $A_j \in \mathcal{G}_j, j \in J$ gilt:

$$\mathbf{P}\left(\bigcap_{j\in J}A_j\mid\mathcal{G}\right)=\prod_{j\in J}\mathbf{P}(A_j\mid\mathcal{G})\quad f.s.$$

Analog heißen Zufallsvariablen $(X_i)_{i\in I}$ unabhängig gegeben \mathcal{G} , falls $(\sigma(X_i))_{i\in I}$ unabhängig gegeben \mathcal{G} . Zufallsvariablen $(X_i)_{i\in I}$ heißen unabhängig und identisch verteilt gegeben \mathcal{G} , wenn die bedingten Verteilungen gegeben \mathcal{G} gleich sind.

Bemerkung 2.21. i) (\mathcal{G}_i) ist stets unabhängig gegeben \mathcal{G} , wenn $\mathcal{G}_i \subset \mathcal{G}$ für alle $i \in I$.

- ii) Unabhängigkeit gegeben $\{\emptyset, \Omega\}$ ist die "gewöhnliche" Unabhängigkeit.
- iii) Sind $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3$ σ -Algebren und ist (\mathcal{G}_i) unabhängig gegeben \mathcal{F}_1 und unabhängig gegeben \mathcal{F}_3 , so folgt nicht notwendigerweise die Unabhängigkeit gegeben \mathcal{F}_2 , betrachte zum Beispiel X_1, X_2 unabhängige, reelle Zufallsvariablen, $\mathcal{G}_i = \sigma(X_i)$, $\mathcal{F}_1 = \{\emptyset, \Omega\}$, $\mathcal{F}_2 = \sigma(X_1 + X_2)$ und $\mathcal{F}_3 = \sigma(X_1, X_2)$.

Satz 2.22 (Satz von de Finetti). Sei $(X_n)_n$ eine Folge von Zufallsvariablen mit Werten in E. $(X_n)_n$ ist genau dann austauschbar, wenn es eine σ -Algebra $\mathcal G$ gibt, sodass $(X_n)_n$ unabhängig und identisch verteilt gegeben $\mathcal G$ ist. In diesem Fall kann man $\mathcal G = \mathcal E$ oder $\mathcal G = \mathcal T$ wählen.

Beweis. Sei zunächst $(X_n)_n$ austauschbar. Sei $\mathcal{G} = \mathcal{E}$ oder $\mathcal{G} = \mathcal{T}, f_n: E \to \mathbb{R}$ beschränkt und

messbar und sei $\varphi_k(X) = \prod_{i=1}^k f_i(X_i)$. Gilt

$$\mathbf{E}[\varphi_k(X) \mid \mathcal{G}] = \mathbf{E}[\varphi_{k-1}(X) \mid \mathcal{G}] \cdot \mathbf{E}[f_k(X_k) \mid \mathcal{G}], \tag{2.1}$$

so folgt induktiv $\mathbf{E}\left[\prod_{i=1}^k f_i(X_i) \mid \mathcal{G}\right] = \prod_{i=1}^k \mathbf{E}[f_i(X_i) \mid \mathcal{G}]$, d.h. $(X_n)_n$ sind bedingt unabhängig gegeben \mathcal{G} (lese $f_i = \mathbbm{1}_{B_i}$, um wörtlich an Definition 2.20 anzuschließen). Zeige also (2.1): Betrachte

$$A_{n}(\varphi_{k-1})(X) \cdot A_{n}(f_{k})(X) = \frac{1}{n!} \sum_{\pi \in S_{n}} f_{1}(X_{\pi(1)}) \cdots f_{k-1}(X_{\pi(k-1)}) \times \frac{1}{n} \sum_{j=1}^{n} f_{k}(X_{j})$$

$$= \frac{1}{(n)_{k-1}} \sum_{i_{1}, \dots, i_{k-1} \in \{1, \dots, n\}} \left(\prod_{l=1}^{k-1} f_{l}(X_{i_{l}}) \cdot \left(\frac{n-k+1}{n} \cdot \frac{1}{n-k+1} \sum_{j=1}^{n} f_{k}(X_{j}) \right) \right)$$

$$+ \sum_{i_{1}, \dots, i_{k-1} \in \{1, \dots, n\}} \left(\prod_{l=1}^{k-1} f_{l}(X_{i_{l}}) \cdot \left(\frac{1}{n} \sum_{j \in \{i_{1}, \dots, i_{k-1}\}} f_{k}(X_{j}) \right) \right)$$

$$= \frac{n-k+1}{n} \cdot \underbrace{\frac{1}{(n)_{k}} \sum_{i_{1}, \dots, i_{k-1}=1}^{n} \prod_{l=1}^{k} f_{l}(X_{i_{l}}) + R_{n,k}(X)}_{p.w. \text{ verschieden}}$$

$$= A_{n}(\varphi_{k})(X) \xrightarrow[n \to \infty]{} \mathbf{E}[\varphi(X_{k})|\mathcal{G}]$$

mit $|R_{n,k}(X)| \le \frac{k-1}{n} ||f_1||_{\infty} \cdots ||f_k||_{\infty} \xrightarrow[n \to \infty]{} 0$, also gilt (2.1).

Sei nun $(X_n)_n$ unabhängig und identisch verteilt gegeben \mathcal{G} und $\varphi: E^k \to \mathbb{R}$ beschränkt und messbar. Sei $\pi \in S_n$. Es gilt

$$\mathbf{E}[\varphi(X)] = \mathbf{E}[\mathbf{E}[\varphi(X) \mid \mathcal{G}]] = \mathbf{E}[\mathbf{E}[\varphi(X^{\pi}) \mid \mathcal{G}]] = \mathbf{E}[\varphi(X^{\pi})],$$

das heißt $(X_n)_n$ ist austauschbar.

3 Schwache Konvergenz und charakteristische Funktionen

3.1 Vorbemerkungen zur mengentheoretischen Topologie

Sei E ein topologischer (meist metrischer) Raum. Folgende Begriffe werden in diesem Kapitel vorausgesetzt: kompakt, relativkompakt, folgenkompakt, lokalkompakt, totalbeschränkt. Es bezeichne

- $\mathcal{C}(E)$ die Menge der stetigen Funktionen von E nach \mathbb{R} ,
- $C_b(E)$ die Menge der stetigen, beschränkten Funktionen von E nach \mathbb{R} ,
- $\mathcal{C}_c(E)$ die Menge der stetigen Funktionen mit kompaktem Träger von E nach \mathbb{R} .

Es gilt: $C_c(E) \subset C_b(E) \subset C(E)$.

Definition 3.1. Eine Teilmenge $A \subset E$ heißt σ -kompakt, wenn es kompakte Mengen $B_n \subset E$ gibt $mit \bigcup_n B_n = A$.

Definition 3.2. Sei μ ein σ -endliches Maß auf $(E, \mathcal{B}(E))$.

- i) μ heißt lokal-endlich (oder Borel-Maß), wenn für alle $x \in E$ eine offene Umgebung U von x existiert mit $\mu(U) < \infty$.
- ii) μ heißt regulär (von innen), wenn $\mu(A) = \sup \{\mu(K) \mid K \subset A, K \text{ kompakt}\}$ für alle $A \in \mathcal{B}(E)$.
- iii) μ heißt regulär (von außen), wenn $\mu(A) = \inf \{ \mu(U) \mid A \subset U, U \text{ offen} \}$ für alle $A \in \mathcal{B}(E)$.
- iv) μ heißt Radon-Maß, wenn es lokal endlich und von innen regulär ist.

Es bezeichne

- $\mathcal{M}(E)$ die Menge der Radon-Maße auf E,
- $\mathcal{M}_f(E)$ die Menge der endlichen Radon-Maße auf E,
- $\mathcal{M}_1(E)$ die Menge der Wahrscheinlichkeitsmaße auf E,

• $\mathcal{M}_{\leq 1}(E)$ die Menge der Subwahrscheinlichkeitsmaße auf E.

Beispiel 3.3. i) Ist $f: \mathbb{R}^d \to [0, \infty]$ messbar mit $f \in \mathcal{L}^1_{loc}(\mathbb{R}^d)$ und ist λ das Lebesguemaß auf \mathbb{R}^d , so ist $\mu = f\lambda$ ein Radon-Maß mit $\mu(B) = \int \mathbb{1}_B(x) f(x) \lambda(\mathrm{d}x)$.

- ii) Ist $E = \mathbb{R}$, dann ist $\mu(\mathrm{d}x) = \mathbb{1}_{\mathbb{R} \setminus \{0\}}(x) \frac{1}{|x|} \lambda(\mathrm{d}x) + \delta_0(\mathrm{d}x)$ nicht lokal endlich und nicht regulär von außen.
- iii) Ist $E=\mathbb{R},$ dann ist $\mu=\sum_{q\in\mathbb{Q}}\delta_q$ zwar σ -endlich, aber nicht regulär.

Beobachtung 3.4. Sei E polnisch und $\mu \in \mathcal{M}_f(E)$. Dann gibt es zu jedem $\varepsilon > 0$ eine kompakte Menge $K \subset E$ mit $\mu(E \setminus K) < \varepsilon$.

Beweis. Wegen der Separabilität von E gibt es eine Folge $(x_i^{(n)})_i \subset E$ mit $\bigcup_{i=1}^{\infty} B_{\frac{1}{n}}(x_i^{(n)}) = E$. Sei $\varepsilon > 0$. Wähle k_n mit $\mu\left(\bigcup_{i=1}^{k_n} B_{\frac{1}{n}}(x_i^{(n)})\right) \ge \mu(E) - \frac{\varepsilon}{2^n}$. Die Menge $A := \bigcap_{n=1}^{\infty} \bigcup_{i=1}^{k_n} B_{\frac{1}{n}}(x_i^{(n)})$ ist totalbeschränkt, also ist \overline{A} kompakt (man sieht leicht mit einem Diagonalfolgenargument, dass \overline{A} folgenkompakt ist, was für metrische Räume Kompaktheit impliziert) und es gilt

$$\mu(E \setminus \overline{A}) \le \mu(E \setminus A) \le \sum_{n=1}^{\infty} \mu\left(E \setminus \bigcup_{i=1}^{k_n} B_{\frac{1}{n}}(x_i^{(n)})\right) \le \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon.$$

Definition 3.5. Sei $\mathfrak{F} \subset \mathcal{M}(E)$ und sei \mathcal{C} eine Menge von messbaren Funktionen von E nach \mathbb{R} . \mathcal{C} heißt trennende Familie (kurz trennend) für \mathfrak{F} , falls für alle $\mu, \nu \in \mathfrak{F}$ gilt:

 $\forall f \in \mathcal{C} : \int f d\mu = \int f d\nu \quad \Rightarrow \quad \mu = \nu.$

Beispiel 3.6. $f: E \to \mathbb{R}$ heißt lipschitz-stetig, wenn eine Konstante $c_f < \infty$ existiert, sodass für alle $x, y \in E$ gilt: $|f(x) - f(y)| \le c_f \cdot d(x, y)$. $L_f \coloneqq \sup_{x \neq y \in E} \frac{|f(x) - f(y)|}{d(x, y)}$ ist die Lipschitz-Konstante von f. Es bezeichne $\operatorname{Lip}(E)$ die lipschitz-stetigen Funktionen auf E und $\operatorname{Lip}_1(E) = \{f \in \operatorname{Lip}(E) \mid L_f \le 1\}$. Dann ist $\operatorname{Lip}_1(E)$ trennend für $\mathcal{M}_f(E)$ — falls E lokalkompakt auch $\operatorname{Lip}_1(E) \cap \mathcal{C}_c(E)$.

Beweis. Sei $A \in E$ abgeschlossen und sei $\varepsilon > 0$. $\rho_{A,\varepsilon}(x) = 1 - \left(\frac{1}{\varepsilon}d(x,A) \wedge 1\right)$ erfüllt $\rho_{A,\varepsilon} \equiv 1$ auf A und $\rho_{A,\varepsilon}(x) = 0$, wenn $d(x,A) \geq \varepsilon$. Es ist $\rho_{A,\varepsilon} \in \text{Lip}(E)$ mit $L_{\rho_{A,\varepsilon}} \leq \frac{1}{\varepsilon}$. Seien μ_1, μ_2 mit $\int f \, d\mu_1 = \int f \, d\mu_2$ für alle $f \in \text{Lip}_1(E) \cap \mathcal{L}^1(\mu_1) \cap \mathcal{L}^1(\mu_2)$. Wir zeigen $\mu_1(K) = \mu_2(K)$ für alle kompakten $K \subset E$, denn dann folgt $\mu_1 = \mu_2$ wegen der Regularität. Zu $x \in E$ existiert eine offene Umgebung U_x mit $\mu_1(U_x) < \infty$ und $\mu_2(U_x) < \infty$, denn die μ_i sind lokal endlich. Sei K kompakt, $K \subset U := \bigcup_{i=1}^n U_{x_i}$ für geeignete x_1, \ldots, x_n . Dann ist $\mu_1(U) < \infty$ und $\mu_2(U) < \infty$ und

es gilt $\delta := d(U, K^{\mathsf{C}}) > 0$. Falls $\varepsilon < \delta$, dann gilt $\mathbbm{1}_K \le \rho_{K,\varepsilon} \le \mathbbm{1}_U$ und $\rho_{K,\varepsilon} \to \mathbbm{1}_k$ punktweise für $\varepsilon \searrow 0$, also folgt mit der dominierten Konvergenz auch $\int \rho_{K,\varepsilon} \, \mathrm{d}\mu_i \to \mu_i(K)$ für $\varepsilon \searrow 0$. Wegen $\int \rho_{K,\varepsilon} \, \mathrm{d}\mu_1 = \frac{1}{\varepsilon} \int \varepsilon \rho_{K,\varepsilon} \, \mathrm{d}\mu_1 = \frac{1}{\varepsilon} \int \varepsilon \rho_{K,\varepsilon} \, \mathrm{d}\mu_2 = \int \rho_{K,\varepsilon} \, \mathrm{d}\mu_2$ folgt $\mu_1(K) = \mu_2(K)$.

3.2 Schwache und vage Konvergenz

Definition 3.7. Es sei E ein metrischer Raum.

- i) Seien $\mu_1, \mu_2, \dots, \mu \in \mathcal{M}_f(E)$. Man sagt, μ_n konvergiert schwach (engl. weakly) gegen μ , wenn für alle $f \in \mathcal{C}_b(E)$ gilt: $\int f d\mu_n \to \int f d\mu$ für $n \to \infty$. In diesem Fall schreibt man $\mu_n \to \mu$ schwach oder $\mu_n \xrightarrow{w} \mu$ oder $\mu = w \lim \mu_n$.
- ii) Seien $\mu_1, \mu_2, \dots, \mu \in \mathcal{M}(E)$. Man sagt, μ_n konvergiert vage (auch vag, engl. vaguely) gegen μ , wenn für alle $f \in \mathcal{C}_c(E)$ gilt: $\int f d\mu_n \to \int f d\mu$ für $n \to \infty$. In diesem Fall schreibt man $\mu_n \to \mu$ vage oder $\mu_n \stackrel{v}{\to} \mu$ oder $\mu = v \lim \mu_n$.

Bemerkung 3.8. Wenn E ein polnischer Raum ist, so ist der schwache Limes einer Folge μ_n eindeutig. Falls E zudem lokalkompakt ist, so ist auch der vage Limes eindeutig (verwende Beispiel 3.6).

Beispiel 3.9. Es sei $E = \mathbb{R}$. Dann gilt $\delta_{\frac{1}{n}} \xrightarrow[n \to \infty]{w} \delta_0$, aber $\delta_{\frac{1}{n}} ((0, \infty)) = 1 \Rightarrow 0 = \delta_0 ((0, \infty))$. $\delta_n \xrightarrow{v} 0$ -Maß, aber $(\delta_n)_n$ konvergiert nicht schwach.

Beobachtung 3.10. Sei E lokalkompakt und polnisch. Ist $(\mu_n) \subset \mathcal{M}_f(E)$ mit $\mu_n \stackrel{\text{v}}{\to} \mu$, so gilt $\mu(E) \leq \liminf_n \mu_n(E)$.

Beweis. Wähle $f_N \in \mathcal{C}_c(E)$ mit $f_N \nearrow 1$. Dann gilt

$$\mu(E) = \int 1 d\mu = \lim_{N \to \infty} \int f_N d\mu = \lim_{N \to \infty} \lim_{n \to \infty} \int f_N d\mu_n \le \lim_{N \to \infty} \lim_{n \to \infty} \mu_n(E) \le \liminf_{n \to \infty} \mu_n(E).$$

Satz 3.11 (Portmanteau-Theorem). Sei E ein metrischer Raum und $\mu, \mu_1, \mu_2, ... \in \mathcal{M}_{\leq 1}(E)$. Dann sind äquivalent:

- i) $\mu = w \lim \mu_n$.
- ii) $\int f d\mu_n \to \int f d\mu$ für alle $f \in C_b(E) \cap \text{Lip}(E)$.
- iii) $\int f d\mu_n \to \int f d\mu$ für alle beschränkten, messbaren f mit $\mu(U_f) = 0$, wobei $U_f \subset E$ die Unstetigkeitsstellen von f bezeichne (d.h. f ist μ -f. \ddot{u} . stetig).

- iv) $\liminf_{n\to\infty} \mu_n(E) \ge \mu(E)$ und $\limsup_{n\to\infty} \mu_n(F) \le \mu(F)$ für alle abgeschlossenen $F \subset E$.
- v) $\limsup_{n\to\infty} \mu_n(E) \le \mu(E)$ und $\liminf_{n\to\infty} \mu_n(G) \ge \mu(G)$ für alle offenen $G \subset E$.
- vi) $\mu_n(A) \to \mu(A)$ für alle $A \in \mathcal{B}(E)$ mit $\mu(\partial A) = 0$.

Wenn E zudem lokalkompakt und polnisch, so sind auch äquivalent:

- vii) $\mu = v \lim \mu_n \text{ und } \mu(E) = \lim \mu_n(E)$.
- viii) $\mu = v \lim \mu_n \text{ und } \mu(E) \ge \lim \sup \mu_n(E)$.

Beweis. Die Implikationen $iv) \Leftrightarrow v), iv), v) \Rightarrow vi), iii) \Rightarrow ii)$ sind klar, ebenso $i) \Rightarrow vii)$ und $vii) \Rightarrow viii)$.

Zeige $ii) \Rightarrow iv$): Bemerke zunächst: $f \equiv 1 \in \text{Lip}(E) \cap \mathcal{C}_b(E)$, also $\mu(E) = \int 1 \, d\mu = \lim \mu_n(E)$. Sei nun $F \subset E$ abgeschlossen und $\rho_{F,\varepsilon}(x) := 1 - \left(\frac{1}{\varepsilon}d(x,F) \wedge 1\right) \in \mathcal{C}_b(E) \cap \text{Lip}(E)$. Dann gilt $\mathbb{1}_F \leq \mathbb{1}_{\rho_{F,\varepsilon}}$ und mit monotoner Konvergenz

$$\limsup_{n\to\infty} \mu_n(F) \leq \inf_{\varepsilon>0} \lim_{n\to\infty} \int \rho_{F,\varepsilon} \, \mathrm{d}\mu_n = \inf_{\varepsilon>0} \int \rho_{F,\varepsilon} \, \mathrm{d}\mu = \int \mathbbm{1}_{\overline{F}} \, \mathrm{d}\mu = \int \mathbbm{1}_F \, \mathrm{d}\mu = \mu(F).$$

Zeige $vi) \Rightarrow iii$). Sei f beschränkt und messbar mit $\mu(U_f) = 0$. Behauptung: Für alle $D \in \mathcal{B}(\mathbb{R})$ gilt $\partial f^{-1}(D) \subset f^{-1}(\partial D) \cup U_f$. Sei $x \in \partial f^{-1}(D)$ und f stetig in x. Zu $\delta > 0$ existiert ein $\varepsilon > 0$ mit $f(B_{\varepsilon}(x)) \subset B_{\delta}(f(x))$. Es existiert ein $y \in f^{-1}(D) \cap B_{\varepsilon}(x)$ und es existiert ein $z \notin f^{-1}(D)$, $z \in B_{\varepsilon}(x)$, d.h. $z \in f^{-1}(\mathbb{R} \setminus D) \cap B_{\varepsilon}(x)$. Somit ist $f(y) \in B_{\delta}(f(x)) \cap D$ und $f(z) \in B_{\delta}(f(x)) \cap D^{c}$. Sei nun $A = \{y : \mu(f^{-1}(\{y\})) > 0\}$. Die Atome von $\mu \circ f^{-1}$ sind höchstens abzählbar, also gibt es ein $N \in \mathbb{N}$ mit $y_0 \le -\|f\|_{\infty} < y_1 < y_2 < \ldots < y_{N-1} < \|f\|_{\infty} < y_N$ mit $y_i \notin A$ und $|y_{i+1} - y_i| < \varepsilon$. Sei $E_i = f^{-1}([y_{i-1}, y_i))$ für $i = 1, \ldots, N$, dann ist $E = \bigcup_{i=1}^N E_i$ und es gilt $\mu(\partial E_i) \le \mu(\{f^{-1}(y_{i-1})\}) + \mu(\{f^{-1}(y_i)\}) + \mu(U_f) = 0$. Also folgt

$$\limsup_{n\to\infty} \int f \,\mathrm{d}\mu_n \le \limsup_{n\to\infty} \int \sum_{i=1}^N y_i \,\mathbb{1}_{E_i} \,\mathrm{d}\mu_n = \limsup_{n\to\infty} \sum_{i=1}^N \mu_n(E_i) y_i = \sum_{i=1}^N \mu(E_i) y_i \le \varepsilon + \int f \,\mathrm{d}\mu.$$

Das analoge Argument für -f und $\varepsilon \searrow 0$ zeigt iii).

Zeige $viii) \Rightarrow vii$). Es gelte $\mu = \text{v-lim } \mu_n \text{ und } \mu(E) \ge \lim \sup \mu_n(E)$. Nach Beobachtung 3.10 gilt aber auch $\mu(E) \le \lim \inf_n \mu_n(E)$, d.h. $\mu(E) = \lim \mu_n(E)$.

Zeige $vii) \Rightarrow v$). Sei $G \subset E$ offen und $\varepsilon > 0$. Wähle gemäß Beobachtung 3.4 ein $K \subset G$ kompakt mit $\mu(G \setminus K) < \varepsilon$. Da E lokalkompakt ist, gibt es eine kompakte Menge E mit E ist E is interpolation E in E is E in E

$$\liminf_{n\to\infty} \mu_n(G) \ge \liminf_{n\to\infty} \int \rho_{K,\delta} \,\mathrm{d}\mu_n = \int \rho_{K,\delta} \,\mathrm{d}\mu \ge \mu(K) \ge \mu(G) - \varepsilon.$$

Mit $\varepsilon \searrow 0$ folgt nun v).

Definition 3.12. Seien $X, X_1, X_2, ...$ Zufallsvariablen mit Werten im metrischen Raum E. X_n konvergiert in Verteilung gegen X, wenn die Verteilungen $\mathcal{L}(X_n) \in \mathcal{M}_1(E)$ schwach gegen $\mathcal{L}(X)$ konvergieren. In diesem Fall schreibt man $X_n \xrightarrow{D} X$ oder $X_n \Rightarrow X$ für $n \to \infty$. Gelegentlich schreibt man $X_n \xrightarrow{D} \mu$ bzw. $X_n \Rightarrow \mu$, wenn $\mu = \mathcal{L}(X)$ und X unspezifiziert bleibt. Konvergiert X_n in Verteilung gegen X, so gilt für alle $f \in \mathcal{C}_b(E)$: $\mathbf{E}[f(X_n)] \to \mathbf{E}[f(X)]$.

Sind $X, X_1, X_2, ...$ Zufallsvariablen auf demselben Wahrscheinlichkeitsraum mit Werten in einem separablen metrischen Raum E, so sagt man $X_n \to X$ stochastisch, falls $d(X_n, X) \to 0$ stochastisch. In diesem Fall schreibt man $X_n \xrightarrow{\mathbf{P}} X$.

Gilt $X_n \to X$ stochastisch, so gilt auch $X_n \Rightarrow X$, denn für $f \in \mathcal{C}_b(E) \cap \text{Lip}(E)$ gilt

$$|\mathbf{E}[f(X_n) - f(X)]| \le \mathbf{E}[L_f \cdot d(X_n, X) \wedge 2 \|f\|_{\infty}] \to 0.$$

Die Umkehrung gilt i.A. nicht.

Beispiel 3.13. Seien X, X_1, X_2, \ldots unabhängig und identisch standardnormalverteilt. Dann gilt $X_n \Rightarrow X$, aber nicht $X_n \xrightarrow{\mathbf{P}} X$.

Beobachtung 3.14 (Lemma von Slutsky). Seien $X, X_1, X_2, \dots, Y_1, Y_2, \dots$ Zufallsvariablen mit Werten im separablen metrischen Raum E. Gilt $X_n \Rightarrow X$ und $d(X_n, Y_n) \to 0$ stochastisch, dann gilt auch $Y_n \Rightarrow X$.

Beweis. Sei $f \in \mathcal{C}_b(E) \cap \text{Lip}(E)$. Dann gilt $|f(x) - f(y)| \le L_f \cdot d(x,y) \land 2 ||f||_{\infty}$. Also gilt

$$|\mathbf{E}[f(Y_n) - f(X)]| \le \mathbf{E}[|f(Y_n) - f(X_n)|] + |\mathbf{E}[f(X_n)] - \mathbf{E}[f(X)]|$$

$$\le \mathbf{E}[L_f \cdot d(x, y) \land 2 ||f||_{\infty}] + |\mathbf{E}[f(X_n)] - \mathbf{E}[f(X)]| \to 0.$$

Lemma 3.15 (Continuous mapping theorem). Seien (E_1, d_1) und (E_2, d_2) metrische Räume, $\varphi: E_1 \to E_2$ messbar und U_{φ} die Menge der Unstetigkeitsstellen von φ .

i) Sind $\mu, \mu_1, \mu_2, \ldots \in \mathcal{M}_{\leq 1}(E_1)$ mit $\mu_n \xrightarrow{w} \mu$ und $\mu(U_{\varphi}) = 0$, so gilt $\mu_n \circ \varphi^{-1} \xrightarrow{w} \mu \circ \varphi^{-1}$.

ii) Sind $X, X_1, X_2, ...$ E_1 -wertige Zufallsvariablen mit $\mathbf{P}(X \in U_{\varphi}) = 0$ und $X_n \Rightarrow X$, so gilt $\varphi(X_n) \Rightarrow \varphi(X)$.

Beweis. i) Sei $f \in C_b(E_2)$, dann ist $f \circ \varphi : E_1 \to \mathbb{R}$ beschränkt und messbar und es gilt

 $U_{f \circ \varphi} \subset U_{\varphi}$, d.h. $\mu(U_{f \circ \varphi}) = 0$. Also gilt nach Satz 3.11 iii)

$$\int f d(\mu_n \circ \varphi^{-1}) = \int f \circ \varphi d\mu_n \xrightarrow[n \to \infty]{} \int f \circ \varphi d\mu = \int f d(\mu \circ \varphi^{-1}).$$

ii) Setze $\mu_n = \mathcal{L}(X_n)$ und $\mu = \mathcal{L}(X)$. Dann folgt die Aussage mit i).

Bemerkung 3.16 (Der Fall $E = \mathbb{R}$). $\mu \in \mathcal{M}_{\leq 1}(\mathbb{R})$ ist durch seine Verteilungsfunktion $F_{\mu}(x) = \mu((-\infty, x])$ festgelegt. Es gilt $F_{\mu_n} \Rightarrow F_{\mu}$, wenn $F_{\mu_n}(x) \to F_{\mu}(x)$ für alle Stetigkeitsstellen x von F_{μ} . Dies ist äquivalent zu $\int f d\mu_n \to \int f d\mu$ für alle $f \in \mathcal{C}_b(\mathbb{R})$ (vgl. [Dep14, Definition 4.1, Satz 4.10]).

3.3 Straffheit

Definition 3.17. Sei E ein metrischer Raum. $\mathcal{K} \subset \mathcal{M}_f(E)$ heißt straff (engl. tight), falls für jedes $\varepsilon > 0$ eine kompakte Menge $K \subset E$ existiert mit

$$\sup_{\mu \in \mathcal{K}} \mu(E \setminus K) < \varepsilon.$$

Beispiel 3.18. i) Ist E polnisch, so ist $\{\mu\}$ für jedes $\mu \in \mathcal{M}_f(E)$ straff nach Beobachtung 3.4.

- ii) Ist E kompakt, so sind $\mathcal{M}_1(E)$ und $\mathcal{M}_{\leq 1}(E)$ straff.
- iii) Sind $X_i, i \in I$ reelle Zufallsvariablen mit sup $\mathbf{E}[|X_i|] =: c < \infty$, so ist $\{\mathcal{L}(X_i) \mid i \in I\}$ straff, denn mit der Markov-Ungleichung gilt

$$\mathbf{P}\left(|X_i| > \frac{c}{\varepsilon}\right) \le \frac{\varepsilon}{c} \mathbf{E}[|X_i|] \le \varepsilon$$

für alle $i \in I$ und für jedes $\varepsilon > 0$.

iv) Ist $E = \mathbb{R}$, so sind $\{\delta_n \mid n \in \mathbb{N}\}$, $\{\mathbf{N}(0,n) \mid n \in \mathbb{N}\}$, $\{\mathbf{Unif}([-n,n]) \mid n \in \mathbb{N}\}$ nicht straff.

Satz 3.19 (Satz von Prohorov). Sei E ein metrischer Raum und $K \subset \mathcal{M}_{\leq 1}(E)$. Dann gilt:

- i) Ist K straff, dann ist K relativ (folgen-) kompakt bezüglich schwacher Konvergenz.
- ii) Ist E zudem polnisch, so gilt auch die Umkehrung, d.h. ist K relativ (folgen-) kompakt bzgl. schwacher Konvergenz, so ist K straff.

Beweis. Zeige zunächst i). Sei K straff. Wähle kompakte Mengen $K_1 \subset K_2 \subset ... \subset E$, sodass für alle $j \in \mathbb{N}$ gilt

$$\sup_{\mu \in \mathcal{K}} \mu \left(E \setminus K_j \right) \le \frac{1}{j}.$$

 $\bigcup_{j=1}^{\infty} K_j$ ist σ -kompakt und es gilt $\mu\left(E \setminus \bigcup_{j=1}^{\infty} K_j\right) = 0$ für alle $\mu \in \mathcal{K}$. Nehme also an, dass E selbst σ -kompakt (insbesondere separabel) ist, ansonsten schränke die μ ein auf $E' := \bigcup_{j=1}^{\infty} K_j$. Sei x_1, x_2, \ldots eine Aufzählung einer dichten Teilmenge von E.

$$\mathcal{H} := \left\{ \bigcup_{j=1}^{m} K_{j_i} \cap \overline{B_{\varepsilon_i}(x_{l_i})} \mid m \in \mathbb{N}, \ j_i \in \mathbb{N}, \ l_i \in \mathbb{N}, \ \varepsilon_i > 0, \ \varepsilon_i \in \mathbb{Q} \right\}$$

ist ein abzählbares System von kompakten Teilmengen von E. Sei $(\mu_n) \subset \mathcal{K}$ und sei $\mathcal{H} = \{H_1, H_2, \ldots\}$ eine Aufzählung von \mathcal{H} . Wähle eine Teilfolge $n_k \nearrow \infty$, sodass

$$\lim_{k\to\infty}\mu_{n_k}(H)=:\alpha(H)$$

für alle $H \in \mathcal{H}$ existiert (möglich durch Diagonalargument). Für $G \subset E$ offen sei

$$\mu^*(G) \coloneqq \sup \{\alpha(H) \mid H \in \mathcal{H}, H \subset G\}, \quad \mu^*(\emptyset) \coloneqq 0,$$

für $B \subset E$ beliebig sei

$$\mu^*(B) := \inf \{ \mu^*(G) \mid G \text{ offen}, G \supset B \}.$$

Dadurch ist μ^* wohldefiniert.

Zeige nun: μ^* ist ein äußeres Maß. Es gilt $\mu^*(\emptyset) = 0$ nach Definition und $\mu^*(B) \leq \mu^*(B')$ für $B \subset B'$ nach Konstruktion. Es bleibt also nur noch die σ -Subadditivität zu zeigen. Seien dazu $G_1, G_2, \ldots \subset E$ offene Mengen, $\mathcal{H} \ni H \subset \bigcup_{n=1}^{\infty} G_n$. H ist kompakt, d.h. es existieren $\underline{r} \in \mathbb{N}, j_i \in \mathbb{N}, \varepsilon_i \in (0, \infty) \cap \mathbb{Q}$ und paarweise verschiedene $m_i \in \mathbb{N}$ mit $H \subset \bigcup_{i=1}^r B_{\varepsilon_i}(x_{j_i})$ und $\overline{B_{\varepsilon_i}(x_{j_i})} \subset G_{m_i}$ für $i = 1, \ldots, r$. Weiter ist $H \subset K_{j_0}$ für ein genügend großes $j_0 \in \mathbb{N}$. Sei

$$H_m \coloneqq K_{j_0} \cap \bigcup_{i=1}^r \left\{ \overline{B_{\varepsilon_i}(x_{j_i})} \mid \overline{B_{\varepsilon_i}(x_{j_i})} \subset G_m \right\}.$$

Dann ist $H_m \subset G_m$ und $H \subset H_{m_1} \cup \ldots \cup H_{m_r}$. Also gilt

$$\alpha(H) \leq \alpha(H_{m_1}) + \ldots + \alpha(H_{m_r}) \leq \mu^*(G_{m_1}) + \ldots + \mu^*(G_{m_r}) \leq \sum_{n=1}^{\infty} \mu^*(G_n).$$

Nehme nun das Supremum über alle $H \subset G$, dann folgt

$$\mu^* \left(\bigcup_{n=1}^{\infty} G_n \right) \leq \sum_{n=1}^{\infty} \mu^* (G_n).$$

Seien nun $B_1, B_2, \ldots \subset E$ beliebig. Wähle G_n offen mit $B_n \subset G_n$ und $\mu^*(B_n) \geq \mu^*(G_n) - \frac{\varepsilon}{2^n}$ für $\varepsilon > 0$. Dann gilt

$$\mu^* \left(\bigcup_{n=1}^{\infty} B_n \right) \le \mu^* \left(\bigcup_{n=1}^{\infty} G_n \right) \le \sum_{n=1}^{\infty} \mu^* (G_n) \le \sum_{n=1}^{\infty} \left(\mu^* (B_n) + \frac{\varepsilon}{2^n} \right) \le \varepsilon + \sum_{n=1}^{\infty} \mu^* (B_n).$$

Mit $\varepsilon \searrow 0$ folgt die σ-Subadditivität von μ^* .

Zeige weiter, dass jede offene Menge $G \subset E$ μ^* -messbar ist, d.h. für alle $B \subset E$ gilt $\mu^*(B) = \mu^*(B \cap G) + \mu^*(B \cap G^c)$. Seien dazu $G \subset E$ offen, $B \subset E$ beliebig und $\varepsilon > 0$. Sei $O \supset B$ offene Obermenge mit $\mu^*(O) \le \mu^*(B) + \varepsilon$. Seien $H_1 \in \mathcal{H}$ mit $H_1 \subset O \cap G$ und $\mu^*(O \cap G) \le \alpha(H_1) + \varepsilon$, $H_2 \in \mathcal{H}$ mit $H_2 \subset O \cap H_1^c$ und $\mu^*(O \cap H_1^c) \le \alpha(H_2) + \varepsilon$. Dann gilt $H_1 \cap H_2 = \emptyset$, $O \cap G^c \subset O \cap H_1^c$ und $H_1 \cup H_2 \subset O$. Mit der Monotonie von μ^* folgt nun

$$\mu^*(B) + \varepsilon \ge \mu^*(O) \ge \alpha(H_1 \cup H_2) = \alpha(H_1) + \alpha(H_2) \ge \mu^*(O \cap G) + \mu^*(O \cap G^c) - 2\varepsilon$$

 $\ge \mu^*(B \cap G) + \mu^*(B \cap G^c) - 2\varepsilon.$

Mit $\varepsilon \searrow 0$ folgt nun die μ^* -Messbarkeit von G. μ^* ist also ein äußeres Maß und die Erzeugermengen von $\mathcal{B}(E)$, die offenen Mengen, sind μ^* -messbar. Nach dem Satz von Caratheodory (vgl. [Dep14, Satz 1.50]) ist μ^* ein Maß auf $\mathcal{B}(E)$.

Zeige nun, dass $\mu^* = \mathbf{w} - \lim_{k \to \infty} \mu_{n_k}$. Es gilt für alle $j \in \mathbb{N}$

$$\mu^*(E) \ge \alpha(K_j) = \lim_{k \to \infty} \mu_{n_k}(K_j) \ge \limsup_{k \to \infty} \mu_{n_k}(E) - \frac{1}{j},$$

also $\mu^*(E) \ge \limsup \mu_{n_k}(E)$. Sei $G \subset E$ offen und $H \in \mathcal{H}$ mit $H \subset G$. Dann gilt

$$\alpha(H) = \lim_{k \to \infty} \mu_{n_k}(H) \le \lim_{k \to \infty} \mu_{n_k}(G) \le \liminf_{k \to \infty} \mu_{n_k}(G).$$

Nehme nun das Supremum über $H \subset G, H \in \mathcal{H}$, dann folgt $\mu^*(G) \leq \liminf \mu_{n_k}(G)$. Mit Satz 3.11 v) folgt nun die Behauptung.

Zeige nun ii). Sei E polnisch und x_1, x_2, \ldots eine Aufzählung einer dichten Teilmenge von E. Sei

$$A_{n,N} \coloneqq \bigcup_{n=1}^{N} B_{\frac{1}{n}}(x_i).$$

Dann gilt $A_{n,N} \nearrow_{N\to\infty} E$ für jedes $n \in \mathbb{N}$. Sei $\mathcal{K} \subset \mathcal{M}_{\leq 1}(E)$ schwach relativ (folgen-) kompakt und sei

$$\delta\coloneqq \sup_{n\in\mathbb{N}}\inf_{N\in\mathbb{N}}\sup_{\mu\in\mathcal{K}}\mu(A_{n,N}^\mathsf{c}).$$

Zeige, dass $\delta = 0$. Sei n so groß, dass es für jedes $N \in \mathbb{N}$ ein $\mu_N \in \mathcal{K}$ gibt mit $\mu_N(A_{n,N}^{\mathsf{c}}) \geq \frac{\delta}{2}$. Sei N_k eine Teilfolge mit $N_k \nearrow \infty$ und $\mu_{N_k} \xrightarrow{\mathbb{W}} \tilde{\mu} \in \mathcal{M}_{\leq 1}(E)$. Da $A_{n,N}^{\mathsf{c}}$ abgeschlossen ist, gilt

mit Satz 3.11 iv)

$$\tilde{\mu}(A_{n,N}^{\mathsf{c}}) \ge \limsup_{k \to \infty} \mu_{N_k}(A_{n,N}^{\mathsf{c}}) \ge \limsup_{k \to \infty} \mu_{N_k}(A_{n,N_k}^{\mathsf{c}}) \ge \frac{\delta}{2}.$$

Mit $N \to \infty$ folgt $0 = \tilde{\mu}(\emptyset) = \lim_{N \to \infty} \tilde{\mu}(A_{n,N}^{\mathsf{c}})$, also auch $\delta = 0$.

Sei $\varepsilon > 0$. Wähle $n, N_n \in \mathbb{N}$ mit $\sup_{\mu \in \mathcal{K}} \mu(A_{n,N_n}^{\mathsf{c}}) < \frac{\varepsilon}{2^n}$. $A := \bigcap_{n=1}^{\infty} A_{n,N_n}$ ist totalbeschränkt, d.h. wegen der Vollständigkeit von E ist \overline{A} kompakt. Dann gilt für alle $\mu \in \mathcal{K}$:

$$\mu(\overline{A^{\mathsf{c}}}) \leq \mu(A^{\mathsf{c}}) = \mu\left(\bigcup_{n=1}^{\infty} A_{n,N_n}^{\mathsf{c}}\right) \leq \sum_{n=1}^{\infty} \mu(A_{n,N_n}^{\mathsf{c}}) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon,$$

also ist \mathcal{K} straff.

Korollar 3.20. Ist E kompakt, so sind $\mathcal{M}_{\leq 1}(E)$ und $\mathcal{M}_{1}(E)$ schwach (folgen-) kompakt.

Beobachtung 3.21. Sei E ein polnischer Raum und seien $\mu, \mu_1, \mu_2, \ldots \in \mathcal{M}_{\leq 1}(E)$. Dann sind äquivalent:

- i) $\mu = w \lim \mu_n$.
- ii) $\{\mu_n \mid n \in \mathbb{N}\}$ ist straff und für eine trennende Familie $\mathcal{C} \subset \mathcal{C}_b(E)$ gilt $\int f \, \mathrm{d}\mu_n \to \int f \, \mathrm{d}\mu$ für alle $f \in \mathcal{C}$.

Beweis. $i) \Rightarrow ii$). Sei $\mu = w - \lim \mu_n$. Nach Definition gilt $\int f d\mu_n \to \int f d\mu$ für alle $f \in C_b(E)$, insbesondere also auch für alle $f \in C$ für jede trennende Familie $C \subset C_b(E)$. Die Straffheit von $\{\mu_n \mid n \in \mathbb{N}\}$ folgt mit Satz 3.19 ii).

 $ii) \Rightarrow i$). Angenommen $\mu \neq w - \lim \mu_n$. Dann gibt es ein $g \in C_b(E)$, ein $\varepsilon > 0$ und eine Teilfolge $(n_k)_k$ mit

$$\left| \int g \mathrm{d}\mu_{n_k} - \int g \mathrm{d}\mu \right| \ge \varepsilon.$$

Nach Satz 3.19 i) gibt es eine Teilfolge $(n_{k_j})_j$ und ein $\nu \in \mathcal{M}_1(E)$ mit $\mu_{n_{k_j}} \xrightarrow[j \to \infty]{w} \nu$. Dann gilt für alle $f \in \mathcal{C}$

$$\int f \mathrm{d} \nu = \lim_{j \to \infty} \int f \mathrm{d} \mu_{n_{k_j}} = \int f \mathrm{d} \mu.$$

Da \mathcal{C} trennend ist, gilt $\mu = \nu$. Andererseits ist aber auch

$$\left| \int g d\nu - \int g d\mu \right| \ge \varepsilon,$$

was zu einem Widerspruch führt. Es muss also $\mu = w - \lim \mu_n$ gelten.

Bemerkung 3.22. Sei E lokalkompakt und polnisch und seien $\mu, \mu_1, \mu_2, \ldots \in \mathcal{M}_f(E)$. Dann sind äquivalent:

- i) $\mu = w \lim \mu_n$.
- ii) $\mu = v \lim \mu_n \text{ und } \mu(E) \ge \lim \sup \mu_n(E)$.
- iii) $\mu = v \lim \mu_n$ und $\{\mu_n \mid n \in \mathbb{N}\}$ ist straff.

Beweis. Die Äquivalenz von i) und ii) gilt nach Satz 3.11, i) \Rightarrow iii) ist klar.

 $iii) \Rightarrow i$). Sei $L \subset E$ kompakt mit $\sup_n \mu_n(E \setminus L) \leq 1$. Sei $h \in \mathcal{C}_c(E)$ mit $h \geq 1_L$. Dann gilt

$$\sup_{n} \mu_n(E) \le 1 + \sup_{n} \int h \mathrm{d}\mu_n < \infty,$$

demnach ist auch $c := \mu(E) \vee \sup_n \mu_n(E) < \infty$. Dann sind $\mu' = \frac{1}{c}\mu, \mu'_n = \frac{1}{c}\mu_n \in \mathcal{M}_{\leq 1}(E)$, also $\mu'_n \xrightarrow{v} \mu'$. Da E lokalkompakt ist, ist $C_c(E)$ trennend für $\mathcal{M}_{\leq 1}(E)$, also folgt $\mu' = w - \lim \mu'_n$ mit Beobachtung 3.21 und damit auch $\mu = w - \lim \mu_n$.

3.4 Charakteristische Funktionen

Vorbemerkung. Sei E ein messbarer Raum. Eine Funktion

$$f: E \to \mathbb{C} \cong \mathbb{R}^2$$
, $x \mapsto \operatorname{Re} f(x) + i \operatorname{Im} f(x)$

ist genau dann messbar, wenn Re f und Im f messbar sind (beachte $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}) = \mathcal{B}(\mathbb{R}^2) \cong \mathcal{B}(\mathbb{C})$). Ist μ ein Maß auf E, dann heißt f μ -integrierbar (schreibe auch $\mathcal{L}^1_{\mathbb{C}}(\mu)$), wenn Re f, Im $f \in \mathcal{L}^1(\mu)$. Es gilt $f \in \mathcal{L}^1_{\mathbb{C}}(\mu)$ genau dann, wenn $|f| = \sqrt{f\overline{f}} \in \mathcal{L}^1(\mu)$, denn

$$|\operatorname{Re} f|, |\operatorname{Im} f| \le |f| = ((\operatorname{Re} f)^2 + (\operatorname{Im} f)^2)^{\frac{1}{2}} \le \sqrt{2} (|\operatorname{Re} f| + |\operatorname{Im} f|).$$

Man setzt

$$\int f\mathrm{d}\mu\coloneqq\int\mathrm{Re}\,f\mathrm{d}\mu+i\int\mathrm{Im}\,f\mathrm{d}\mu.$$

Das Integral ist \mathbb{C} -linear und es gilt $\left| \int f d\mu \right| \le \int |f| d\mu$.

Definition 3.23. Sei $\mu \in \mathcal{M}_f(\mathbb{R}^d)$. Die Funktion

$$\varphi_{\mu}: \mathbb{R}^d \to \mathbb{C}, \quad t \mapsto \int e^{i\langle t, x \rangle} \mu(dx)$$
 (3.1)

heißt die charakteristische Funktion von μ . Dabei ist $\langle t, x \rangle = \sum_{i=1}^d t_j x_i$. Für eine \mathbb{R}^d -wertige

 $Zufallsvariable\ X\ schreiben\ wir$

$$\varphi_X(t) = \mathbf{E} \left[e^{i\langle t, X \rangle} \right] = \varphi_{\mathcal{L}(X)}(t).$$
 (3.2)

Bemerkung 3.24. In der Analysis ist auch die Bezeichnung Fourier-Transformierte üblich, zum Teil mit anderen Vorzeichenkonventionen.

Beispiel 3.25. i) Ist X diskret, so gilt $\varphi_X(t) = \sum_x \mathbf{P}(X=x)e^{i\langle t,x\rangle}$, insbesondere ist

$$\varphi_{\mathbf{Ber}(p)}(t) = pe^{it} + 1 - p,$$

$$\varphi_{\mathbf{Bin}(n,p)}(t) = \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} e^{it} = (pe^{it} + 1 - p)^{n},$$

$$\varphi_{\mathbf{Poi}(\lambda)}(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!} e^{itk} = e^{\lambda(e^{it}-1)}.$$

ii) Es ist $\varphi_{\mathbb{N}(\mu,\sigma^2)}(t) = e^{it\mu - \frac{1}{2}\sigma^2 t}$. Betrachte ohne Einschränkung (vgl. Lemma 3.26, ii)) den Fall $\mu = 0, \sigma^2 = 1$. Es gilt

$$\varphi_{\mathbb{N}(\mu,\sigma^2)}(t) = \int_{-\infty}^{\infty} e^{itx} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = e^{-\frac{t^2}{2}} \underbrace{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-it)^2}{2}} dx}_{=1} = e^{-\frac{t^2}{2}}.$$

iii)
$$\varphi_{\mathbf{Unif}([-1,1])}(t) = \frac{1}{2} \int_{-1}^{1} e^{itx} dx = \frac{\sin(t)}{t}.$$

Lemma 3.26. Seien X und Y \mathbb{R}^d -wertige Zufallsvariablen, $a \in \mathbb{R}$ und $b \in \mathbb{R}^d$. Dann gilt:

- i) $|\varphi_X(t)| \le 1 = \varphi_X(0)$ und φ_X ist gleichmäßig stetig.
- $ii) \varphi_{aX+b} = e^{i\langle t,b\rangle} \varphi_X(at).$
- iii) $\varphi_{-X}(t) = \overline{\varphi_X(t)}$. Insbesondere ist φ_X reell, wenn X symmetrisch verteilt ist.
- iv) Sind X,Y unabhängig, so ist $\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t)$. Analog ist $\varphi_{\mu*\nu} = \varphi_{\mu}\varphi_{\nu}$ für $\mu, \nu \in \mathcal{M}_f(\mathbb{R}^d)$.
- $v) \ 0 \le 1 \text{Re} \, \varphi_X(2t) \le 4(1 \text{Re} \, \varphi_X(t)).$

Beweis. i) Zeige die gleichmäßige Stetigkeit von φ_X . Sei $\varepsilon > 0$ und K so groß, dass

$$\mathbf{P}\big(X\notin [-K,K]^d\big)<\frac{\varepsilon}{4}.$$

Dann gilt wegen $|e^{iy}-1| \leq |y|, \ y \in \mathbb{R}$ für alle $t,t' \in \mathbb{R}^d$ mit $|t-t'| < \delta \coloneqq \frac{\varepsilon}{4\sqrt{d}K}$

$$|\varphi_{X}(t) - \varphi_{X}(t')| \leq \mathbf{E} \left[\left| e^{i\langle t, X \rangle} - e^{i\langle t', X \rangle} \right| \right]$$

$$\leq 2\mathbf{P} \left(X \notin [-K, K]^{d} \right) + \mathbf{E} \left[\left| e^{i\langle t-t', X \rangle} - 1 \right| \cdot \left| e^{i\langle t', X \rangle} \right| \cdot \mathbb{1}_{[-K, K]^{d}}(X) \right]$$

$$\leq 2\mathbf{P} \left(X \notin [-K, K]^{d} \right) + \mathbf{E} \left[\left| \langle t - t', X \rangle \right| \cdot \mathbb{1}_{[-K, K]^{d}}(X) \right]$$

$$\leq 2\mathbf{P} \left(X \notin [-K, K]^{d} \right) + \mathbf{E} \left[\delta \sqrt{d} 2K \cdot \mathbb{1}_{[-K, K]^{d}}(X) \right]$$

$$\leq \varepsilon.$$

ii) Es gilt:

$$\varphi_{aX+b}(t) = \mathbf{E}\left[e^{i\langle t,aX+b\rangle}\right] = \mathbf{E}\left[e^{i\langle t,b\rangle}e^{i\langle at,X\rangle}\right] = e^{i\langle t,b\rangle}\varphi_X(at).$$

iii) Es gilt:

$$\varphi_{-X}(t) = \mathbf{E} \left[e^{i \langle t, -X \rangle} \right] = \mathbf{E} \left[e^{-i \langle t, X \rangle} \right] = \overline{\mathbf{E} \left[e^{i \langle t, X \rangle} \right]} = \overline{\varphi_X(t)}.$$

iv) Da X und Y unabhängig sind, gilt:

$$\varphi_{X+Y} = \mathbf{E} \left[e^{i\langle t, X+Y \rangle} \right] = \mathbf{E} \left[e^{i\langle t, X \rangle} e^{i\langle t, Y \rangle} \right] = \mathbf{E} \left[e^{i\langle t, X \rangle} \right] \cdot \mathbf{E} \left[e^{i\langle t, Y \rangle} \right] = \varphi_X(t) \varphi_Y(t).$$

v) Mit Hilfe der Additionstheoreme des Kosinus gilt:

$$0 \le 1 - \cos(2\langle t, X \rangle) = 2(1 - \cos^2(\langle t, X \rangle)) = 2(1 + \cos(\langle t, X \rangle))(1 - \cos(\langle t, X \rangle))$$
$$\le 4(1 - \cos(\langle t, X \rangle)).$$

Da Re $\varphi_X(t) = \mathbf{E} [\cos(\langle t, X \rangle)]$, folgt damit die Behauptung.

Definition 3.27. Sei $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. $C \subset C_b(E, \mathbb{K})$ heißt eine Algebra, wenn gilt

- i) $1 \in \mathcal{C}$.
- ii) f + g, $fg \in \mathcal{C}$ für alle $f, g \in \mathcal{C}$.
- *iii)* $af \in \mathcal{C}$ für alle $f \in \mathcal{C}$, $a \in \mathbb{K}$.

 \mathcal{C} heißt Punkte trennend, wenn für alle $x \neq y \in E$ ein $f \in \mathcal{C}$ existiert mit $f(x) \neq f(y)$.

Satz 3.28 (Satz von Stone-Weierstraß). Sei E ein kompakter, topologischer Raum, $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ und $C \subset C_b(E, \mathbb{K})$ eine Punkte trennende Algebra. Falls $\mathbb{K} = \mathbb{C}$ sei C abgeschlossen unter komplexer Konjugation. Dann liegt C bezüglich der Supremumsnorm dicht in $\mathbb{C}_b(E, \mathbb{K})$.

Beweis. Bemerke zunächst: Der Abschluss $\overline{\mathcal{C}}$ von \mathcal{C} bezüglich der Supremumsnormtopologie ist selbst eine Algebra. Betrachte zunächst den Fall $\mathbb{K} = \mathbb{R}$.

Zeige zuerst, dass für $f, g \in \overline{C}$ auch $f \wedge g$, $f \vee g \in \overline{C}$. Sei dazu $p_n(t)$ eine Folge von reellen Polynomen mit $\sup_{t \in [0,1]} |p_n(t) - \sqrt{t}| \to 0$, $n \to \infty$ (wähle zum Beispiel die Bernstein-Polynome $p_n(t) = \sum_{k=0}^n \binom{n}{k} t^k (1-t)^{n-k} \sqrt{\frac{k}{n}}$). Sei $0 \neq f \in \overline{C}$. Dann gilt

$$\overline{\mathcal{C}}\ni \|f\|_{\infty}\,p_n(t)\left(\frac{f(\cdot)^2}{\|f\|_{\infty}}\right)\xrightarrow[n\to\infty]{\text{gleichmäßig}}|f|\in \overline{\mathcal{C}}.$$

Somit sind auch $f \vee g = \frac{1}{2}(f + g + |f - g|) \in \overline{\mathcal{C}}$ und $f \wedge g = \frac{1}{2}(f + g - |f - g|) \in \overline{\mathcal{C}}$ für $f, g \in \overline{\mathcal{C}}$. Sei nun $f \in \mathcal{C}_b(E, \mathbb{K}), x \in E$ und $\varepsilon > 0$. Zeige, dass es ein $g_{x,\varepsilon} \in \overline{\mathcal{C}}$ gibt mit

$$g_{x,\varepsilon}(x) = f(x) \quad \text{und} \quad g_{x,e} \le f + \varepsilon.$$
 (3.3)

Da \mathcal{C} Punkte trennend ist, gibt es zu jedem $z \in E$, $z \neq x$ ein $H_z \in \mathcal{C}$ mit $H_z(z) \neq H_z(x) = 0$. Setze

$$h_z(y) := f(x) + \frac{f(z) - f(x)}{H_z(z)} H_z(y), \quad h_x(y) = f(x).$$

Dann ist $h_z \in \mathcal{C}$ und es gilt für alle $z \in E$: $h_z(x) = f(x)$ und $h_z(z) = f(z)$. Also existiert eine offene Umgebung U_z von z mit $h_z(y) \leq f(y) + \varepsilon$ für alle $y \in U_z$. Da E kompakt ist, lässt sich E mit endlichen vielen solcher Umgebungen überdecken, d.h. $E \subset U_{z_1} \cup \ldots \cup U_{z_n}$ für geeignete z_1, \ldots, z_n . Dann erfüllt

$$g_{x,\varepsilon} \coloneqq \min \left\{ h_{z_1}, \dots, h_{z_n} \right\} \tag{3.4}$$

die geforderten Bedingungen in (3.3).

Sei nun $x \in E$ und $\varepsilon > 0$. Wähle $g_{x,\varepsilon}$ gemäß (3.4) und wähle eine offene Umgebung V_x von x mit $g_{x,\varepsilon}(y) \ge f(y) - \varepsilon$ für alle $y \in V_x$. Da E kompakt ist, ist $E \subset V_{x_1} \cup \ldots \cup V_{x_m}$ für geeignete x_1, \ldots, x_m . Setze

$$g \coloneqq \max \{g_{x_1,\varepsilon}, \dots, g_{x_m,\varepsilon}\}.$$

Dann gilt $f - \varepsilon \leq g \leq f + \varepsilon$, also liegt C dicht in $C_b(E, \mathbb{R})$.

Betrachte nun den Fall $\mathbb{K} = \mathbb{C}$. Für $f \in \mathcal{C}$ ist $\operatorname{Re} f = \frac{1}{2}(f + \overline{f})$, $\operatorname{Im} f = \frac{1}{2i}(f - \overline{f}) \in \mathcal{C}$. $\mathcal{C}' := \{\operatorname{Re} f \mid f \in \mathcal{C}\} \subset \mathcal{C}_b(E, \mathbb{R})$ ist eine Punkte trennende Algebra. Es gilt

$$\operatorname{Re}(fq) = \operatorname{Re}(f)\operatorname{Re}(q) - \operatorname{Im}(f)\operatorname{Im}(q)$$
 und $\operatorname{Im}(f) = \operatorname{Re}(-if)$,

also ist $\mathcal{C} = \mathcal{C}' + i\mathcal{C}'$ und liegt damit nach dem ersten Fall dicht in $\mathcal{C}_b(E, \mathbb{C})$.

Korollar 3.29. Sind $\mu, \nu \in \mathcal{M}_f(\mathbb{R}^d)$ mit $\varphi_{\mu} = \varphi_{\nu}$, so gilt $\mu = \nu$.

Beweis. Sei $f \in \mathcal{C}_c(\mathbb{R}^d)$. Zeige $\int f d\mu = \int f d\nu$, denn falls dies für jedes solche f gilt, so ist $\mu = \nu$

nach Beispiel 3.6. Ist $f \equiv 0$, so sind die Integrale gleich. Betrachte also den Fall $f \not\equiv 0$. Sei $\varepsilon > 0$ und K so groß, dass $\operatorname{supp}(f) \subset [-K,K]^d$, $\mu\left(\mathbb{R}^d \smallsetminus [-K,K]^d\right) \leq \frac{\varepsilon}{2\|f\|_{\infty}}$ und $\nu\left(\mathbb{R}^d \smallsetminus [-K,K]^d\right) \leq \frac{\varepsilon}{2\|f\|_{\infty}}$. Für $m = (m_1,\ldots,m_d) \in \mathbb{Z}^d$ und $x = (x_1,\ldots,x_d) \in \mathbb{R}^d$ sei $f_{m,k}(x) = e^{i\frac{\pi}{K}\langle m,x\rangle}$. Die von $\{f_{m,k} \mid m \in \mathbb{Z}^d\}$ erzeugte Algebra $\mathcal C$ trennt Punkte von $\mathbb{R}^d/2K\mathbb{Z}^d$. Nach Satz 3.28 gibt es ein $g \in \mathcal C$ mit $|f-g| < \varepsilon$ auf $[-K,K]^d$ und es gilt (beachte: $g \in \mathcal C$ ist 2K-periodisch, insbesondere gilt $||g||_{\infty} = \sup_{x \in [-K,K]^d} |g(x)|$)

$$\int |f - g| d\mu \le \varepsilon \mu([-K, K]^d) + 2 \|f\|_{\infty} \mu(\mathbb{R}^d \setminus [-K, K]^d) \le \varepsilon \mu([-K, K]^d) + \varepsilon \le \varepsilon \mu(\mathbb{R}^d) + \varepsilon.$$

Die analoge Abschätzung gilt ebenso für ν . Zusammen folgt daher

$$\left| \int f d\mu - \int f d\nu \right| \leq \underbrace{\left| \int g d\mu - \int g d\nu \right|}_{\equiv 0 \text{ da } / \Omega_{\nu} \equiv / \Omega_{\nu}} + \int |f - g| d\mu + \int |f - g| d\nu \leq \varepsilon (\mu(\mathbb{R}^{d}) + \nu(\mathbb{R}^{d})) + 2\varepsilon.$$

Mit $\varepsilon \searrow 0$ folgt damit die Behauptung.

Korollar 3.30. $\mu \in \mathcal{M}_f([0,\infty))$ ist durch seine Laplace-Transformierte

$$L_{\mu}(\lambda) = \int e^{-\lambda} \mu(dx), \quad \lambda \ge 0$$

 $eindeutig\ fest gelegt.$

Beweis. Betrachte $E = [0, \infty]$. E ist kompakt. Für $\lambda \ge 0$ sei

$$f_{\lambda}: E \to [0, 1], \quad x \mapsto e^{-\lambda x}, x < \infty, \quad \infty \mapsto \begin{cases} 0, & \lambda > 0 \\ 1, & \lambda = 0 \end{cases}$$

 $\mathcal{C} = \{\sum_{i=1}^n a_i f_{\lambda_i} \mid n \in \mathbb{N}, \ a_i \in \mathbb{R}, \ \lambda_i \geq 0\}$ ist eine Punkte trennende Algebra, also folgt die Behauptung mit Satz 3.28.

Korollar 3.31. Sei X eine Zufallsvariable mit Werten in [a,b]. Dann ist ihre Verteilung durch ihre Momente $m_n := \mathbf{E}[X^n], n = 0, 1, \ldots$ festgelegt, denn die Polynome liegen dicht in $\mathcal{C}_b([a,b])$.

Bemerke: Die Aussage des Korollars gilt nicht, wenn der Wertebereich von X unbeschränkt ist. Betrachte dazu folgendes Gegenbeispiel: Sei $X \sim \mathbb{N}(0,1)$ und setze $Y := e^X$. Y ist log-

normalverteilt mit Dichte $f_Y(y) = \frac{1}{\sqrt{2\pi}} \frac{1}{y} e^{-\frac{1}{2}(\log y)^2}, \ y > 0$. Es gilt:

$$m_n = \mathbf{E}[Y^n] = \mathbf{E}[e^{nX}] = \underbrace{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2 + nx - \frac{1}{2}n^2}}_{=1} dx \cdot e^{\frac{1}{2}n^2} = e^{\frac{1}{2}n^2}.$$

Sei b > 0. Y_b habe die Verteilung $\mathbf{P}(Y_b = be^{bk}) = \frac{1}{C_b}b^{-k}e^{-\frac{1}{2}k^2}$, $k \in \mathbb{Z}$ mit $C_b := \sum_{k \in \mathbb{Z}} b^{-k}e^{-\frac{1}{2}k^2}$. Dann gilt für die Momente von Y_b :

$$e^{-\frac{1}{2}n^2}\mathbf{E}[Y_b^n] = e^{-\frac{1}{2}n^2} \sum_{k \in \mathbb{Z}} \left(be^k\right)^n \frac{b^{-k}e^{-\frac{1}{2}k^2}}{C_b} = \sum_{k \in \mathbb{Z}} \frac{b^{-(k-n)}e^{-\frac{1}{2}(k-n)^2}}{C_b} = \frac{C_b}{C_b} = 1.$$

Es gilt also $\mathbf{E}[Y^n] = \mathbf{E}[Y_b^n] = e^{\frac{1}{2}n^2}$, aber Y und Y_b haben offensichtlich nicht dieselbe Verteilung.

Satz 3.32 (Lévys Stetigkeitssatz). Seien $P, P_1, P_2, \ldots \in \mathcal{M}_1(\mathbb{R}^d)$ mit charakteristischen Funktionen $\varphi, \varphi_1, \varphi_2, \ldots$

- i) Ist $P = w \lim P_n$, so gilt $\varphi_n \to \varphi$ lokal gleichmäßig.
- ii) Es gelte $\varphi_n \to f$ punktweise gegen ein in 0 stetiges $f: \mathbb{R}^d \to \mathbb{C}$, dann gibt es ein $Q \in \mathcal{M}_1(\mathbb{R}^d)$ mit $f = \varphi_Q$ und $Q = w \lim P_n$ (vgl. [Dep14, Satz 4.33] im Fall d = 1).

Lemma 3.33. Sei $\mathfrak{F} \subset \mathcal{M}_1(\mathbb{R}^d)$ straff. Dann ist $\{\varphi_{\mu} \mid \mu \in \mathfrak{F}\}$ gleichgradig gleichmäßig stetig, das heißt für alle $\varepsilon > 0$ existiert ein $\delta > 0$, sodass für alle $t, t' \in \mathbb{R}^d$ mit $|t - t'| < \delta$ gilt

$$\sup_{\mu \in \mathfrak{F}} \left| \varphi_{\mu}(t) - \varphi_{\mu}(t') \right| < \varepsilon.$$

Beweis. Es gilt mit Hilfe der Cauchy-Schwarz-Ungleichung:

$$|\varphi_{\mu}(t) - \varphi_{\mu}(s)|^{2} \leq \left| \int_{\mathbb{R}^{d}} \left(e^{i\langle t-s, x \rangle} - 1 \right) \left(e^{i\langle s, x \rangle} \right) \mu(\mathrm{d}x) \right|^{2}$$

$$\leq \int_{\mathbb{R}^{d}} \left| e^{i\langle t-s, x \rangle} - 1 \right|^{2} \mu(\mathrm{d}x) \cdot \int_{\mathbb{R}^{d}} \underbrace{\left| e^{i\langle s, x \rangle} \right|^{2}}_{=1} \mu(\mathrm{d}x)$$

$$= \int_{\mathbb{R}^{d}} \left(e^{i\langle t-s, x \rangle} - 1 \right) \left(e^{-i\langle t-s, x \rangle} - 1 \right) \mu(\mathrm{d}x)$$

$$= \int_{\mathbb{R}^{d}} 2 \left(1 - \operatorname{Re} \left(e^{i\langle t-s, x \rangle} \right) \right)$$

$$= 2 \left(1 - \operatorname{Re} \left(\varphi_{\mu}(t-s) \right) \right).$$

Wähle K so groß, dass $\sup_{\mu \in \mathfrak{F}} \mu \left(\mathbb{R}^d \smallsetminus [-K,K]^d \right) < \frac{\varepsilon^2}{6}$ und wähle δ so klein, dass für alle $|u| < \delta$ gilt $\sup_{x \in [-K,K]^d} \left| 1 - e^{i\langle u,x \rangle} \right| < \frac{\varepsilon^2}{6}$. Dann gilt für alle $\mu \in \mathfrak{F}, \ t,t' \in \mathbb{R}^d$ mit $|t-t'| < \delta$:

$$\left|\varphi_{\mu}(t) - \varphi_{\mu}(t')\right|^{2} \leq 2\left(1 - \operatorname{Re}\left(\varphi_{\mu}(t - t')\right)\right) \leq 2\int \left|1 - e^{i(t - t', x)}\right| \mu(\mathrm{d}x) \leq 2\left(\frac{\varepsilon^{2}}{6} + 2\frac{e^{2}}{6}\right) = \varepsilon^{2}.$$

Beweis von Satz 3.32. Die punktweise Konvergenz $\varphi_n \to \varphi$ in i) ist klar und die lokal gleichmäßige Konvergenz folgt damit aus Lemma 3.33 (vgl. z.B. [Kle13, Lemma 15.22] für weitere Details).

Zu ii) zeigen wir zunächst, dass $\{P_n \mid n \in \mathbb{N}\}$ straff ist. Dafür genügt es zu zeigen, dass $P_n^{(k)} := P_n \circ \pi_k^{-1}$, wobei $\pi_k : \mathbb{R}^d \to \mathbb{R}$ die k-te Koordinatenprojektion ist, eine straffe Familie sind, denn es gilt $P_n\left(\mathbb{R}^d \setminus [-K,K]^d\right) \le \sum_{k=1}^d P_n^{(k)}([-K,K]^c)$. Für $s \in \mathbb{R}$ ist $\varphi_{P_n^{(k)}}(s) = \varphi_n(s \cdot e_k)$, wobei e_k der k-te Einheitsvektor im \mathbb{R}^d ist. Nach Voraussetzung gilt $\varphi_{P_n^{(k)}}(s) \to f(s \cdot e_k)$ und $s \mapsto f(s \cdot e_k)$ ist stetig in 0 mit $f(0 \cdot e_k) = 1$. Sei

$$h(x) = \begin{cases} 1 - \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

und $a := \inf \{h(x) \mid |x| \ge 1\} = 1 - \sin(1) > 0$. Dann gilt für $\varepsilon > 0$ und M genügend groß mit dem Satz von Fubini:

$$P_n^{(k)}([-M,M]^c) \le \frac{1}{a} \int_{[-M,M]^c} h\left(\frac{x}{M}\right) P_n^{(k)}(\mathrm{d}x)$$

$$= \frac{1}{a} \int_{[-M,M]^c} \int_0^1 1 - \cos\left(t\frac{x}{M}\right) \mathrm{d}t \, P_n^{(k)}(\mathrm{d}x)$$

$$= \frac{1}{a} \int_0^1 \int_{[-M,M]^c} 1 - \cos\left(t\frac{x}{M}\right) P_n^{(k)}(\mathrm{d}x) \, \mathrm{d}t$$

$$\le \frac{1}{a} \int_0^1 1 - \mathrm{Re}\left(\varphi_n\left(\frac{t}{M}e_k\right)\right) \mathrm{d}t.$$

Damit folgt:

$$\lim_{n \to \infty} \Pr_{n}^{(k)} \left([-M, M]^{c} \right) \leq \frac{1}{a} \lim_{n \to \infty} \sup_{n \to \infty} \int_{0}^{1} 1 - \operatorname{Re} \left(\varphi_{n} \left(\frac{t}{M} e_{k} \right) \right) dt$$

$$= \frac{1}{a} \int_{0}^{1} \limsup_{n \to \infty} 1 - \operatorname{Re} \left(\varphi_{n} \left(\frac{t}{M} e_{k} \right) \right) dt$$

$$= \frac{1}{a} \int_{0}^{1} 1 - \operatorname{Re} \left(f \left(\frac{t}{M} e_{k} \right) \right) dt$$

$$< \varepsilon,$$

also ist $\{P_n \mid n \in \mathbb{N}\}$ straff. Nach Satz 3.19 gibt es eine Teilfolge $(P_{n_j})_j$ mit $P_{n_j} \xrightarrow{\mathbb{W}} Q$ und mit i) gilt $f = \varphi_Q$. Somit folgt Q = Q' für jede konvergente Teilfolge $(P_{n_k})_k$ mit $P_{n_k} \xrightarrow{\mathbb{W}} Q'$. \square

Erinnerung 3.34. Sei X eine reelle Zufallsvariable mit $\mathbf{E}[|X|^n] < \infty$. Dann ist φ_X n-mal stetig differenzierbar mit

$$\frac{\mathrm{d}^n}{\mathrm{d}t^n}\varphi_X(t) = \mathbf{E}\left[(iX)^n e^{itX}\right]$$

(vgl. [Dep14, Lemma 4.34]), denn die Restgliedabschätzung der Taylorentwicklung liefert

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| \le \frac{|x|^{n+1}}{(n+1)!} \wedge \frac{2|x|^n}{n!}$$

und somit

$$\mathbf{E} \left[\left| e^{i(t+h)X} - e^{itX} \sum_{k=0}^{n} \frac{(ih)^{k} X^{k}}{k!} \right| \right] \le \mathbf{E} \left[\frac{|h|^{n+1} |X|^{n+1}}{(n+1)!} \wedge \frac{2|h|^{n} |X|^{n}}{n!} \right].$$

4 Zentrale Grenzwertsätze

Erinnerung 4.1 (Zentraler Grenzwertsatz). Seien X_1, X_2, \ldots unabhängige, identisch verteilte, reelle Zufallsvariablen mit $\mu := \mathbf{E}[X_1]$ und $\sigma^2 := \mathbf{Var}[X_1] < \infty$. Sei

$$S_n^* \coloneqq \frac{1}{\sqrt{n\sigma^2}} \sum_{j=1}^n (X_j - \mu).$$

Dann gilt $S_n^* \Rightarrow \mathbf{N}(0,1), \ n \to \infty$, denn es gilt mit der Taylorentwicklung

$$\varphi_{S_n^*}(t) = \left(\varphi_{\frac{X_1 - \mu}{\sqrt{n\sigma^2}}}(t)\right)^n = \left(\varphi_{X_1 - \mu}\left(\frac{t}{\sqrt{n\sigma^2}}\right)\right)^n = \left(1 + 0\frac{t}{\sqrt{n\sigma^2}} - \frac{1}{2}\sigma^2\frac{t^2}{n\sigma^2} + o\left(\frac{t^2}{n\sigma^2}\right)\right)^n$$

$$\sim \left(1 - \frac{1}{2}\frac{t^2}{n}\right)^n \xrightarrow[n \to \infty]{} e^{-\frac{1}{2}t^2} = \varphi_{\mathbf{N}(0,1)}(t).$$

Die aus der Einführung in die Stochastik bekannte Version des Zentralen Grenzwertsatzes

$$\mathbf{P}\left(a \le S_n^* \le b\right) \xrightarrow[n \to \infty]{} \int_a^b \frac{1}{2\pi} e^{-\frac{x^2}{2}} \mathrm{d}x$$

folgt aus $\mathcal{L}(S_n^*) \Rightarrow \mathbf{N}(0,1)$ zusammen mit Satz 3.11 vi).

Satz 4.2 (Zentraler Grenzwertsatz für Dreiecksschemata). Für $n \in \mathbb{N}$ sei $k_n \in \mathbb{N}$ und $X_{n,1}$, $X_{n,2} \dots, X_{n,k_n} \in \mathcal{L}^2(\mathbf{P})$. $(X_{n,l} \mid l = 1, 2, \dots, k_n, n \in \mathbb{N})$ heißt Dreiecksschema von Zufallsvariablen. Für $n \in \mathbb{N}$ seien $X_{n,1}, X_{n,2} \dots, X_{n,k_n}$ unabhängig mit $\mathbf{E}[X_{n,l}] = 0$ und $\sum_{l=1}^{k_n} \mathbf{Var}[X_{n,l}] = 1$ (das Schema ist "zentriert" und "normiert"). Setze

$$S_n \coloneqq \sum_{l=1}^{k_n} X_{n,l}.$$

Es gelte die Lindeberg-Bedingung

$$L_n(\varepsilon) \coloneqq \sum_{l=1}^{k_n} \mathbf{E} \left[X_{n,l}^2 \cdot \mathbb{1}_{\left\{ X_{n,l}^2 > \varepsilon^2 \right\}} \right] = \frac{1}{\mathbf{Var}[S_n]} \sum_{l=1}^{k_n} \mathbf{E} \left[X_{n,l}^2 \cdot \mathbb{1}_{\left\{ X_{n,l}^2 > \varepsilon^2 \mathbf{Var}[S_n] \right\}} \right] \xrightarrow[n \to \infty]{} 0$$
(4.1)

 $f\ddot{u}r \ alle \ \varepsilon > 0. \ Dann \ gilt \ S_n \Rightarrow \mathbf{N}(0,1), \ n \to \infty.$

Bemerkung 4.3. i) Falls $(X_{n,l})$ die Lyapunov-Bedingung

$$\frac{1}{(\mathbf{Var}[S_n])^{1+\frac{\delta}{2}}} \sum_{l=1}^{k_n} \mathbf{E}\left[|X_{n,l}|^{2+\delta}\right] \xrightarrow[n \to \infty]{} 0 \tag{4.2}$$

für ein $\delta > 0$ erfüllt, so gilt auch die Lindeberg-Bedingung (4.1), denn

$$\mathbf{E}\left[X_{n,l}^{2}\cdot\mathbb{1}_{\left\{X_{n,l}^{2}>\varepsilon^{2}\right\}}\right]\leq\varepsilon^{-\delta}\mathbf{E}\left[\left|X_{n,l}\right|^{2+\delta}\right].$$

ii) Die Lindeberg-Bedingung (4.1) impliziert

$$\lim_{n \to \infty} \max_{1 \le l \le k_n} \mathbf{P}(|X_{n,l}| > \varepsilon) = 0, \tag{4.3}$$

denn

$$\max_{1 \leq l \leq k_n} \mathbf{P}\left(\left|X_{n,l}\right| > \varepsilon\right) \leq \sum_{l=1}^{k_n} \mathbf{P}\left(\left|X_{n,l}\right| > \varepsilon\right) \leq \frac{1}{\varepsilon^2} \sum_{l=1}^{k_n} \mathbf{E}\left[X_{n,l}^2 \cdot \mathbb{1}_{\left\{X_{n,l}^2 > \varepsilon^2\right\}}\right] \xrightarrow[n \to \infty]{} 0.$$

Man sagt auch: Das Schema ist "asymptotisch vernachlässigbar". Es gilt auch die Umkehrung: Gilt (4.3) und $S_n \Rightarrow \mathbf{N}(0,1)$, so gilt auch (4.1) (vgl. [Kal02, Theorem 5.12]).

Beweis von Satz 4.2. Bemerke zunächst: Sind $z_1, \ldots, z_n, z'_1, \ldots, z'_n \in \{z \in \mathbb{C} \mid |z| \le 1\}$, so gilt

$$\left| \prod_{j=1}^{n} z_j - \prod_{j=1}^{n} z_j' \right| \le \sum_{j=1}^{n} |z_j - z_j'|,$$

denn für n = 2 gilt

$$|z_1z_2 - z_1'z_2'| \le |z_1z_2 - z_1'z_2| + |z_1'z_2 - z_1'z_2'| = |z_2||z_1 - z_1'| + |z_1'||z_2 - z_2'| \le |z_1 - z_1'| + |z_2 - z_2'|$$

und der allgemeine Fall folgt induktiv.

Sei
$$c_{n,l} \coloneqq \mathbf{E}[X_{n,l}^2] = \mathbf{Var}[X_{n,l}]$$
 und $\varphi_{n,l} \coloneqq \mathbf{E}[e^{itX_{n,l}}]$. Es gilt

$$\limsup_{n\to\infty} \max_{1\le l\le k_n} c_{n,l} = 0,$$

denn es gilt wegen (4.1) für alle $\varepsilon > 0$

$$\max_{1 \leq l \leq k_n} c_{n,l} \leq \varepsilon^2 + \sum_{l=1}^{k_n} \mathbf{E} \left[X_{n,l}^2 \cdot \mathbbm{1}_{\left\{X_{n,l}^2 > \varepsilon^2\right\}} \right] \xrightarrow[n \to \infty]{} \varepsilon^2,$$

Damit folgt

$$\left| \mathbf{E} \left[e^{itS_n} \right] - e^{-\frac{1}{2}t^2} \right| = \left| \prod_{l=1}^{k_n} \varphi_{n,l}(t) - \prod_{l=1}^{k_n} e^{-\frac{1}{2}c_{n,l}t^2} \right| \le \sum_{l=1}^{k_n} \left| \varphi_{n,l}(t) - e^{-\frac{1}{2}c_{n,l}t^2} \right|$$

$$\le \sum_{l=1}^{k_n} \left| \varphi_{n,l}(t) - 1 + \frac{1}{2}c_{n,l}t^2 \right| + \sum_{l=1}^{k_n} \left| e^{-\frac{1}{2}c_{n,l}t^2} - 1 + \frac{1}{2}c_{n,l}t^2 \right|.$$

Mit Erinnerung 3.34 lässt sich das Argument der ersten Summe durch das Restglied der Taylorentwicklung abschätzen:

$$\left|\varphi_{n,l}(t) - 1 + \frac{1}{2}c_{n,l}t^2\right| \le \mathbf{E}\left[\left|X_{n,l}\right|^2 \wedge \frac{\left|X_{n,l}\right|^3}{3}\right] \le \varepsilon \mathbf{E}\left[X_{n,l}^2\right] + \mathbf{E}\left[X_{n,l}^2 \cdot \mathbb{1}_{\left\{X_{n,l}^2 > \varepsilon^2\right\}}\right].$$

Weiterhin gilt

$$\left| e^{-\frac{1}{2}c_{n,l}t^2} - 1 + \frac{1}{2}c_{n,l}t^2 \right| \le \frac{1}{2!} \left(\frac{1}{2}c_{n,l}t^2 \right)^2 = \frac{1}{8}c_{n,l}^2t^4.$$

Zusammen ergibt sich

$$\begin{split} \left| \mathbf{E} \left[e^{itS_n} \right] - e^{-\frac{1}{2}t^2} \right| &\leq \sum_{l=1}^{k_n} \left| \varphi_{n,l}(t) - 1 + \frac{1}{2} c_{n,l} t^2 \right| + \sum_{l=1}^{k_n} \left| e^{-\frac{1}{2} c_{n,l} t^2} - 1 + \frac{1}{2} c_{n,l} t^2 \right| \\ &\leq \varepsilon \sum_{l=1}^{k_n} c_{n,l} + L_n(\varepsilon) + \frac{t^4}{8} \left(\max_{1 \leq l \leq k_n} c_{n,l} \right) \sum_{l=1}^{k_n} c_{n,l} \\ &= \varepsilon + L_n(\varepsilon) + \frac{t^4}{8} \left(\max_{1 \leq l \leq k_n} c_{n,l} \right) \xrightarrow[n \to \infty]{} \varepsilon + 0 + 0 = \varepsilon. \end{split}$$

Also gilt

$$\limsup_{n \to \infty} \left| \mathbf{E} \left[e^{itS_n} \right] - e^{-\frac{1}{2}t^2} \right| \le \varepsilon.$$

Mit $\varepsilon \searrow 0$ und Levys Stetigkeitssatz (Satz 3.32) folgt die Behauptung.

4.1 Der mehrdimensionale Fall

Beobachtung 4.4. i) Sei $X = (X_1, ..., X_d)^{\mathsf{t}}$ eine \mathbb{R}^d -wertige Zufallsvariable. Die Kovarianzmatrix $C = (c_{ij})_{i,j=1,...,d}$ mit $c_{ij} = \mathbf{Cov}[X_i, X_j]$ ist symmetrisch und positiv definit, denn $c_{ij} = \mathbf{Cov}[X_i, X_j] = \mathbf{Cov}[X_j, X_i] = c_{ji}$ und für $a = (a_1, ..., a_d)^{\mathsf{t}} \in \mathbb{R}^d$ ist

$$a^{\mathsf{t}}Ca = \sum_{i,j=1}^d a_i c_{ij} a_j = \sum_{i,j=1}^d a_i a_j \mathbf{Cov}[X_i, X_j] = \mathbf{Cov} \left[\sum_{i=1}^d a_i X_i, \sum_{j=1}^d a_j X_j \right] = \mathbf{Var}[\langle a, X \rangle] \ge 0.$$

ii) Sind Z_1,\dots,Z_d unabhängig und standardnormalverteilt, so hat $Z=(Z_1,\dots,Z_d)^{\mathsf{t}}$ die

Dichte

$$f_Z(z) = (2\pi)^{-\frac{d}{2}} \exp\left(-\frac{1}{2}\left(z_1^2 + \dots + z_d^2\right)\right) = (2\pi)^{-\frac{d}{2}} e^{-\frac{1}{2}\|z\|^2}, \quad z \in \mathbb{R}^d.$$

 $\mathcal{L}(Z)$ heißt die d-dimensionale Standardnormalverteilung.

iii) Sei $\mu \in \mathbb{R}^d$ und $A = (a_{ij}) \in \mathbb{R}^{d \times d}$. Dann hat $X := \mu + AZ$ den Erwartungswert(-vektor) $\mathbf{E}[X] = (\mathbf{E}[X_1], \dots, \mathbf{E}[X_d]) = \mu$ und die Kovarianzmatrix $C := AA^{\mathsf{t}}$, denn

$$\mathbf{Cov}[X_{k}, X_{l}] = \mathbf{Cov} \left[\mu_{k} + \sum_{i=1}^{d} a_{k,i} Z_{i}, \ \mu_{l} + \sum_{j=1}^{d} a_{l,j} Z_{l} \right] = \sum_{i,j=1}^{d} a_{ki} a_{lj} \mathbf{Cov}[Z_{i}, Z_{j}]$$

$$= \sum_{i,j=1}^{d} a_{ki} a_{lj} \delta_{ij} = \sum_{i=1}^{d} a_{ki} a_{li} = (AA^{t})_{kl}.$$

Falls A vollen Rang d hat, so hat X die Dichte

$$f_{\mu,C}(x)\frac{1}{\sqrt{(2\pi)^d \det C}} \exp\left(-\frac{1}{2}\langle x-\mu, C^{-1}(x-\mu)\rangle\right), \quad x \in \mathbb{R}^d,$$

denn für $g(z) := \mu + AZ$ gilt $g^{-1}(x) = A^{-1}(x - \mu)$ und $\left(\frac{\partial}{\partial x_i}g_j(z)\right)_{i,j} = \mathrm{D}g(z) = A$. Also folgt mit der Dichtetransformationsformel und mit det $C = \det\left(AA^{\mathsf{t}}\right) = (\det A)^2$:

$$f_{\mu,C}(x) = f_Z(g^{-1}(x)) \frac{1}{|\det \mathrm{D} g^{-1}(x)|}$$

Falls A nicht vollen Rang hat, so besitzt X keine Dichte bezüglich λ^d .

Was ist jedoch in dem Fall, in dem A (und damit auch C) nicht vollen Rang haben? Betrachte für $u \in \mathbb{R}^d$:

$$\mathbf{E}\left[e^{i\langle u,X\rangle}\right] = \mathbf{E}\left[e^{i\langle u,\mu\rangle} \cdot e^{i\langle u,AZ\rangle}\right] = e^{i\langle u,\mu\rangle} \mathbf{E}\left[e^{i\sum_{k,l=1}^{d} u_{k}a_{kl}Z_{l}}\right] = e^{i\langle u,\mu\rangle} \prod_{l=1}^{d} \mathbf{E}\left[e^{i\sum_{k=1}^{d} u_{k}a_{kl}Z_{l}}\right]$$

$$= e^{i\langle u,\mu\rangle} \prod_{l=1}^{d} e^{-\frac{1}{2}\left(\sum_{k=1}^{d} u_{k}a_{kl}\right)^{2}} = e^{i\langle u,\mu\rangle} e^{-\frac{1}{2}\sum_{l=1}^{d}\left(\left(u^{t}A\right)_{l}\right)^{2}} = e^{i\langle u,\mu\rangle} e^{-\frac{1}{2}\langle u^{t}A,u^{t}A\rangle}$$

$$= e^{i\langle u,\mu\rangle} e^{-\frac{1}{2}\langle u^{t},u^{t}AA^{t}\rangle} = e^{i\langle u,\mu\rangle} e^{-\frac{1}{2}\langle u,Cu\rangle}.$$

Dies legt folgende Definition nahe.

Definition 4.5. Sei $\mu \in \mathbb{R}^d$, $C \in \mathbb{R}^{d \times d}$ symmetrisch und positiv definit. X heißt d-dimensional normalverteilt mit Erwartungswert μ und Kovarianzmatrix C, falls

$$\varphi_X(u) = e^{i\langle u, \mu \rangle} e^{-\frac{1}{2}\langle u, Cu \rangle}$$

Man schreibt auch $\mathcal{L}(X) =: \mathbf{N}(\mu, C)$.

Bemerkung 4.6. Sei $X \sim \mathbf{N}(\mu, C)$, $A \in \mathbb{R}^{d \times d}$ und Y := AX. Dann ist $Y \sim \mathbf{N}(A\mu, ACA^{\mathsf{t}})$, denn

$$\mathbf{E}\left[e^{i\langle u,Y\rangle}\right] = \mathbf{E}\left[e^{i\langle u,AX\rangle}\right] = \mathbf{E}\left[e^{i\langle A^{\mathsf{t}}u,X\rangle}\right] = e^{i\langle A^{\mathsf{t}}u,\mu\rangle}e^{-\frac{1}{2}\langle A^{\mathsf{t}}u,CA^{\mathsf{t}}u\rangle} = e^{i\langle u,A\mu\rangle}e^{-\frac{1}{2}\langle u,ACA^{\mathsf{t}}u\rangle}.$$

Lemma 4.7 (Cramér-Wold device). Für $n \in \mathbb{N} \cup \{\infty\}$ seien $X_n = (X_{n,1}, \dots, X_{n,n})^{\mathsf{t}}$ Zufallsvariablen. Dann sind äquivalent:

- i) $X_n \Rightarrow X_\infty, n \to \infty$.
- ii) $\mathcal{L}(\langle \lambda, X_n \rangle) \xrightarrow[n \to \infty]{w} \mathcal{L}(\langle \lambda, X_\infty \rangle)$ für alle $\lambda \in \mathbb{R}^d$.

Beweis. Es gelte zunächst $X_n \Rightarrow X_\infty$, $n \to \infty$. Betrachte $f(x) = e^{i(\lambda,x)}$. Es ist $f \in \mathbb{C}_b(\mathbb{R}^d,\mathbb{C})$, also gilt für alle $t \in \mathbb{R}$, $\lambda \in \mathbb{R}^d$

$$\mathbf{E}\left[e^{it\langle\lambda,X_n\rangle}\right] \xrightarrow[n\to\infty]{} \mathbf{E}\left[e^{it\langle\lambda,X_\infty\rangle}\right].$$

Somit folgt *ii*) aus Satz 3.32 (Lévys Stetigkeitssatz).

Es gelte nun ii). Nach Voraussetzung gilt für alle $\lambda \in \mathbb{R}^d$

$$\mathbf{E}\left[e^{i\langle\lambda,X_n\rangle}\right] \xrightarrow[n\to\infty]{} \mathbf{E}\left[e^{i\langle\lambda,X_\infty\rangle}\right]$$

und somit folgt i) mit Satz 3.32.

Satz 4.8 (Zentraler Grenzwertsatz im \mathbb{R}^d). Seien $(X_n)_{n\in\mathbb{N}}$ unabhängige, identisch verteilte, d-dimensionale Zufallsvariablen mit $\mathbf{E}[X_1] = \mu$ und $\mathbf{Cov}[X_1] = C$. Setze $S_n^* := \frac{X_1 + \dots + X_n - n\mu}{\sqrt{n}}$. Dann gilt $S_n^* \Rightarrow \mathbf{N}(0,C)$, $n \to \infty$.

Beweis. Sei $\lambda \in \mathbb{R}^d$, $X_n^{\lambda} := \langle \lambda, X_n \rangle$ und $S_n^{\lambda} := \langle \lambda, S_n^* \rangle$. Betrachte ohne Einschränkung $\mu = 0$. Mit dem Zentralen Grenzwertsatz in \mathbb{R} gilt $S_n^{\lambda} \Rightarrow \mathbf{N}(0, \mathbf{Var}[X_1^{\lambda}]) = \mathbf{N}(0, \langle \lambda, C\lambda \rangle)$, also gilt

$$\mathbf{E}\left[e^{i\langle\lambda,S_n^*\rangle}\right] \xrightarrow[n\to\infty]{} e^{-\frac{1}{2}\langle\lambda,C\lambda\rangle}.$$

Somit folgt die Behauptung mit Lemma 4.7.

5 Unendlich teilbare Verteilungen

Definition 5.1. Eine reelle Zufallsvariable X heißt unendlich teilbar (auch unbegrenzt teilbar), wenn es zu jedem $n \in \mathbb{N}$ unabhängige und identisch verteilte Zufallsvariablen $X_{n,1}, \ldots, X_{n,n}$ gibt mit $X \stackrel{d}{=} X_{n,1} + \cdots + X_{n,n}$.

Analog hei $\beta t \ \mu \in \mathcal{M}_1(\mathbb{R})$ unendlich teilbar, wenn es zu jedem $n \in \mathbb{N}$ ein μ_n gibt mit $\mu = \mu_n * \cdots * \mu_n = \mu_n^{*n}$.

Eine charakteristische Funktion φ eines Wahrscheinlichkeitsmaßes μ auf \mathbb{R} heißt unendlich teilbar, wenn es zu jedem $n \in \mathbb{N}$ eine charakteristische Funktion φ_n eines Wahrscheinlichkeitsmaßes gibt mit $\varphi = \varphi_n^n$.

Beispiel 5.2. i) δ_x ist unendlich teilbar, denn $\delta_x = \delta_{\frac{x}{n}}^n$.

- ii) $\mathbf{N}(\mu, \sigma^2)$ ist unendlich teilbar, denn $\mathbf{N}(\mu, \sigma^2) = \mathbf{N}(\frac{\mu}{n}, \frac{\sigma^2}{n})^{*n}$.
- iii) Die Gammaverteilung $\Gamma(r,\lambda)$ mit Formparameter r und Skalenparameter λ mit Dichte $f(x) = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x} \mathbbm{1}_{(0,\infty)}(x)$ ist unendlich teilbar, denn $\Gamma(r,\lambda) = \Gamma\left(\frac{r}{n},\lambda\right)^{*n}$.
- iv) Die Cauchyverteilung $\mathbf{Cau}(a)$ mit Parameter a und Dichte $f(x) = \frac{1}{a\pi} \frac{1}{1 + \left(\frac{x}{a}\right)^2}$ ist unendlich teilbar, denn $\mathbf{Cau}(a) = \mathbf{Cau}\left(\frac{a}{n}\right)^{*n}$.
- v) $\mathbf{Poi}(\lambda)$ ist unendlich teilbar, denn $\mathbf{Poi}(\lambda) = \mathbf{Poi}\left(\frac{\lambda}{n}\right)^{*n}$.

Beispiel und Definition 5.3. Zu $\nu \in \mathcal{M}_f(\mathbb{R}) \setminus \{0\}$ heißt

$$\mathbf{CPoi}(\nu) = e^{-\nu(\mathbb{R})} \sum_{n=0}^{\infty} \frac{1}{n!} \nu^{*n}$$

mit $\nu^{*0} := \delta_0$ die zusammengesetzte Poisson-Verteilung (engl. compound Poisson distribution) mit Intensitätsmaß ν .

Sind X_1, X_2, \ldots unabhängige und identisch verteilte Zufallsvariablen mit $X_i \sim \tilde{\nu} := \frac{\nu}{\nu(\mathbb{R})}$ für alle $i \in \mathbb{N}$ und ist $N \sim \mathbf{Poi}(\nu(\mathbb{R}))$ unabhängig von X_1, X_2, \ldots , so hat $S := \sum_{j=1}^N X_j$ die Verteilung $\mathbf{CPoi}(\nu)$ und die charakteristische Funktion ist

$$\varphi_{\mathbf{CPoi}(\nu)}(t) = \exp\left(\int_{\mathbb{R}} \left(e^{itx} - 1\right)\nu(\mathrm{d}x)\right).$$

Es gilt $\mathbf{CPoi}(\nu + \nu') = \mathbf{CPoi}(\nu) * \mathbf{CPoi}(\nu')$, insbesondere ist $\mathbf{CPoi}(\nu)$ unendlich teilbar.

Beweis. Sei $A \in \mathcal{B}(\mathbb{R})$. Dann gilt:

$$\mathbf{P}(S \in A) = \sum_{k=0}^{\infty} \mathbf{P}(N = k, S \in A) = \sum_{k=0}^{\infty} \mathbf{P}(N = k, X_1 + \dots + X_k \in A)$$

$$= \sum_{k=0}^{\infty} \mathbf{P}(N = k) \cdot \mathbf{P}(X_1 + \dots + X_k \in A) = \sum_{k=0}^{\infty} e^{-\nu(\mathbb{R})} \frac{\nu(\mathbb{R})^k}{k!} \cdot \tilde{\nu}^{*k}(A)$$

$$= \sum_{k=0}^{\infty} e^{-\nu(\mathbb{R})} \frac{\nu(\mathbb{R})^k}{k!} \cdot \frac{\nu^{*k}(A)}{\nu(\mathbb{R})^k} = \sum_{k=0}^{\infty} e^{-\nu(\mathbb{R})} \frac{1}{k!} \cdot \nu^{*k}(A) = \mathbf{CPoi}(\nu)(A).$$

Für die charakteristische Funktion betrachte

$$\varphi_{\mathbf{CPoi}(\nu)}(t) = \mathbf{E}\left[e^{itS}\right] = \sum_{k=0}^{\infty} \mathbf{E}\left[e^{it(X_1 + \dots + X_k)}\mathbb{1}_{\{N=k\}}\right] = \sum_{k=0}^{\infty} \left(\mathbf{E}\left[e^{itX_1}\right]\right)^k \cdot \mathbf{P}(N=k)$$

$$= \sum_{k=0}^{\infty} e^{-\nu(\mathbb{R})} \frac{\nu(\mathbb{R})^k}{k!} \left(\int_{\mathbb{R}} e^{itx} \tilde{\nu}(\mathrm{d}x)\right)^k = \exp\left(\int_{\mathbb{R}} e^{itx} \nu(\mathrm{d}x) - \nu(\mathbb{R})\right)$$

$$= \exp\left(\int_{\mathbb{R}} \left(e^{itx} - 1\right) \nu(\mathrm{d}x)\right).$$

Satz 5.4. Ein $\mu \in \mathcal{M}_1(\mathbb{R})$ ist genau dann unendlich teilbar, wenn es eine Folge $(\nu_n)_n \subset \mathcal{M}_f(\mathbb{R}) \setminus \{0\}$ gibt mit $\mathbf{CPoi}(\nu_n) \xrightarrow[n \to \infty]{w} \nu$.

Lemma 5.5. Sei $(\varphi_n)_n$ eine Folge von charakteristischen Funktionen von Wahrscheinlichkeitsmaßen. Dann sind äquivalent:

- i) $\varphi(t) = \lim_n \varphi_n^n(t)$ existiert für alle $t \in \mathbb{R}$ und φ ist stetig in 0.
- ii) $\psi(t) = \lim_n n(\varphi_n(t) 1)$ existiert für alle $t \in \mathbb{R}$ und ψ ist stetig in 0.

Dann gilt $\varphi = e^{\psi}$ und φ ist die charakteristische Funktion eines Wahrscheinlichkeitsmaßes.

Beweis. Für alle $z \in \mathbb{C}$ mit $|z-1| < \frac{1}{2}$ gilt mit Taylorentwicklung

$$|\log(z) - (z-1)| \le \frac{|z-1|^2}{2}.$$

Insbesondere gilt für eine Folge $(z_n) \subset \mathbb{C}$:

$$\limsup_{n \to \infty} n|z_n - 1| < \infty \quad \Leftrightarrow \quad \limsup_{n \to \infty} n\log(z_n) < \infty.$$

Sofern einer der Limiten existiert, gilt also

$$\lim_{n \to \infty} n(z_n - 1) = \lim_{n \to \infty} n \log(z_n). \tag{5.1}$$

Zeige $ii) \Rightarrow i$). Wähle $z_n = \varphi_n(t)$, dann folgt mit (5.1), dass $\lim_n \log (\varphi_n^n(t)) = \log (\lim_n \varphi_n^n(t))$ existiert für alle $t \in \mathbb{R}$.

Zeige nun i) $\Rightarrow ii$). Wir nehmen zunächst an, dass $\varphi(t) \neq 0$ für alle $t \in \mathbb{R}$ gilt. Dann können wir (den komplexen) $\log(\cdot)$ auf die Voraussetzung $\varphi(t) = \lim_n \varphi_n^n(t)$ anwenden (wir verwenden für gegebenes t einen Zweig, der in einer Umgebung von $\varphi(t) \neq 0$ analytisch ist) und erhalten mit $z_n = \varphi_n(t)$ aus (5.1) die Behauptung ii).

Offensichtlich gilt die Beziehung $\varphi(t) = e^{\psi(t)}$.

Um $\varphi(t) \neq 0$ sicherzustellen, zeigen wir, dass ein $\gamma > 0$ existiert mit

$$|\varphi(t)| \ge \frac{1}{2}e^{-\gamma t^2}$$
 für jedes $t \in \mathbb{R}$. (5.2)

Nach Satz 3.32 (Lévys Stetigkeitssatz) ist φ die charakteristische Funktion eines Wahrscheinlichkeitsmaßes. Ebenso sind auch $|\varphi|^2 = \varphi \overline{\varphi}$ und $|\varphi_n|^2$ charakteristische Funktionen von Wahrscheinlichkeitsmaßen, daher gilt $|\varphi_n(t)|^{2n} \to |\varphi(t)|^2$ lokal gleichmäßig nach Satz 3.32. Es existiert ein $\varepsilon > 0$ mit $\inf_{|t| \le \varepsilon} |\varphi(t)| > \frac{1}{2}$, denn $\varphi(0) = 1$ und φ ist stetig. Es gilt also

$$\limsup_{n\to\infty} \sup_{|t|\leq \varepsilon} n\left(1-|\varphi_n(t)|^2\right) < \infty.$$

Nach Lemma 3.26 v) gilt für jede charakteristische Funktion $\tilde{\varphi}$ eines Wahrscheinlichkeitsmaßes

$$0 \le 1 - \operatorname{Re} \tilde{\varphi}(2t) \le 4(1 - \operatorname{Re} \tilde{\varphi}(t)).$$

Damit gilt also auch $\sup_n n(1-|\varphi_n(2t)|^2) < \infty$ und

$$|\varphi(2t)|^2 \ge \liminf_{n\to\infty} \exp\left(4n(|\varphi_n(t)|^2 - 1)\right) = \left(|\varphi(t)|^2\right)^4.$$

Also ist $|\varphi(t)| > \frac{1}{2}$ für $|t| \le \varepsilon$, $|\varphi(t)| > \left(\frac{1}{2}\right)^4$ für $|t| \le 2\varepsilon$, ..., $|\varphi(t)| > \left(\frac{1}{2}\right)^{4^k}$ für $|t| \le 2^k \varepsilon$, d.h.

$$|\varphi(t)| \ge \frac{1}{2} \mathbb{1}(|t| \le \varepsilon) + \sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^{4^k} \mathbb{1}(\varepsilon 2^{k-1} < |t| \le \varepsilon 2^k)$$

und man zeigt leicht, dass dies (5.2) impliziert.

Korollar 5.6. i) Unter den Voraussetzungen von Lemma 5.5 ist $\varphi^r = e^{r\psi}$ für jedes r > 0 die charakteristische Funktion eines Wahrscheinlichkeitsmaßes. Insbesondere ist $\varphi = \left(\varphi^{\frac{1}{n}}\right)^n$ unendlich teilbar.

- ii) Sei $\varphi: \mathbb{R} \to \mathbb{C}$ stetig in 0. Dann ist φ genau dann die charakteristische Funktion eines Wahrscheinlichkeitsmaßes und unendlich teilbar, wenn es eine Folge $(\varphi_n)_n$ von charakteristischen Funktionen von Wahrscheinlichkeitsmaßen gibt mit $\varphi_n^n(t) \to \varphi(t)$ für alle $t \in \mathbb{R}$.
- iii) Sei $(\mu_n)_n \subset \mathcal{M}_1(\mathbb{R})$, μ_n unendlich teilbar und $\mu_n \xrightarrow[n \to \infty]{w} \mu$. Dann ist auch μ unendlich teilbar.
- Beweis. i) Sei φ_n wie in Lemma 5.5 und μ_n mit $\varphi_{\mu_n} = \varphi_n$. Es ist $e^{rn(\varphi_n-1)}$ die charakteristische Funktion von $\mathbf{CPoi}(rn\mu_n)$, also ist $\varphi^r = \left(\lim_{n\to\infty} e^{n(\varphi_n-1)}\right)^r = e^{r\psi}$.
- ii) Sei φ die charakteristische Funktion eines Wahrscheinlichkeitsmaßes und unendlich teilbar. Setze $\varphi_n = \varphi^{\frac{1}{n}}$. Dann gilt $\varphi_n^n(t) = \varphi(t) \to \varphi(t)$ für alle $t \in \mathbb{R}$. Die Rückrichtung folgt aus Lemma 5.5.
- iii) Sei μ_n unendlich teilbar, d.h. es gibt eine Folge $(\nu_n)_n$ mit $\mu_n = \nu_n^{*n}$. Sei φ_n die zugehörige charakteristische Funktion von ν_n und φ die charakteristische Funktion von μ . Es gilt $\nu_n^{*n} = \mu_n \to \mu$ und somit auch $\varphi_n^n \to \varphi$. Also ist μ unendlich teilbar nach ii).

Beweis von Satz 5.4. Sei zunächst $(\nu_n) \subset \mathcal{M}_f(\mathbb{R})$ mit $\mathbf{CPoi}(\nu_n) \xrightarrow{\mathrm{w}} \mu$. Jedes $\mathbf{CPoi}(\nu_n)$ ist unendlich teilbar, also ist auch μ unendlich teilbar nach Korollar 5.6 iii).

Sei nun $\mu \in \mathcal{M}_1(\mathbb{R})$ unendlich teilbar, $\mu = \mu_n^{*n}$ für $n \in \mathbb{N}$. Sei $\varphi_n = \varphi_{\mu_n}$ und $\varphi = \varphi_{\mu}$. Es ist $e^{n(\varphi_n - 1)} = \varphi_{\mathbf{CPoi}(n\mu_n)}$ und $e^{n(\varphi_n(t) - 1)} \xrightarrow[n \to \infty]{} \varphi(t)$, also gilt $\mathbf{CPoi}(n\mu_n) \xrightarrow{\mathrm{W}} \mu$.

Bemerkung 5.7. Sei $\nu \in \mathcal{M}_f(\mathbb{R})$ mit $\int_{\mathbb{R}} x^2 \nu(\mathrm{d}x) < \infty$ und $X \sim \mathbf{CPoi}(\nu)$. Dann ist

$$\mathbf{E}[X] = \int_{\mathbb{R}} x \, \nu(\mathrm{d}x) \quad \text{und} \quad \mathbf{Var}[X] = \int_{\mathbb{R}} x^2 \, \nu(\mathrm{d}x).$$

Beweis. Es gilt für die Ableitungen von $\varphi_X(t) = \exp\left(\int_{\mathbb{R}} e^{itx} - 1\nu(\mathrm{d}x)\right)$:

$$\varphi_X'(t) = \int_{\mathbb{R}} ix e^{itx} \nu(\mathrm{d}x) \cdot \varphi_X(t),$$

$$\varphi_X''(t) = \int_{\mathbb{R}} -x^2 e^{itx} \, \nu(\mathrm{d}x) \cdot \varphi_X(t) + \left(\int_{\mathbb{R}} ix e^{itx} \, \nu(\mathrm{d}x) \right)^2.$$

Also gilt

$$\mathbf{E}[X] = -i\varphi_X'(0) = \int_{\mathbb{R}} x \, \nu(\mathrm{d}x),$$

$$\mathbf{Var}[X] = \mathbf{E}[X^2] - \mathbf{E}[X]^2 = -\varphi_X''(0) - \left(\int_{\mathbb{R}} x \, \nu(\mathrm{d}x)\right)^2 = \int_{\mathbb{R}} x^2 \, \nu(\mathrm{d}x).$$

Beobachtung 5.8. Sei $b \in \mathbb{R}$, $\sigma^2 \ge 0$ und $\nu_k \in \mathcal{M}_f(\mathbb{R})$ mit

$$\operatorname{supp}(\nu_k) \subset \left(-\frac{1}{k}, -\frac{1}{k+1}\right] \cup \left[\frac{1}{k+1}, \frac{1}{k}\right) =: I_k, \quad k = 0, 1, 2, \dots$$

wobei $\frac{1}{0} := \infty$. Sei weiter

$$\alpha_k \coloneqq \int x \, \nu_k(\mathrm{d}x), \quad k = 1, 2, \dots$$

und $Z \sim \mathbb{N}(0,1), \ X_k \sim \mathbf{CPoi}(\nu_k), \ k=0,1,2,\ldots$ seien unabhängig. Sei

$$X \coloneqq b + \sigma Z + \sum_{k=1}^{\infty} (X_k - \alpha_k).$$

Sofern $M_n := \sum_{k=1}^n (X_k - \alpha_k)$ f.s. konvergiert, ist X unendlich teilbar (nach Korollar 5.6, iii), denn alle "Bauteile" sind unendlich teilbar). Ist

$$\sum_{k=1}^{\infty} \mathbf{Var}[X_k] = \sum_{k=1}^{\infty} \int x^2 \nu_k(\mathrm{d}x) < \infty$$

dann existiert $\lim_{n\to\infty} M_n$, denn $(M_n)_n$ ist ein Martingal mit

$$\sup_{n\in\mathbb{N}}\mathbf{E}\left[M_n^2\right] = \sum_{k=1}^{\infty}\mathbf{Var}[X_k] = \sum_{k=1}^{\infty}\int x^2\nu_k(\mathrm{d}x) < \infty.$$

Demnach: Wenn $\nu = \sum_{k=0}^{\infty} \nu_k$ die Bedingung

$$\int (x^2 \wedge 1) \, \nu(\mathrm{d}x) < \infty$$

erfüllt, so ist X eine unendlich teilbare Zufallsvariable und ihre charakteristische Funktion ist

$$\log (\varphi_X(t)) = \log \left(\mathbf{E} \left[e^{itb} \right] \right) + \log \left(\mathbf{E} \left[e^{it\sigma Z} \right] \right) + \log \left(\mathbf{E} \left[e^{itX_0} \right] \right) + \sum_{k=1}^{\infty} \log \left(\mathbf{E} \left[e^{it(X_k - \alpha_k)} \right] \right)$$

$$= itb - \frac{1}{2}\sigma^2 t^2 + \int \left(e^{itx} - 1 \right) \nu_0(\mathrm{d}x) + \sum_{k=1}^{\infty} \int \left(e^{itx} - 1 - itx \right) \nu_k(\mathrm{d}x)$$

$$= itb - \frac{1}{2}\sigma^2 t^2 + \int \left(e^{itx} - 1 - \mathbb{1}_{\{|x| < 1\}}(x) \cdot itx \right) \nu(\mathrm{d}x).$$

Definition 5.9. Ein σ -endliches Maß ν auf \mathbb{R} mit $\nu(\{0\}) = 0$ und $\int (x^2 \wedge 1) \nu(dx) < \infty$ heißt kanonisches Maß. (b, σ^2, ν) mit $b \in \mathbb{R}$, $\sigma^2 \in [0, \infty)$ und einem kanonischen Maß ν heißt kanonisches Tripel.

Satz 5.10 (Lévy-Khinchin-Formel). Sei $\mu \in \mathcal{M}_1(\mathbb{R})$ und $\psi(t) = \log \int e^{itx} \mu(dx)$. μ ist genau dann unendlich teilbar, wenn es ein kanonisches Tripel (b, σ^2, ν) gibt mit

$$\psi(t) = itb - \frac{1}{2}\sigma^2 t^2 + \int \left(e^{itx} - 1 - \mathbb{1}_{\{|x|<1\}}(x) \cdot itx\right) \nu(dx). \tag{5.3}$$

Das kanonische Tripel ist dabei eindeutig festgelegt.

Beweis. Sei zunächst ein solches kanonisches Tripel (b, σ^2, ν) gegeben, sodass (5.3) gilt. Dann folgt aus Beobachtung 5.8, dass μ unendlich teilbar ist. Zeige nun, dass ψ das kanonische Tripel festlegt. Sei $g_t(x) := e^{itx} - 1 - \mathbb{1}_{\{|x|<1\}}(x) \cdot itx$. Dann ist $\frac{g_t(x)}{t^2(x^2 \wedge 1)}$ gleichmäßig in x und $t \geq 1$ beschränkt und es gilt

$$\frac{g_t(x)}{t^2(x^2 \wedge 1)} \xrightarrow[t \to \infty]{} 0.$$

Damit folgt mit dominierter Konvergenz:

$$\lim_{t \to \infty} \frac{\psi(t)}{t^2} = 0 - \frac{1}{2}\sigma^2 + \lim_{t \to \infty} \int \frac{g_t(x)}{t^2(x^2 \wedge 1)} (x^2 \wedge 1) \nu(\mathrm{d}x) = -\frac{1}{2}\sigma^2.$$

Also ist σ^2 festgelegt. Sei nun ohne Einschränkung $\sigma^2 = 0$, ansonsten betrachte $\tilde{\psi}(t) = \psi(t) + \frac{1}{2}\sigma^2 t$. Sei

$$h(x) = \begin{cases} 1 - \frac{\sin x}{x} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

Dann gilt:

$$\overline{\psi}(t) \coloneqq \psi(t) - \frac{1}{2} \int_{t-1}^{t+1} \psi(s) \mathrm{d}s = \int e^{itx} \left(1 - \frac{1}{2} \int_{-1}^{1} e^{isx} \mathrm{d}s \right) \nu(\mathrm{d}x) = \int e^{itx} h(x) \nu(\mathrm{d}x)$$

Demnach ist also $\overline{\psi}$ die charakteristische Funktion zu $\overline{\nu} \coloneqq h\nu$. Es sind also $\overline{\nu}$ und ν durch ψ festgelegt und damit auch b.

Sei nun umgekehrt μ unendlich teilbar und $\psi = \log \varphi_{\mu}$. Dann ist $\operatorname{Re}(\psi) \leq 0$ und $t \mapsto \operatorname{Im}(\psi(t))$ ist ungerade. Daher ist $\overline{\psi}(0)$ reell und $\overline{\psi}(0) \geq 0$. Angenommen $\overline{\psi}(0) = 0$, dann wäre $\mu = \delta_b$ für ein $b \in \mathbb{R}$, denn dann ist $\operatorname{Re}(\psi(t)) = 0$ für alle $t \in [-1,1]$, also $|\varphi_{\mu}(t)| = 1$ für alle $t \in [-1,1]$ und damit (falls μ nicht trivial) $|\int e^{itx} \mu(\mathrm{d}x)| < \int |e^{itx}| \mu(\mathrm{d}x) = 1$ (denn eine nicht-triviale Konvexkombination von komplexen Zahlen vom Betrag 1 liegt strikt im Inneren des Einheitskreises), ein Widerspruch. Also ist $\overline{\psi}(0) > 0$. Wähle gemäß Satz 5.4

 $(\nu_n)_n \subset \mathcal{M}_1(\mathbb{R} \setminus \{0\}) \text{ mit } \mathbf{CPoi}(\nu_n) \xrightarrow{\mathbf{w}} \mu. \text{ Sei}$

$$b_n \coloneqq \int x \cdot \mathbb{1}_{\{|x| < 1\}}(x) \, \nu_n(\mathrm{d}x),$$

$$\psi_n(t) = \log \varphi_{\mathbf{CPoi}(\nu_n)}(t) = \int \left(e^{itx} - 1\right) \, \nu_n(\mathrm{d}x) = \int g_t \mathrm{d}\nu_n + itb_n,$$

$$\overline{\psi}_n(t) = \psi_n(t) - \frac{1}{2} \int_{t-1}^{t+1} \psi_n(s) \mathrm{d}s = \int e^{itx} h(x) \, \nu_n(\mathrm{d}x).$$

Dann gilt nach Satz 3.32 $\psi_n \to \psi$ lokal gleichmäßig und ψ ist stetig, also gilt $\overline{\psi}_n(t) \to \overline{\psi}(t)$ für alle $t \in \mathbb{R}$. Für n genügend groß ist $\overline{\psi}_n(0) > 0$ und somit $\tilde{\nu}_n(\mathrm{d}x) = \frac{1}{\overline{\psi}_n(0)} h(x) \nu_n(\mathrm{d}x) \in \mathcal{M}_1(\mathbb{R})$ und $\int e^{itx} \tilde{\nu}_n(\mathrm{d}x) \xrightarrow[n \to \infty]{} \frac{\overline{\psi}(t)}{\overline{\psi}(0)}$ ist die charakteristische Funktion eines Wahrscheinlichkeitsmaßes. Es gibt also ein $\tilde{\nu} \in \mathcal{M}_1(\mathbb{R})$ mit $\tilde{\nu}_n \xrightarrow[m]{} \tilde{\nu}$ und $\overline{\psi}(t) = \overline{\psi}(0) \int e^{itx} \tilde{\nu}(\mathrm{d}x)$. Sei $\sigma^2 := 6\overline{\psi}(0)\tilde{\nu}(\{0\}), \ \nu(\mathrm{d}x) := \frac{\overline{\psi}(0)}{h(x)} \cdot \mathbb{1}_{\{x \neq 0\}}(x)\tilde{\nu}(\mathrm{d}x)$ (dies ist ein kanonisches Maß). Sei weiter

$$f_t : \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} \frac{g_t(x)}{h(x)} &, x \neq 0 \\ -3t^2 &, x = 0 \end{cases}$$

 f_t ist stetig und beschränkt, daher gilt

$$\int f_t d\tilde{\nu}_n \xrightarrow[n \to \infty]{} \int f_t d\tilde{\nu} = \frac{1}{\overline{\psi}(0)} \left(-\frac{1}{2} \sigma^2 t^2 + \int g_t d\nu \right)$$

und damit

$$\psi(t) = \lim_{n \to \infty} \psi_n(t) = \lim_{n \to \infty} \left(\overline{\psi}_n(0) \int f_t d\tilde{\nu}_n + itb_n \right) = -\frac{1}{2} \sigma^2 t^2 + \int g_t d\nu + \lim_{n \to \infty} itb_n.$$

Also existiert $b := \lim_{n \to \infty} b_n$ und es gilt

$$\psi(t) = itb - \frac{1}{2}\sigma^2 t^2 + \int g_t d\nu.$$

Bemerkung 5.11 (Uneindeutigkeit des komplexen Logarithmus). Bekanntlich gilt $\exp(z) = \exp(z + 2\pi i)$ für alle $z \in \mathbb{C}$. Ist $z = re^{i\alpha}$, so kann der Logarithmus durch $\log(z) \coloneqq \log(r) + i\alpha$ als stetige Funkion auf jeder geschlitzten Ebene definiert werden, es gibt aber keine auf ganz $\mathbb{C} \setminus \{0\}$ stetige Version.

Andererseits ist in der Situation von Satz 5.10 die Abbildung $\mathbb{R} \ni t \mapsto \varphi(t) := \int e^{itx} \mu(\mathrm{d}x) \in$

 $\mathbb{C} \setminus \{0\}$ (natürlich) stetig, und $\psi(t)$ ist eine stetige Version von $\log \varphi(t)$.

Beispiel 5.12. Ist $X \sim \mathbf{N}(1, \sigma^2)$, so ist $\varphi_X(t) = \exp(it - \frac{1}{2}\sigma^2 t)$.

Bemerkung 5.13. Anstelle der Abschneidefunktion $x \cdot \mathbbm{1}_{\{|x|<1\}}$ in (5.3) kann prinzipiell jede Funktion \tilde{f} mit $\tilde{f}(x) \sim x$ für $x \to 0$ und $\int |\tilde{f}(x) - x \cdot \mathbbm{1}_{\{|x|<1\}}|\nu(\mathrm{d}x) < \infty$ gewählt werden. In der Literatur üblich sind auch $\tilde{f}(x) = \sin(x)$ (vgl. Taylorentwicklung von $\sin(x)$ ist x) oder $\tilde{f}(x) = \frac{x}{1+x^2}$. In der Lévy-Khinchin-Formel ändert sich dann b zu $\tilde{b} = b + \int \tilde{f}(x) - x \cdot \mathbbm{1}_{\{|x|<1\}} \nu(\mathrm{d}x)$.

Beispiel 5.14. $\mathbf{N}(\mu, \sigma^2)$ hat das kanonische Tripel $(\mu, \sigma^2, 0)$.

Beobachtung 5.15. Sei μ ein unendlich teilbares Wahrscheinlichkeitsmaß auf \mathbb{R} . Dann ist $\nu := \mathbf{v} - \lim_{n \to \infty} n \mu^{\frac{1}{n}} \mid_{\mathbb{R} \setminus \{0\}}$.

Beispiel 5.16. Sei a > 0. Cau(a) hat Dichte $f(x) = \frac{1}{a\pi} \frac{1}{1 + (\frac{x}{a})^2}$ und charakteristische Funktion $\varphi_{\nu}(t) = e^{-a|t|}$. Sei $A \subset \mathbb{R} \setminus (-\varepsilon, \varepsilon)$ und betrachte a = 1:

$$n\mathbf{Cau}\left(\frac{1}{n}\right)(A) = \frac{1}{\pi} \int_{A} \frac{n^2}{1 + n^2 x^2} dx \xrightarrow[n \to \infty]{} \frac{1}{\pi} \int_{A} \frac{1}{x^2} dx.$$

Folglich ist $\nu = \mathbbm{1}_{\{x \neq 0\}} \frac{1}{x^2} \mathrm{d}x$, $\sigma^2 = \lim_{t \to \infty} \frac{1}{t^2} \log \varphi_{\mathbf{Cau}(1)}(t) = 0$ und b = 0 aus Symmetrie.

5.1 Ein Bericht über stabile Verteilungen

Beispiel 5.17. Sei $\alpha \in (0,2)$ und $\nu_{\alpha}(\mathrm{d}x) \coloneqq \frac{1}{\theta_{\alpha}} \mathbbm{1}_{\{x\neq 0\}} |x|^{-\alpha-1} \mathrm{d}x$ mit

$$\theta_{\alpha} \coloneqq \int (1 - \cos(x))|x|^{-\alpha - 1} dx = \begin{cases} -2\Gamma(-\alpha)\cos(\frac{\alpha\pi}{2}) &, \alpha \neq 1\\ \pi &, \alpha = 1 \end{cases}$$

 ν_{α} ist ein kanonisches Maß (vgl. [Fel71, S. 568-569]). Sei μ_{α} die unendlich teilbare Verteilung mit kanonischem Tripel $(0,0,\nu_{\alpha})$. μ_{α} heißt (standard-) symmetrisch stabile Verteilung von Index α . Es gilt

$$\psi_{\mu_{\alpha}}(t) = \log \varphi_{\mu_{\alpha}}(t) = \int_{\mathbb{R} \setminus \{0\}} \left(e^{itx} - 1 - itx \mathbb{1}_{\{|x| < 1\}} \right) \frac{1}{\theta_{\alpha}|x|^{\alpha + 1}} \mathrm{d}x.$$

Der Imaginärteil des Integranden ist aus Symmetriegründen 0, daher folgt

$$\psi_{\mu_{\alpha}}(t) = \int_{\mathbb{R} \setminus \{0\}} \left(e^{itx} - 1 - itx \mathbb{1}_{\{|x| < 1\}} \right) \frac{1}{\theta_{\alpha} |x|^{\alpha+1}} dx$$

$$= -\frac{1}{\theta_{\alpha}} \int_{\mathbb{R} \setminus \{0\}} \left(1 - \cos(tx) \right) |x|^{-\alpha-1} dx$$

$$= -\frac{1}{\theta_{\alpha}} \int_{\mathbb{R} \setminus \{0\}} \left(1 - \cos(y) \right) |y|^{-\alpha-1} |t|^{\alpha+1} \frac{1}{|t|} dy$$

$$= -|t|^{\alpha}.$$

Insbesondere gilt also: Sind $X_1, \ldots, X_n \sim \mu_{\alpha}$ unabhängig, so ist $\frac{X_1 + \cdots + X_n}{n^{\frac{1}{\alpha}}} \stackrel{d}{=} X_1$, denn $\left(\varphi_{\mu_{\alpha}}\left(\frac{t}{n^{1/\alpha}}\right)\right)^n = \left(e^{-\frac{|t|^{\alpha}}{n}}\right)^n = \varphi_{\mu_{\alpha}}(t)$.

Definition 5.18. Sei $\mu \in \mathcal{M}_1(\mathbb{R})$ und seien $X_1, \ldots, X_n \sim \mu$ unabhängig. μ hei βt (strikt) stabil mit Index $\alpha \in (0, 2)$, wenn

$$\frac{X_1 + \dots + X_n}{n^{\frac{1}{\alpha}}} \stackrel{d}{=} X_1.$$

 μ $hei\beta t$ stabil (auch im weiteren Sinne stabil), falls es $b_n \in \mathbb{R}$ gibt, sodass

$$\frac{X_1 + \dots + X_n - b_n}{n^{\frac{1}{\alpha}}} \stackrel{d}{=} X_1.$$

Beobachtung 5.19. Sei X unendlich teilbar mit kanonischem Tripel (b, σ^2, ν) und sei a > 0. Dann gilt:

$$\log \varphi_{aX}(t) = \log \varphi_{X}(at) = ibat - \frac{1}{2}\sigma^{2}a^{2}t^{2} + \int e^{itax} - 1 - \mathbb{1}_{\{|x|<1\}} \nu(\mathrm{d}x)$$

$$= ibat - \frac{1}{2}\sigma^{2}a^{2}t^{2} + \int e^{itax} - 1 - \mathbb{1}_{\{|ax|<1\}} \nu(\mathrm{d}x) + it \int ax \left(\mathbb{1}_{\{|ax|<1\}} - \mathbb{1}_{\{|x|<1\}}\right) \nu(\mathrm{d}x).$$

Also hat aX das kanonische Tripel

$$\left(ab + a \int x \left(\mathbb{1}_{\{|ax|<1\}} - \mathbb{1}_{\{|x|<1\}} \right) \nu(\mathrm{d}x), \ \sigma^2 a^2, \ \nu \circ f_a^{-1} \right)$$

 $mit f_a(x) = ax.$

Satz 5.20. X ist genau dann stabil mit Index $\alpha \in (0,2)$, wenn es $b \in \mathbb{R}$ und $c_+, c_- \ge 0$ gibt,

sodass X das kanonische Tripel $(b, 0, \nu)$ besitzt mit

$$\nu(dx) = c_{-} \mathbb{1}_{\{x<0\}} |x|^{-\alpha-1} dx + c_{+} \mathbb{1}_{\{x>0\}} |x|^{-\alpha-1} dx.$$
 (5.4)

Bericht 5.21. Die stabilen X aus Satz 5.20 haben

$$\log \varphi_X(t) = \begin{cases} ict - d|t|^{\alpha} \left(1 + i\theta \operatorname{sgn}(t) \tan\left(\alpha \frac{\pi}{2}\right)\right) &, \alpha \neq 1 \\ ict - d|t| \left(1 + \theta \operatorname{sgn}(t) \frac{2}{\pi} \log(|t|)\right) &, \alpha = 1 \end{cases}$$

mit $c \in \mathbb{R}$, d > 0, $\theta = \frac{c_+ - c_-}{c_+ + c_-} \in [-1, 1]$ (vgl. [Bre68, Theorem 9.32]).

Bericht 5.22. Ist X stabil mit Index α , so ist

$$\mathbf{E}[|X|^{\beta}] \begin{cases} < \infty &, 0 \le \beta < \alpha \\ \infty &, \beta \ge \alpha \end{cases}$$

Bericht 5.23 (Stabile Analoga zum Zentralen Grenzwertsatz). Seien X_1, X_2, \ldots unabhängige, identisch verteilte, reelle Zufallsvariablen mit Verteilungsfunktion F.

i) Gibt es Konstanten a_n, b_n , für die

$$\frac{X_1 + \dots + X_n - b_n}{a_n} \xrightarrow[n \to \infty]{d} Y \tag{5.5}$$

gilt, so ist Y stabil.

ii) Genau dann existieren $(a_n)_n$ und $(b_n)_n$ mit (5.5), sodass Y stabil ist mit Index $\alpha \in (0,2)$, wenn es $c_+, c_- \ge 0$ gibt mit $c_+ + c_- > 0$ und

a)
$$\lim_{x \to \infty} \frac{F(-x)}{1 - F(x)} = \frac{c_{-}}{c_{+}}$$
.

b) Falls $c_{+} > 0$, so gilt für alle $\xi > 0$: $\lim_{x \to \infty} \frac{\mathbf{P}(X > \xi x)}{\mathbf{P}(X > x)} = \frac{1}{\xi^{\alpha}}$, und falls $c_{-} > 0$, so gilt für alle $\xi > 0$: $\lim_{x \to \infty} \frac{\mathbf{P}(X < -\xi x)}{\mathbf{P}(X < -x)} = \frac{1}{\xi^{\alpha}}$.

Bemerkung 5.24. Das Paradebeispiel dazu ist eine Zufallsvariable X mit Dichte

$$f(x) = c_1 \mathbb{1}_{\{x \ge 0\}} x^{-\alpha - 1} + c_2 \mathbb{1}_{\{x < 0\}} (-x)^{-\alpha - 1}.$$

6 Markovprozesse

6.1 Grundlegendes: Stochastische Kerne, projektive Familien

Definition 6.1. Seien (S_1, A_1) und (S_2, A_2) messbare Räume. $\kappa: S_1 \times A_2 \to [0, 1]$ hei βt stochastischer Kern (auch Markov-Kern) (von (S_1, A_1) nach (S_2, A_2)), falls gilt

- i) Für alle $A_2 \in A_2$ gilt: $S_1 \ni x \mapsto \kappa(x, A_2)$ ist $(A_1 \mathcal{B}(\mathbb{R}))$ -messbar.
- ii) Für alle $x \in S_1$ gilt: $\kappa(x, \cdot) \in \mathcal{M}_1(S_2)$.

 κ heißt substochastisch, wenn in ii) gefordert wird, dass $\kappa(x,\cdot) \in \mathcal{M}_{\leq 1}(S_2)$.

Beispiel 6.2. i) Sei $S_1 = S_2 = S$ höchstens abzählbar, $\mathcal{A}_1 = \mathcal{A}_2 = 2^S$ und $(p_{xy})_{x,y \in S}$ eine stochastische Matrix. Dann ist $\kappa(x,A) := \sum_{y \in A} p_{xy}$ ein stochastischer Kern von S nach S.

ii) Sei $S_1 = S_2 = \mathbb{R}$, $\mathcal{A}_1 = \mathcal{A}_2 = \mathcal{B}(\mathbb{R})$ und $\nu \in \mathcal{M}_1(\mathbb{R})$. Dann ist $\kappa(x, A) := (\delta_x * \nu)(A) = \nu(A - x)$ ein stochastischer Kern.

(Interpretation: $\kappa(x,\cdot)$ beschreibt einen zufälligen Sprung gemäß ν von x aus.)

Erinnerung 6.3 (Produkt σ -Algebra). Seien (S_i, \mathcal{A}_i) , $i \in I$ messbare Räume und sei $S = \bigotimes_{i \in I} S_i$. Dann ist $\mathcal{A} := \bigotimes_{i \in I} \mathcal{A}_i$ die kleinste σ -Algebra, bezüglich der alle kanonischen Projektionen $\pi_i : S \to S_i$ messbar sind.

Bemerkung und Definition 6.4. i) Seien (S_i, \mathcal{A}_i) , i = 0, 1, 2 messbare Räume, κ_1 ein stochastischer Kern von S_0 nach S_1 und κ_2 ein stochastischer Kern von $S_0 \times S_1$ nach S_2 . Dann ist

$$\kappa_1 \otimes \kappa_2 : S_2 \times (\mathcal{A}_1 \otimes \mathcal{A}_2) \to [0, 1]$$

$$(x_0, A) \mapsto \int_{S_1} \int_{S_2} \mathbb{1}_A(x_1, x_2) \, \kappa_2((x_0, x_1), dx_2) \, \kappa_1(x_0, dx_1)$$

ein stochastischer Kern von S_0 nach $S_1 \times S_2$ ("Produkt von κ_1 und κ_2 ").

ii) Seien (S_i, \mathcal{A}_i) , i = 0, 1, 2 messbare Räume, κ_1 ein stochastischer Kern von S_0 nach S_1

und κ_2 ein stochastischer Kern von S_1 nach S_2 . Dann ist

$$\kappa_1 \circ \kappa_2 : S_0 \times \mathcal{A}_2 \to [0, 1]$$

$$(x, A) \mapsto \int_{S_1} \kappa_2(y, A) \, \kappa_1(x, \mathrm{d}y)$$

ein stochastischer Kern von S_0 nach S_2 ("Verkettung von κ_1 und κ_2 ").

Definition 6.5. Ein messbarer Raum (S, A) heißt Borel-Raum (oder auch Standard-Borel-Raum), wenn es ein $B \in \mathcal{B}(\mathbb{R})$ und eine Bijektion $\varphi: S \to B$ gibt, sodass φ und φ^{-1} messbar sind.

Satz 6.6. Jeder polnische Raum (ausgestattet mit seiner Borel- σ -Algebra) ist ein Borel-Raum.

Beweisskizze. Betrachte zunächst $[0,1]^{\infty}$ mit Metrik $d((x_i),(y_i)) := \sum_{i=1}^{\infty} 2^{-i}|x_i - y_i|$. Für $x = (x_1, x_2, \dots) \in [0,1]^{\infty}$ sei $x_i = \sum_{j=1}^{\infty} 2^{-j} x_{i,j}$ mit $x_{i,j} \in \{0,1\}$ die Binärdarstellung. Sei $(a(n),b(n))_{n\in\mathbb{N}}$ eine Aufzählung von \mathbb{N}^2 und sei

$$\psi(x) \coloneqq \sum_{n=1}^{\infty} 2^{-n} x_{a(n),b(n)}.$$

 ψ ist bijektiv und messbar, denn $y \mapsto k$ -te Ziffer der Binärentwicklung ist messbar. Also ist $[0,1]^{\infty}$ ein Borel-Raum (vgl. [Dep14, Satz 3.30]).

Zeige nun: Ist E ein polnischer Raum, so gibt es ein messbares $S \subset [0,1]^{\infty}$ und eine bi-messbare Bijektion $\varphi: E \to S$. Sei dazu x_1, x_2, \ldots eine dichte Folge in E und definiere $\varphi(x) := (d(x, x_1) \land 1, \ d(x, x_2) \land 1, \ldots) \in [0, 1]^{\infty}$. Zeige, dass $y_n \xrightarrow[n \to \infty]{} y$ in E genau dann, wenn $d(y_n, x_m) \land 1 \xrightarrow[n \to \infty]{} d(y, x_m) \land 1$ für alle $m \in \mathbb{N}$ gilt. Sei dazu zunächst $y_n \to y$. Für alle $m \in \mathbb{N}$ ist $d(\cdot, x_m)$ stetig, also gilt $d(y_n, x_m) \land 1 \to d(y, x_m) \land 1$ für alle $m \in \mathbb{N}$. Sei umgekehrt $d(y_n, x_m) \land 1 \to d(y, x_m) \land 1$ für alle $m \in \mathbb{N}$. Es gilt $d(y_n, y) \land 1 \le (d(y_n, x_m) \land 1) + (d(y, x_m) \land 1)$, also ist $\lim \sup_{n \to \infty} (d(y_n, y) \land 1) \le 2(d(y, x_m) \land 1)$. Wähle nun eine Folge $x_{m_k} \to y$ und erhalte $\lim_{n \to \infty} d(y_n, y) = 0$. Demnach ist also φ stetig und injektiv und $\varphi^{-1}: \varphi(E) \to E$ ist stetig.

Zeige weiter: $S := \varphi(E) \subset [0,1]^{\infty}$ ist messbar. Sei dazu

$$U_n := \left\{ (x_i) \in \overline{S} \mid \exists \ V \subset [0,1]^{\infty} \text{ offen, } x \in V \text{ und } \operatorname{diam}(\varphi^{-1}(V \cap S)) < \frac{1}{n} \right\}.$$

Es ist $S \subset U_n$, denn φ^{-1} ist stetig auf S, und U_n ist relativ offen in \overline{S} . Zeige $\bigcap_n U_n \subset S$. Sei $x \in \bigcap_n U_n \subset \overline{S}$. Zu $n \in \mathbb{N}$ wähle $V_n \subset [0,1]^{\infty}$ offen mit $x_n \in V_n \subset V_{n-1}$ und diam $(\varphi^{-1}(V \cap S)) < \frac{1}{n}$ sowie $x'_n \in V_n \cap S$ mit $x'_n \to x$. $y'_n := \varphi^{-1}(x'_n)$ ist eine Cauchyfolge in E. Da E vollständig ist,

existiert ein $y \in E$ mit $y'_n \to y$. Es gilt:

$$\varphi(y) = \lim_{n \to \infty} \varphi(\varphi^{-1}(x_n')) = \lim_{n \to \infty} x_n' = x,$$

also ist $x \in S = \varphi(E)$. Damit ist $S = \bigcap_n U_n$ messbar, denn U_n ist relativ offen in \overline{S} und damit messbar (vgl. [Wil00, Ch. II.82], [Bre68, Appendix 7]).

Satz 6.7 (Existenz einer regulären Version der bedingten Wahrscheinlichkeiten für Borel-Wertebereiche). Sei $(\Omega, \mathcal{F}, \mathbf{P})$ ein Wahrscheinlichkeitsraum, $\mathcal{G} \subset \mathcal{F}$ eine Teil- σ -Algebra und X eine Zufallsvariable mit Werten im Borel-Raum (S, \mathcal{A}) . Dann gibt es einen stochastischen Kern κ von (Ω, \mathcal{G}) nach (S, \mathcal{A}) mit

$$\kappa(\omega, B) = \mathbf{E} [\mathbb{1}_B(X) | \mathcal{G}](\omega) \quad \mathbf{P} - f.s.$$

 $f\ddot{u}r \ jedes \ B \in \mathcal{A}.$

Beweis. Sei ohne Einschränkung $S \subset \mathbb{R}$ Borel-messbar, ansonsten $\varphi: S \to S' \subset \mathbb{R}$ bijektiv und bi-messbar und betrachte $X' \coloneqq \varphi \circ X$.

Für
$$r \in \mathbb{Q}$$
 sei $F_r \coloneqq \mathbf{E} \left[\mathbbm{1}_{(-\infty,r]}(X) \mid \mathcal{G} \right]$. Für $r,r' \in \mathbb{Q}$ mit $r \le r'$ gilt

$$F_r \le F_{r'}, \qquad \lim_{n \to \infty} F_n = 1, \qquad \lim_{n \to \infty} F_{-n} = 0, \qquad \lim_{n \to \infty} F_{r + \frac{1}{n}} = F_r$$
 (6.1)

P-fast sicher, d.h. es gibt ein $N \in \mathcal{F}$ mit $\mathbf{P}(N) = 0$, sodass die Ereignisse aus (6.1) auf $\Omega \setminus N$ gelten. Ist

$$\tilde{F}_s(\omega) \coloneqq \begin{cases} \inf\{F_r(\omega) \mid r \ge s, \ r \in \mathbb{Q}\} &, \omega \in \Omega \setminus N \\ \mathbb{1}_{\{s \ge 0\}} &, \omega \in N \end{cases}$$

so ist \tilde{F} . für jedes $\omega \in \Omega$ die Verteilungsfunktion eines Wahrscheinlichkeitsmaßes auf \mathbb{R} . Sei $\kappa(\omega, \cdot)$ das zu ω gehörige Wahrscheinlichkeitsmaß. Für $r \in \mathbb{Q}$ ist $\kappa(\omega, (-\infty, r]) = F_r \mathcal{G}$ -messbar nach Konstruktion. Demnach ist $\omega \mapsto \kappa(\omega, B) \mathcal{G}$ -messbar für alle $B \in \mathcal{B}(\mathbb{R})$, denn die Menge aller B mit dieser Eigenschaft ist ein Dynkin-System, das den schnittstabilen Erzeuger $\{(-\infty, r] \mid r \in \mathbb{Q}\}$ von $\mathcal{B}(\mathbb{R})$ umfasst (vgl. [Dep14, Satz 1.36]).

Zeige nun, dass $\kappa(\cdot, B)$ für jedes $B \in \mathcal{B}(\mathbb{R})$ eine Version von $\mathbf{E}[\mathbb{1}_B(X) \mid \mathcal{G}]$ ist. Sei dazu $A \in \mathcal{G}$, $\nu_1(B) := \mathbf{E}[\mathbb{1}_A \kappa(\cdot, B)]$ und $\nu_2(B) := \mathbf{E}[\mathbb{1}_A \mathbb{1}_B(X)]$. ν_1 und ν_2 sind endliche Maße auf \mathbb{R} und es gilt $\nu_1((-\infty, r]) = \nu_2((-\infty, r])$ für alle $r \in \mathbb{Q}$ nach Konstruktion. Nach dem Eindeutigkeitssatz für Maße (vgl. [Dep14, Satz 1.37]) folgt damit $\nu_1(B) = \nu_2(B)$ für alle $B \in \mathcal{B}(\mathbb{R})$, also gilt $\mathbf{E}[\mathbb{1}_A \kappa(\cdot, B)] = \mathbf{E}[\mathbb{1}_A \mathbb{1}_B(X)]$ für jedes $A \in \mathcal{G}$.

Lemma 6.8 (Faktorisierungslemma). Sei Y eine Zufallsvariable mit Werten im messbaren Raum (S', \mathcal{A}') und sei $f: \Omega \to \mathbb{R}$ $\sigma(Y)$ -messbar. Dann gibt es eine messbare Funktion $g: S' \to \mathbb{R}$ mit $f = g \circ Y$ (vgl. [Kle13, Korollar 1.97]).

Beweis. Sei zunächst $f = \mathbb{1}_A$ für ein $A \in \sigma(Y) = \{Y^{-1}(B) \mid B \in \mathcal{A}'\}$, also gibt es ein $B \in \mathcal{A}'$ mit $A = Y^{-1}(B)$. Dann ist $g := \mathbb{1}_B$ messbar und es gilt $f = g \circ Y$.

Sei nun $f \ge 0$. Schreibe $f = \sum_{n=1}^{\infty} \alpha_n \mathbb{1}_{A_n}$ für geeignete $\alpha_n \ge 0$, $A_n \in \sigma(Y)$, beispielsweise

$$f = \sum_{n=1}^{\infty} n \mathbb{1}_{\{f \in [n,n+1)\}} + \sum_{k=1}^{\infty} 2^{-k} \mathbb{1}_{\{k\text{-te Ziffer in der Binärentwicklung von } f - \lfloor f \rfloor \text{ ist } 1\}}.$$

Da die Behauptung für Indikatorfunktionen gilt, folgt sie damit auch für nichtnegative f. Sei nun f beliebig. Schreibe $f = f^+ - f^-$ mit $f^+, f^- \ge 0$. Da die Behauptung für nichtnegative Funtkionen gilt, folgt sie damit auch für f.

Korollar 6.9. In der Situation von Satz 6.7 sei $\mathcal{G} = \sigma(Y)$ für eine Zufallsvariable Y mit Werten im messbaren Raum (S', \mathcal{A}') . Dann gibt es einen stochastischen Kern κ' von S' nach S mit $\kappa'(Y, B) = \mathbf{E}[\mathbb{1}_B(X) \mid Y]$ fast sicher für alle $B \in \mathcal{A}$.

Beweis. Die F_r , $r \in \mathbb{Q}$ aus dem Beweis von Satz 6.7 sind $\sigma(Y)$ -messbar, also gibt es nach Lemma 6.8 eine messbare Funktion $F'_r: S' \to \mathbb{R}$ mit $F_r = F'_r \circ Y$. Führe die Konstruktion aus dem Beweis von Satz 6.7 für die F'_r durch und erhalte $\kappa'(y, \cdot)$ als das Wahrscheinlichkeitsmaß der Verteilungsfunktion $F'_r(y)$, $y \in S$.

Lemma 6.10. Sei (S, A) ein Borel-Raum, (S', A') ein messbarer Raum, X eine S-wertige und Y eine S'-wertige Zufallsvariable auf demselben Wahrscheinlichkeitsraum. Dann gibt es eine messbare Funktion $f: S' \times [0,1] \to S$, sodass gilt: Ist \tilde{Y} eine Zufallsvariable mit $\tilde{Y} \stackrel{d}{=} Y$ und $\tilde{U} \sim \mathbf{Unif}([0,1])$ unabhänqiq von \tilde{Y} , so ist $(f(\tilde{Y},\tilde{U}),\tilde{Y}) \stackrel{d}{=} (X,Y)$.

Beweis. Sei ohne Einschränkung $S \subset \mathbb{R}$, ansonsten wähle $\varphi: S \to \hat{S} \subset \mathbb{R}$ bijektiv und bi-messbar wie im Beweis von Satz 6.7. Sei κ' ein stochastischer Kern von S' nach S gemäß Korollar 6.9. Sei

$$f(y, u) := \sup\{x \in \mathbb{R} \mid \kappa'(y, (-\infty, x]) < u\}, \quad y \in S', u \in [0, 1].$$

f ist messbar, denn $f(y, u) := \sup\{x \in \mathbb{Q} \mid \kappa'(y, (-\infty, x]) < u\}$ und es gilt $\{(y, u) \in S' \times [0, 1] \mid \kappa'(y, (-\infty, x]) < u\} = \bigcup_{v \in \mathbb{Q}_+ \cap (0, 1)} \{y \mid \kappa'(y, (-\infty, x]) < v\} \times [v, 1].$

Es gilt für $x \in \mathbb{R}$ und $A \in \mathcal{A}$:

$$\mathbf{P}\left(\tilde{Y} \in A, f(\tilde{Y}, \tilde{U}) > x\right) = \mathbf{P}\left(\tilde{Y} \in A, \kappa'(\tilde{Y}, (-\infty, x]) < \tilde{U}\right)$$

$$= \int_{S' \times [0,1]} \mathbb{1}_{A}(y) \mathbb{1}_{\{\kappa'(y, (-\infty, x]) < u\}} \mathcal{L}(\tilde{Y}, \tilde{U})(\mathrm{d}y, \mathrm{d}u)$$

$$= \int_{S'} \mathbb{1}_{A}(y) \int_{[0,1]} \mathbb{1}_{\{\kappa'(y, (-\infty, x]) < u\}} \mathrm{d}u \mathcal{L}(\tilde{Y})(\mathrm{d}y)$$

$$= \int_{S'} \mathbb{1}_{A}(y) \left(1 - \kappa'(y, (-\infty, x])\right) \mathcal{L}(\tilde{Y})(\mathrm{d}y)$$

$$= \mathbf{E} \left[\mathbb{1}_{\{Y \in A\}} \left(1 - \kappa'(Y, (-\infty, x])\right)\right]$$

$$= \mathbf{E} \left[\mathbb{1}_{\{Y \in A\}} \kappa'(Y, (x, \infty))\right]$$

$$= \mathbf{E} \left[\mathbb{1}_{\{Y \in A\}} \mathbb{1}_{\{X > x\}}\right].$$

Im Folgenden sei I eine beliebige Indexmenge, (S_i, \mathcal{A}_i) , $i \in I$ seien Borel-Räume und für $J \subset I$ sei $\Omega_J := \bigotimes_{i \in J} S_i$ mit Produkt- σ -Algebra $\mathcal{A}_J := \bigotimes_{i \in J} \mathcal{A}_i$. Für $J' \subset J \subset I$ sei

$$\pi_{J'}^J:\Omega_J\to\Omega_{J'},\quad (x_i)_{i\in J}\mapsto (x_i)_{i\in J'}$$

die kanonische Projektion. $\pi^J_{J'}$ ist messbar.

Definition 6.11. Für $J \subset I$ mit $0 < |J| < \infty$ sei P_J ein Wahrscheinlichkeitsmaß auf $(\Omega_J, \mathcal{A}_J)$. $\{P_J \mid J \subset I, \ 0 < |J| < \infty\}$ heißt projektive Familie, wenn gilt

$$P_{J'} = P_J \circ \left(\pi_{J'}^J\right)^{-1}$$
 für alle $J' \subset J$.

Beispiel 6.12. Sei $I = \mathbb{N}_0$, $S_i = S$ eine höchstens abzählbare Menge, $\mu \in \mathcal{M}_1(S)$ und $(p_{xy})_{x,y \in S}$ eine stochastische Matrix. Sei $P_n \coloneqq P_{\{0,1,\ldots,n\}} \in \mathcal{M}_1\left(S^{\{0,1,\ldots,n\}}\right)$ gegeben durch

$$P_n(\{x_0, x_1, \dots, x_n\}) = \mu(\{x_0\}) \prod_{i=0}^{n-1} p_{x_i, x_{i+1}}$$

(und erhalte P_J für allgemeine $J \subset \mathbb{N}, \ 0 < |J| < \infty$ durch "Aussummieren" der Koordinaten in $\{0,1,\ldots,n\} \smallsetminus J$ aus P_n , wobei $n = \max J$). Dann ist $\{P_J \mid J \subset I, \ 0 < |J| < \infty\}$ eine projektive Familie.

 $(P_n$ beschreibt die Verteilung der ersten n Schritte einer Markovkette mit Startverteilung μ und Übergansgmatrix p.)

Satz 6.13 (Kolmogorovs Erweiterungssatz). Zu einer projektiven Familie $\{P_J \mid J \subset I, 0 < I\}$

 $|J| < \infty$ auf einem Produkt von Borel-Räumen gibt es genau ein Wahrscheinlichkeitsmaß P auf $(\Omega, \mathcal{A}) := (\Omega_I, \mathcal{A}_I)$ mit $P_J = P \circ (\pi_J^I)^{-1}$ für jedes $J \subset I$ mit $0 < |J| < \infty$. P heißt projektiver Limes der $\{P_J\}$, auch geschrieben $P = \lim_{N \to \infty} P_J$.

.1 * 1

Beweis. Zeige zunächst die Eindeutigkeit. Angenommen P und P' seien projektiver Limes der $\{P_J\}$. Seien

$$Z_J = \left\{ A \in \mathcal{A} \mid A = (\pi_J^I)^{-1}(B) \text{ für ein } B \in A_J \right\}$$

die "Zylindermengen" mit Basis $J. \bigcup_{J \subset I, |J| < \infty} Z_J$ ist ein schnittstabiler Erzeuger von \mathcal{A} , auf dem P und P' wegen $P \circ (\pi_J^I)^{-1} = P_J = P' \circ (\pi_J^I)^{-1}$ übereinstimmen. Nach dem Eindeutigkeitssatz von Maßen folgt daher P = P'.

Zeige nun die Existenz. Betrachte dazu zunächst den Fall, dass I abzählbar ist. Sei ohne Einschränkung $I = \mathbb{N}_0$ und $P_n \coloneqq P_{\{0,1,\ldots,n\}}$. Nach Lemma 6.10 gibt es eine messbare Funktion $f_n \colon S_0 \times \ldots \times S_n \times [0,1] \to S_{n+1}$, sodass gilt: Ist $(\tilde{X}_0,\ldots \tilde{X}_n) \sim P_n$ und $\tilde{U}_n \sim \mathbf{Unif}([0,1])$ unabhängig von $(\tilde{X}_0,\ldots \tilde{X}_n)$, so ist $(\tilde{X}_0,\ldots,\tilde{X}_n,f((\tilde{X}_0,\ldots \tilde{X}_n),\tilde{U}_n)) \sim P_{n+1}$ (sei $(X_0,\ldots,X_{n+1}) \sim P_{n+1}$ und lese $X \coloneqq X_{n+1}, Y \coloneqq (X_0,\ldots,X_n)$ in Lemma 6.10). Sei $X_0 \sim P_0$ und seien $U_0,U_1,\ldots \sim \mathbf{Unif}([0,1])$ unabhängig von X_0 (für die Existenz von U_0,U_1,\ldots vgl. [Dep14, Satz 3.30], [Kle13, Satz 1.64]). Konstruiere X_1,X_2,\ldots via $X_{n+1} \coloneqq f_n((X_0,\ldots,X_n),U_n)$, dann gilt induktiv $(X_0,\ldots,X_n) \sim P_n$. $P \coloneqq \mathcal{L}(X_0,X_1,\ldots)$ ist somit projektiver Limes der $\{P_J\}$.

Sei nun I überabzählbar. Sei

$$\mathcal{C} \coloneqq \bigcup_{\substack{I' \subset I \\ I' \text{ abzählbar}}} Z_{I'},$$

offenbar ist $\mathcal{C} \subset \mathcal{A}$. Es gilt $\Omega \in \mathcal{C}$, denn $\Omega = (\pi_{I'}^I)^{-1}(\Omega_{I'})$. Sei weiter $A \in \mathcal{C}$, das heißt es gibt ein abzählbares $I' \subset I$ mit $A \in Z_{I'}$. Dann ist aber auch $A^c \in Z_{I'}$, also $A^c \in \mathcal{C}$. Seien $A_1, A_2, \ldots \in \mathcal{C}$, also $A_n \in Z_{I'_n}$ für ein abzählbares $I'_n \subset I$. Dann ist auch $I' := \bigcup_{n \in \mathbb{N}} I'_n \subset I$ abzählbar und es gilt $\bigcup_{n \in \mathbb{N}} A_n \in Z_{I'} \subset \mathcal{C}$. Damit ist also \mathcal{C} eine σ -Algebra. Zudem gilt $\mathcal{A} \subset \mathcal{C}$, da alle Koordinatenprojektionen \mathcal{C} -messbar sind. Zusammen folgt $\mathcal{A} = \mathcal{C}$.

Für ein abzählbares $J \subset I$ gibt es nach dem ersten Teil des Beweises genau ein Wahrscheinlichkeitsmaß P_J auf $(\Omega_J, \mathcal{A}_J)$ mit $P_K = P_J \circ (\pi_K^J)^{-1}$ für jedes endliche $K \subset J$. Für $B \in \mathcal{A}_J$ sei $\tilde{P}_J((\pi_J^I)^{-1}(B)) := P_J(B)$, dann ist \tilde{P}_J ein Maß auf Z_J . Für ein $A \in \mathcal{A} = \mathcal{C}$ setze

$$P(A) := \tilde{P}_J(A)$$
 , falls $A \in Z_J$.

P ist wohldefiniert, denn ist $A \in Z_J \cap Z_{J'}$ eine Zylindermenge mit endlicher Basis K, dann ist $\tilde{P}_J(A) = P_K(A) = \tilde{P}_{J'}(A)$ und $\{(\pi_K^I)^{-1}(B) \mid K \subset J \cap J', |K| < \infty, B \in \mathcal{A}_K\}$ ist ein schnittstabiler Erzeuger von $Z_J \cap Z_{J'}$. Also gilt $\tilde{P}_J = \tilde{P}_{J'}$ auf $Z_J \cap Z_{J'}$.

Es bleibt nur noch zu zeigen, dass P ein Wahrscheinlichkeitsmaß auf (Ω, \mathcal{A}) ist. Es gilt $P(\emptyset) = 0$ und $P(\Omega) = 1$, denn $\emptyset, \Omega \in Z_K$ für jedes K. Seien $A_1, A_2, \ldots \in \mathcal{A}$ paarweise disjunkt, das heißt $A_n \in Z_{J_n}$ für ein abzählbares $J_n \subset I$. Dann ist auch $J := \bigcup_{n \in \mathbb{N}} J_n$ abzählbar und es

gilt $A_1, A_2, \ldots, \bigcup_{n \in \mathbb{N}} A_n \in Z_J$, also folgt

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right)=P_J\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n=1}^\infty P_J(A_n)=\sum_{n=1}^\infty P(A_n).$$

6.2 Markov-Prozesse und Markov-Halbgruppen

Es sei E ein polnischer Raum, $I = \mathbb{N}_0$ oder $I = [0, \infty)$ (oder allgemein $I \subset \mathbb{R}$ mit der Interpretation I als "Zeitindexmenge"). Sei $X = (X_t)_{t \in I}$ ein adaptierter, stochastischer Prozess mit Werten in E (das heißt X_t ist eine E-wertige, \mathcal{F}_t -messbare Zufallsvariable) definiert auf einem filtrierten Raum $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t \in I})$. Sei weiter $(P_x)_{x \in E}$ eine Familie von Wahrscheinlichkeitsmaßen auf (Ω, \mathcal{A}) .

Definition 6.14. X heißt Markov-Prozess mit Verteilungen $(P_x)_{x \in E}$, wenn gilt:

- i) Für $x \in E$ gilt $P_x(X_0 = x) = 1$.
- ii) $\kappa(x,B) := P_x(X \in B)$ für $x \in E$, $B \in \mathcal{B}(E)^{\otimes I}$ ist ein stochastischer Kern.
- iii) X besitzt die schwache Markov-Eigenschaft: Für $x \in E$, $A \in \mathcal{B}(E)$ und $s, t \in I$ gilt

$$P_x(X_{t+s} \in A \mid \mathcal{F}_s) = \kappa_t(X_s, A) \quad P_x - f.s.$$

$$mit \ \kappa_t(x,A) \coloneqq \kappa(x,\{y=(y_v)_{v\in I} \in E^I \mid y_t \in A\}) = P_x(X_t \in A).$$

Falls E abzählbar ist, so heißt X auch diskreter Markov-Prozess. Falls $I = \mathbb{N}_0$, so heißt X auch Markov-Kette.

Wir schreiben $E_x[\ldots]$ für Erwartungswerte unter P_x , $\mathcal{L}_x(X)$ für die Verteilung von X unter P_x , analog $\mathcal{L}_x(X \mid \mathcal{G})$, etc.

Bemerkung6.15. Ein Markov-Prozess besitzt die elementare Markov-Eigenschaft: Unter jedem P_x gilt für $u \leq t$

$$P_x(X_t \in A \mid \mathcal{F}_u) = P_x(X_t \in A \mid X_u)$$
 f.s.

Dies folgt unmittelbar aus Definition 6.14 *iii*), verlangt aber im Gegensatz zu Definition 6.14 nicht die zeitliche Homogenität der Dynamik.

Definition 6.16. Sei $I \subset [0, \infty)$ abgeschlossen unter Addition. Eine Familie $(\kappa_t)_{t \in I}$ von (sub-) stochastischen Kernen von E nach E heißt (sub-) stochastische Halbgruppe, wenn für alle $s, t \in I$ gilt:

$$\kappa_s \circ \kappa_t = \kappa_{s+t}.$$

Dies sind die sogenannten Chapman-Kolmogorov-Gleichungen.

Satz 6.17. Ist $((X_t)_{t\in I}, (P_x)_{x\in E})$ ein Markov-Prozess, so definiert

$$\kappa_t(x,A) \coloneqq P_x(X_t \in A), \quad x \in E, \ A \in \mathcal{B}(E), \ t \in I \tag{6.2}$$

eine Markov-Halbgruppe und die endlich-dimensionalen Verteilungen von $(X_t)_{t\in I}$ sind durch $(\kappa_t)_{t\in I}$ festgelegt. Insbesondere gilt für $n\in\mathbb{N},\ 0=t_0< t_1<\ldots< t_n$ und $f_1,\ldots,f_n:E\to\mathbb{R}$ beschränkt und messbar

$$\mathbf{E}_{x} \left[\prod_{j=1}^{n} f_{j}(X_{t_{j}}) \right] = \int \kappa_{t_{1}-t_{0}}(x, dx_{1}) f_{1}(x_{1}) \cdots \int \kappa_{t_{n}-t_{n-1}}(x_{n-1}, dx_{n}) f_{n}(x_{n}). \tag{6.3}$$

Umgekehrt gibt es zu jeder Markov-Halbgruppe $(\kappa_t)_{t\in I}$ einen Markov-Prozess $(X_t)_{t\in I}$, sodass (6.2) und (6.3) gelten.

Beweis. Sei $((X_t)_{t \in I}, (P_x)_{x \in E})$ ein Markov-Prozess. Nach Definition 6.14 ii) definiert (6.2) einen stochastischen Kern. Weiter gilt für $s, t \in I$ und $A \in \mathcal{B}(E)$

$$\kappa_{s+t}(x,A) = P_x(X_{s+t} \in A) = \mathbf{E}_x \left[P_x(X_{s+t} \in A \mid \mathcal{F}_s) \right] = \mathbf{E}_x \left[\kappa_t(X_s,A) \right]$$
$$= \int \kappa_t(y,A) \, \kappa_s(x,\mathrm{d}y) = (\kappa_s \circ \kappa_t)(x,A).$$

Damit ist $(\kappa_t)_{t\in I}$ eine Markov-Halbgruppe.

Zeige (6.3) induktiv. Sei $f_1 = \mathbb{1}_A$, $A \in \mathcal{B}(R)$. Es ist

$$\mathbf{E}_{x}[f_{1}(X_{t_{1}})] = P_{x}(X_{t_{1}} \in A) = \kappa_{t_{1}}(x, A),$$

also gilt (6.3) für n=1 für Linearkombination von Indikatorfunktionen und somit mit den "üblichen Approximationsargumenten" auch für allgemeine f. Es sei nun (6.3) wahr für ein $n \in \mathbb{N}$. Sei $\tilde{f}(X_{t_n}) := \int f_{n+1}(y) \kappa_{t_{n+1}-t_n}(X_{t_n}, \mathrm{d}y)$. Dann ist

$$\mathbf{E}_{x}\left[\prod_{j=1}^{n+1}f_{j}(X_{t_{j}})\right] = \mathbf{E}_{x}\left[\mathbf{E}_{x}\left[\prod_{j=1}^{n+1}f_{j}(X_{t_{j}})\mid\mathcal{F}_{t_{n}}\right]\right] = \mathbf{E}_{x}\left[\prod_{j=1}^{n}f_{j}(X_{t_{j}})\mathbf{E}_{x}[f_{n}(X_{t_{n}})\mid\mathcal{F}_{t_{n}}]\right]$$

$$= \mathbf{E}_{x}\left[\prod_{j=1}^{n}f_{j}(X_{t_{j}})\int f_{n+1}(y)\kappa_{t_{n+1}-t_{n}}(X_{t_{n}},\mathrm{d}y)\right] = \mathbf{E}_{x}\left[\prod_{j=1}^{n}f_{j}(X_{t_{j}})\tilde{f}(X_{t_{n}})\right].$$

Wende nun (6.3) an auf $f_1, f_2, \ldots, f_{n-1}, f_n \tilde{f}$.

Sei umgekehrt $(\kappa_t)_{t\in I}$ eine Markov-Halbgruppe. Für ein endliches $J\subset I,\ J=\{t_0,t_1,\ldots,t_n\}$

mit $0 = t_0 < t_1 < \ldots < t_n$ definiert (6.3) ein Wahrscheinlichkeitsmaß $P_{x,J}$ auf $E^{|J|}$:

$$P_{x,J}(A) = \int \kappa_{t_1-t_0}(x, dx_1) \dots \int \kappa_{t_n-t_{n-1}}(x_{n-1}, dx_n) \cdot \mathbb{1}_A(x, x_1, \dots, x_n), \quad A \in E^{|J|}.$$

Zeige: $\{P_{x,J} \mid J \subset I, |J| < \infty\}$ ist eine projektive Familie. Sei J wie oben gegeben, $J' := J \setminus \{t_l\}$ für ein $l \in \{1, ..., n\}$ und $A_i \in \mathcal{B}(E)$. Dann gilt

$$P_{x,J}((\pi_{J'}^{J})^{-1}(A_{0} \times \ldots \times A_{l-1} \times A_{l+1} \times \ldots \times A_{n})) = P_{x,J}(\ldots \times A_{l-1} \times E \times A_{l+1} \times \ldots)$$

$$= \ldots \int \kappa_{t_{l}-t_{l-1}}(x_{l-1}, dx_{l}) \mathbb{1}_{E}(x_{l}) \int \kappa_{t_{l+1}-t_{l}}(x_{l}, dx_{l+1}) \mathbb{1}_{A_{l+1}}(x_{l+1}) \ldots$$

$$= \ldots \int \kappa_{t_{l}-t_{l-1}} \circ \kappa_{t_{l+1}-t_{l}}(x_{l-1}, dx_{l+1}) \ldots = \ldots \int \kappa_{t_{l+1}-t_{l-1}}(x_{l-1}, dx_{l+1}) \ldots$$

$$= P_{x,J'}(A_{0} \times \ldots \times A_{l-1} \times A_{l+1} \times \ldots \times A_{n}),$$

das heißt $P_{x,J} \circ (\pi_{J'}^J)^{-1} = P_{x,J'}$. Mit Satz 6.13 folgt die Existenz eines Wahrscheinlichkeitsmaßes P_x auf $\Omega = E^I$, $\mathcal{A} = \mathcal{B}(E)^{\otimes I}$, sodass für die t-te Koordinatenprojektion $X_t : \Omega \to E$, $\mathcal{F}_t = \sigma(X_s \mid s \leq t)$ die Formel (6.3) gilt. $((X_t)_{t \in I}, (P_x)_{x \in E})$ leistet das Gewünschte.

Zeige die (schwache) Markov-Eigenschaft, das heißt $P_x(X_{t+s} \in A \mid \mathcal{F}_s) = \kappa_t(X_s, A)$. Mengen B der Form

$$B = \{X_{t_0} \in A_0, \dots, X_{t_{n-1}} \in A_{n-1}\}, \quad 0 = t_0 < \dots < t_n = s, \ n \in \mathbb{N}, \ A_i \in \mathcal{B}(E)$$

sind ein schnittstabiler Erzeuger von \mathcal{F}_s . Es reicht also,

demnach also $P_x(X_{t_n} \in A_n \mid \mathcal{F}_{t_{n-1}}) = \kappa_{t_n - t_{n-1}}(X_{t_{n-1}}, A_n)$ (f.s.).

$$\mathbf{E}_{x}\left[\kappa_{t}(X_{s},A)\mathbb{1}_{B}\right] = \mathbf{E}_{x}\left[\mathbb{1}_{\left\{X_{t+s}\in A\right\}}\mathbb{1}_{B}\right]$$

zu zeigen. Betrachte dazu

$$P_x(X_{t_0} \in A_0, \dots, X_{t_n} \in A_n)$$

$$= \int P_x(X_{t_0} \in A_0, \dots, X_{t_{n-2}} \in A_{n-2}, X_{t_{n-1}} \in dX_{n-1}) \mathbb{1}_{A_{n-1}}(X_{n-1}) \kappa_{t_n - t_{n-1}}(X_{n-1}, A_n)$$

$$= \mathbf{E}_x \Big[\mathbb{1}_{\{X_{t_0} \in A_0, \dots, X_{t_{n-1}} \in A_{n-1}\}} \kappa_{t_n - t_{n-1}}(X_{n-1}, A_n) \Big],$$

Beispiel 6.18. Sei E abzählbar und $p = (p_{xy})_{x,y \in E}$ eine stochastische Matrix. Sei

$$\kappa_n(x,A) = \sum_{y \in A} p_{x,y}^n.$$

 $(\kappa_n)_{n\in\mathbb{N}_0}$ ist eine Markov-Halbgruppe. Satz 6.17 liefert eine Markov-Kette $(X_n)_{n\in\mathbb{N}_0}$ mit Übergangsmatrix p.

Beispiel 6.19 (Faltungshalbgruppen und Markovprozesse mit unabhängigen stationären Zuwächsen). Sei $(\nu_t)_{t\in[0,\infty)}\subset \mathcal{M}_1(\mathbb{R})$ eine Faltungsgruppe, das heißt $\nu_s*\nu_t=\nu_{s+t}$ für $s,t\geq 0$.

$$\kappa_t(x,\cdot) = \delta_x * \nu_t$$

definiert eine Markov-Halbgruppe auf \mathbb{R} , denn für eine beschränkte, messbare Funktion $f: \mathbb{R} \to \mathbb{R}$ gilt

$$\int f(y) (\kappa_{s} \circ \kappa_{t})(x, dy) = \int \int f(y) \kappa_{t}(z, dy) \kappa_{s}(x, dz) = \int \int f d(\delta_{z} * \nu_{t}) \kappa_{s}(x, dz)$$

$$= \int \int f(z + y') \nu_{t}(dy') \kappa_{s}(x, dz) = \int \int f(x + z' + y') \nu_{s}(dz') \nu_{t}(dy')$$

$$= \int f(x + x') (\nu_{s} * \nu_{t})(dx') = \int f(x') \kappa_{s+t}(x, dx').$$

Sei $X_t: \mathbb{R}^{[0,\infty)} \to \mathbb{R}$ die t-te Koordinatenprojektion. Nach Satz 6.17 gibt es auf $\Omega := \mathbb{R}^{[0,\infty)}$, $\mathcal{A} := \mathcal{B}(\mathbb{R})^{[0,\infty)}$ eine Familie von Wahrscheinlichkeitsmaßen $(P_x)_{x \in \mathbb{R}}$ mit

$$P_x \circ (X_{t_0}, \dots, X_{t_n})^{-1} = \delta_x \otimes \bigotimes_{i=1}^n \kappa_{t_i - t_{i-1}}, \quad n \in \mathbb{N}, \ 0 = t_0 < \dots < t_n.$$

Es gilt

$$P_x(X_{t_0} \in B_0, X_{t_1} - X_{t_0} \in B_1, \dots, X_{t_n} - X_{t_{n-1}} \in B_n) = \delta_x(B_0) \prod_{j=1}^n \nu_{t_j - t_{j-1}}(B_j).$$

Man sagt: $(X_t)_{t\in[0,\infty)}$ hat unabhängige, stationäre Zuwächse.

Insbesondere: Sei $\nu \in \mathcal{M}_1(\mathbb{R})$ unendlich teilbar mit $\varphi_{\nu}(u) = \exp(\psi(u))$ mit ψ gemäß der Lévy-Khinchin-Formel aus Satz 5.10. Ist $\nu_t, t \geq 0$ das Wahrscheinlichkeitsmaß auf \mathbb{R} mit $\varphi_{\nu_t}(u) = \exp(t\psi(u))$, so ist

$$\varphi_{\nu_s*\nu_t}(u) = \varphi_{\nu_s} \cdot \varphi_{\nu_t} = e^{s\psi} \cdot e^{t\psi} = e^{(s+t)\psi} = \varphi_{\nu_{s+t}}(u),$$

das heißt $(\nu_t)_{t\geq 0}$ ist eine Faltungshalbgruppe.

Speziell mit der Wahl $\nu = \mathbf{N}(0,1)$ haben wir somit eine "rohe" Version der Brownschen Bewegung konstruiert.

Beispiel 6.20. Sei E endlich, $(Q_{xy})_{x,y\in E}$ eine Matrix mit $Q_{xy}\geq 0$ für $x\neq y$ und $\sum_{y\in E}Q_{xy}=0$

für alle $x \in E$. Sei

$$P(t) := e^{tQ} = \sum_{n=0}^{\infty} \frac{1}{n!} t^n Q^n, \quad P(0) = \text{Id}.$$

Die Reihe konvergiert, denn $\max_{x,y\in E}|Q_{xy}^n| \leq (|E|\max_{x,y\in E}|Q_{x,y}|)^n$. Es gilt P(t)P(s) = P(t+s), denn ist AB = BA für Matrizen A, B, so ist $e^A e^B = e^{A+B}$. Weiter gilt

$$P_{xy}(t+s) = \sum_{z \in E} P_{xz}(t) P_{zy}(s).$$

 $\kappa_t(x,A) \coloneqq \sum_{y \in A} P_{x,y}(t)$ bildet eine Markov-Halbgruppe, das heißt es gibt einen Markov-Prozess $(X_t)_{t \in I}$ mit

$$P_{x_0}(X_{t_1} = x_1, \dots, X_{t_n} = x_n) = \prod_{j=1}^n P_{x_{j-1}x_j}(t_j - t_{j-1}).$$

Sei $\varrho \coloneqq \max_{x \in E} \{-Q_{xx}\}, \ \hat{p}_{x,y} \coloneqq \frac{Q_{x,y}}{\varrho} \text{ für } x \neq y \text{ und } \hat{p}_{xx} \coloneqq 1 + \frac{Q_{xx}}{\varrho}. \ (\hat{p}_{xy})x, y \in E \text{ ist eine stochastische Matrix. Es gilt } Q = \varrho \hat{p} - \varrho \text{ Id und}$

$$P(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \sum_{k=0}^{n} \binom{n}{k} (\varrho \hat{p})^k (-\varrho)^{n-k} = \sum_{k=0}^{\infty} \frac{(\varrho t)^k}{k!} \hat{p}^k \underbrace{\sum_{n \ge k} \frac{(-t\varrho)^{n-k}}{(n-k)!}}_{=\varrho^{-t\varrho}} = \sum_{k=0}^{\infty} e^{-t\varrho} \frac{(t\varrho)^k}{k!} \hat{p}^k,$$

insbesondere ist also P(t) eine stochastische Matrix und es gilt

$$P_{x_0}(X_{t+n} = y \mid X_t = x) = \frac{P_{xx_0}(t)P_{xy}(h)}{P_{x_0x}(t)} = P_{xy}(h) = \left(e^{hQ}\right)_{xy} = \delta_{xy} + hQ_{xy} + o(h), \quad h \leq 0$$

Bemerkung 6.21. In der Situation von Beispiel 6.20 kann man eine "Version" von $(X_t)_{t\geq 0}$ konstruieren, dessen Pfade rechtsstetig mit linken Limiten sind. Seien dazu τ_1, τ_2, \ldots unabhängig und identisch exponentialverteilt mit Parameter ϱ , $T_0 \coloneqq 0$, $T_n = \sum_{i=1}^n \tau_i$ und $N_t \coloneqq \sum_{n=1}^\infty \mathbbm{1}_{\{T_n \leq t\}}$. $(N_t)_{t\geq 0}$ ist ein Poisson-Prozess. Sei $(\hat{X}_k)_{k\in\mathbb{N}}$ eine zeitdiskrete Markov-Kette mit Übergangsmatrix \hat{p} , dann leistet $X_t \coloneqq \hat{X}_{N_t}, t \geq 0$ das Gewünschte.

Satz 6.22. $(X_t)_{t\in I}$ mit Wahrscheinlichkeitsmaßen $(P_x)_{x\in E}$ ist genau dann ein Markov-Prozess, wenn es einen stochastischen Kern $\kappa: E \times \mathcal{B}(E)^{\otimes I} \to [0,1]$ gibt, sodass für alle $x \in E$, $s \in I$ und alle beschränkten, messbaren Funktionen $f: E^I \to \mathbb{R}$ gilt

$$\mathbf{E}_{x}\left[f((X_{t})_{t\in I})\mid \mathcal{F}_{s}\right] = \mathbf{E}_{X_{s}}\left[f((X_{u})_{u\in I})\right] = \int_{E^{I}} f(y)\,\kappa(X_{s},dy) \quad f.s.$$
 (6.4)

Beweis. Es gelte zunächst (6.4). Für $t \in I$, $A \in \mathcal{B}(E)$ setze $f: E^I \to \mathbb{R}$, $y \mapsto \mathbb{1}_A(y_t)$ in (6.4) ein:

$$P_x(X_{t+s} \in A \mid \mathcal{F}_s) = \mathbf{E}_{X_s}[f(X)] = \kappa_t(X_s, A),$$

also gilt die schwache Markov-Eigenschaft (vgl. Definition 6.14 iii)).

Sei nun umgekehrt $(X_t)_{t\in I}$ ein Markov-Prozess. Sei f zunächst von der Form $f(y) = \mathbb{1}_{B_1}(y_{t_1})\cdots\mathbb{1}_{B_n}(y_{t_n})$ für $n\in\mathbb{N},\ t_1<\ldots< t_n\in I$ und $B_1,\ldots,B_n\in\mathcal{B}(E)$. Für n=1 folgt (6.4) aus der schwachen Markov-Eigenschaft von $(X_t)_{t\in I}$. Nehme also an, dass (6.4) für ein festes $n\in\mathbb{N}$ erfüllt sei. Sei $f(y)=\mathbb{1}_{B_1}(y_{t_1})\cdots\mathbb{1}_{B_{n+1}}(y_{t_{n+1}})$. Dann gilt

$$\begin{split} \mathbf{E}_{x} \left[f((X_{t+s})_{t \in I}) \mid \mathcal{F}_{s} \right] &= \mathbf{E}_{x} \left[\mathbb{1}_{B_{1}}(X_{s+t_{1}}) \cdots \mathbb{1}_{B_{n+1}}(X_{s+t_{n+1}}) \mid \mathcal{F}_{s} \right] \\ &= \mathbf{E}_{x} \left[\mathbf{E}_{x} \left[\mathbb{1}_{B_{1}}(X_{s+t_{1}}) \cdots \mathbb{1}_{B_{n+1}}(X_{s+t_{n+1}}) \mid \mathcal{F}_{t_{n}+s} \right] \mid \mathcal{F}_{s} \right] \\ &= \mathbf{E}_{x} \left[\mathbb{1}_{B_{1}}(X_{s+t_{1}}) \cdots \mathbb{1}_{B_{n}}(X_{s+t_{n}}) \cdot P_{X}(X_{s+t_{n+1}} \in B_{n+1} \mid \mathcal{F}_{s+t_{n}}) \mid \mathcal{F}_{s} \right] \\ &= \mathbf{E}_{x} \left[\mathbb{1}_{B_{1}}(X_{s+t_{1}}) \cdots \mathbb{1}_{B_{n}}(X_{s+t_{n}}) \cdot P_{X_{s+t_{n}}}(X_{t_{n+1}-t_{n}} \in B_{n+1}) \mid \mathcal{F}_{s} \right] \\ &= \mathbf{E}_{X_{s}} \left[\mathbb{1}_{B_{1}}(X_{t_{1}}) \cdots \mathbb{1}_{B_{n}}(X_{t_{n}}) \cdot P_{X}(X_{t_{n+1}-t_{n}} \in B_{n+1}) \mid \mathcal{F}_{t_{n}} \right] \\ &= \mathbf{E}_{X_{s}} \left[\mathbb{1}_{B_{1}}(X_{t_{1}}) \cdots \mathbb{1}_{B_{n}}(X_{t_{n}}) \cdot P_{x}(X_{t_{n+1}} \in B_{n+1} \mid \mathcal{F}_{t_{n}}) \right] \\ &= \mathbf{E}_{X_{s}} \left[\mathbb{1}_{B_{1}}(X_{t_{1}}) \cdots \mathbb{1}_{B_{n}}(X_{t_{n}}) \mathbb{1}_{B_{n+1}}(X_{t_{n+1}}) \mid \mathcal{F}_{t_{n}} \right] \right] \\ &= \mathbf{E}_{X_{s}} \left[f(X) \right], \end{split}$$

also gilt (6.4) für Linearkombinationen solcher "Zylinderfunktionen" und somit mit den üblichen Approximationsargumenten auch für allgemeine f.

Bemerkung 6.23. Sei $I = \mathbb{N}_0$.

i) $(X_n)_{n\in\mathbb{N}_0}$ ist genau dann eine Markov-Kette, wenn für alle $x\in E$ und $k\in\mathbb{N}_0$ gilt

$$\mathcal{L}((X_{n+k})_{n\in\mathbb{N}_0} \mid \mathcal{F}_k) = \mathcal{L}_{X_k}((X_n)_{n\in\mathbb{N}_0}).$$

ii) Sei $(X_n)_{n\in\mathbb{N}_0}$ ein stochastischer Prozess mit Verteilungen $(P_x)_{x\in E}$, wobei $P_x(X_0 = x) = 1$, und es gebe einen stochastischen Kern $\kappa_1: E \times \mathcal{B}(E) \to [0,1]$ mit

$$P_x(X_{s+1} \in A \mid \mathcal{F}_s) = \kappa_1(X_s, A)$$
 f.s.

für alle $s \in \mathbb{N}_0$ und $A \in \mathcal{B}(E)$. Dann ist $(X_n)_{n \in \mathbb{N}_0}$ eine Markov-Kette und die n-Schritt-Übergangswahrscheinlichkeiten sind gegeben durch $\kappa_n = \kappa_{n-1} \circ \kappa_1$, $n \in \mathbb{N}$. $(\kappa_n)_{n \in \mathbb{N}}$ ist eine Markov-Halbgruppe und die Verteilung von X ist durch κ_1 festgelegt.

iii) In der Situation von ii) sei E höchstens abzählbar. Dann ist $(X_n)_{n\in\mathbb{N}_0}$ genau dann eine Markov-Kette bezüglich $\mathcal{F}_n = \sigma(X_0, \dots, X_n)$, wenn es eine stochastische Matrix

 $(p_{xy})_{x,y\in E}$ gibt, sodass für alle $x_0,\ldots,x_n,y\in E$ mit $P_{x_0}(X_0=x_0,\ldots,X_n=x_n)>0$ gilt

$$P_{x_0}(X_{n+1} = y \mid X_0 = x_0, \dots, X_n = x_n) = p_{x_n,y}.$$

Beweis. i) Ist (E,d) polnisch, so ist $E^{\mathbb{N}_0}$ auch polnisch, zum Beispiel mit Metrik

$$d_{E^{\mathbb{N}_0}}((x_n),(y_n)) = \sum_{n=1}^{\infty} 2^{-n} (d(x_n,y_n) \wedge 1).$$

Dann ist $\mathcal{B}(E)^{\otimes \mathbb{N}_0} = \mathcal{B}(E^{\mathbb{N}_0})$, demnach gibt es eine Version der bedingten Verteilung von $(X_{n+k})_{n\in\mathbb{N}_0}$ bedingt auf \mathcal{F}_k .

- ii) Lese den Beweis von Satz 6.22 erneut mit $t_i = i$.
- iii) Ist E diskret, so ist $p_{xy} := \kappa(x, \{y\})$ eine stochastische Matrix.

Bemerkung 6.24 (Formulierung der Markov-Eigenschaft mittels Shifts). Auf $(E^I, \mathcal{B}(E)^{\otimes I})$ definiert

$$(\Theta_t x)_u \coloneqq x_{t+u}$$

eine messbare Selbstabbildung und es gilt $\Theta_{t+s} = \Theta_s \circ \Theta_t$. Wenn X auf kanonische Weise auf $(E^I, \mathcal{B}(E)^{\otimes I})$ definiert ist, so formuliert man (6.4) auch als

$$\mathbf{E}_{x} [f(X \circ \Theta_{s}) \mid \mathcal{F}_{s}] = \mathbf{E}_{X_{s}} [f(X)].$$

6.3 Die starke Markov-Eigenschaft

Definition 6.25. Ein Markov-Prozess $X = (X_t)_{t \in I}$ mit Verteilungen $(P_x)_{x \in E}$ hat die starke Markov-Eigenschaft, falls für jede fast sicher endliche Stoppzeit τ , jedes $x \in E$ und jede beschränkte, messbare Funktion $f: E^I \to \mathbb{R}$ gilt

$$\mathbf{E}_{x}[f((X_{\tau+t})_{t\in I}) \mid \mathcal{F}_{\tau}] = \mathbf{E}_{X_{\tau}}[f(X)] \quad P_{x}$$
-f.s.

Satz 6.26. Im Fall $I = \mathbb{N}_0$ besitzt jeder Markov-Prozess die starke Markov-Eigenschaft.

Beweis. Für $A \in \mathcal{F}_{\tau}$ und $s \in \mathbb{N}_0$ gilt $A \cap \{\tau = s\} \in \mathcal{F}_s$ und somit

$$\mathbf{E}_{x}\left[f((X_{\tau+t})_{t\in I})\mathbb{1}_{A}\right] = \sum_{s\in\mathbb{N}_{0}} \mathbf{E}_{x}\left[f((X_{\tau+t})_{t\in I})\mathbb{1}_{A\cap\{\tau=s\}}\right] = \sum_{s\in\mathbb{N}_{0}} \mathbf{E}_{x}\left[f((X_{s+t})_{t\in I})\mathbb{1}_{A\cap\{\tau=s\}}\right]$$

$$= \sum_{s\in\mathbb{N}_{0}} \mathbf{E}_{x}\left[\mathbf{E}_{X_{s}}[f(X)]\mathbb{1}_{A\cap\{\tau=s\}}\right] = \sum_{s\in\mathbb{N}_{0}} \mathbf{E}_{x}\left[\mathbf{E}_{X_{\tau}}[f(X)]\mathbb{1}_{A\cap\{\tau=s\}}\right]$$

$$= \mathbf{E}_{x}\left[\mathbf{E}_{X_{\tau}}[f(X)]\mathbb{1}_{A}\right],$$

wobei im vorletzten Schritt die schwache Markov-Eigenschaft bei Zeit s eingeht.

Satz 6.27 ("Spiegelungsprinzip"). Seien Y_1, Y_2, \ldots unabhängige und identisch verteilte reelle Zufallsvariablen mit $\mathcal{L}(Y_1) = \mathcal{L}(-Y_1)$. Sei $X_0 := 0$ und $X_k := \sum_{i=1}^k Y_i$. Dann gilt für $n \in \mathbb{N}$ und a > 0

 $\mathbf{P}\left(\max_{m\leq n}X_m\geq a\right)\leq 2\mathbf{P}(X_n\geq a)-\mathbf{P}(X_n=a).$

Falls $\mathbf{P}(Y_1 \in \{-1, 0, 1\}) = 1$ und $a \in \mathbb{N}$, so gilt Gleichheit.

Beweis. $(X_k)_{k\in\mathbb{N}_0}$ ist eine Markov-Kette. Sei $a>0,\ n\in\mathbb{N}$ und

$$\tau := \inf\{m \in \mathbb{N}_0 : X_m \ge a\} \land (n+1).$$

Setze $f(m,X) := \mathbb{1}_{\{m \le n\}} \left(\mathbb{1}_{\{X_{n-m} > a\}} + \frac{1}{2} \mathbb{1}_{\{X_{n-m} = a\}} \right)$ und $\varphi(m,z) := \mathbf{E}_z[f(m,(X_k)_{k \in \mathbb{N}_0})]$. Dann gilt aufgrund der symmetrischen Verteilung von Y_1

$$\varphi(m,z) \begin{cases} \geq \frac{1}{2} & \text{, falls } m \leq n \text{ und } z > a \\ = \frac{1}{2} & \text{, falls } m \leq n \text{ und } z = a \\ = 0 & \text{, falls } m > n \end{cases}$$

und

$$f(\tau, (X_{\tau+k})_{k \in \mathbb{N}_0}) = \mathbb{1}_{\{\tau \le n\}} \left(\mathbb{1}_{\{X_n > a\}} + \frac{1}{2} \mathbb{1}_{\{X_n = a\}} \right).$$

Wegen der starken Markov-Eigenschaft gilt $\mathbf{E}_0[f(\tau,(X_{\tau+k})_{k\in\mathbb{N}_0})\mid \mathcal{F}_\tau] = \varphi(\tau,X_\tau)$. Weiter ist $\{\tau \leq n\} = \{\tau \leq n\} \cap \{X_\tau \geq a\} \subset \{\varphi(\tau,X_\tau) \geq \frac{1}{2}\} \cap \{\tau \leq n\} = \{\varphi(\tau,X_\tau) > 0\} \cap \{\tau \leq n\}$, also

$$\mathbf{P}(X_n > a) + \frac{1}{2}\mathbf{P}(X_n = a) = \mathbf{E}_0[f(\tau, (X_{\tau + k})_{k \in \mathbb{N}_0})] \ge \frac{1}{2}\mathbf{P}(\tau \le n) = \frac{1}{2}\mathbf{P}\left(\max_{m \le n} X_m \ge a\right). \quad (6.5)$$

Falls Y_i nur Werte in $\{-1,0,1\}$ annimmt und $a \in \mathbb{N}$, dann ist $\{\tau \leq n\} = \{X_\tau = a\}$, also $\{\varphi(\tau,X_\tau)>0\} \cap \{\tau \leq n\} = \{\varphi(\tau,X_\tau)=\frac{1}{2}\} \cap \{\tau \leq n\}$, das heißt es gilt die Gleichheit in (6.5).

Beispiel 6.28 (Eine Situation, in der die starke Markov-Eigenschaft nicht gilt). Im Fall $I = [0, \infty)$ fordert man, dass die Filtration $(\mathcal{F}_t)_{t\geq 0}$ rechtsstetig ist, das heißt $\mathcal{F}_t^+ := \bigcap_{s>t} F_s = \mathcal{F}_t$ für $t \geq 0$.

Sei $E = [0, \infty)$ und eine Markov-Halbgruppe $(\kappa_t)_{t \geq 0}$ gegeben durch

$$\kappa_t(x,A) := \begin{cases} \delta_{x+t}(A) &, x > 0 \\ e^{-t}\delta_0(A) + \int_0^t e^{-s}\delta_{t-s}(A) ds &, x = 0 \end{cases}$$

 $(X_t)_{t\geq 0}$ kann folgendermaßen dargestellt werden: Sei $T\sim \mathbf{Exp}(1)$ und für $t\geq 0$

$$X_t \coloneqq (t - T \mathbb{1}_{\{X_0 = 0\}})_+ + \mathbb{1}_{\{X_0 \neq 0\}} X_0.$$

Sei $\tau\coloneqq\inf\{t\geq 0\mid X_t>0\}=T\mathbbm{1}_{\{X_0=0\}}.$ Dann gilt

$$\mathbf{E}_{0}\left[f((X_{T+t})_{t\geq 0}) \mid \mathcal{F}_{T}^{+}\right] = f(t) \neq \int f(y) \, \kappa_{t}(0, \mathrm{d}y) = e^{-t} f(0) + \int_{0}^{t} e^{-s} f(t-s) \mathrm{d}s,$$

das heißt die starke Markov-Eigenschaft gilt nicht für dieses τ .

6.4 Diskrete Markov-Ketten

6.4.1 Grundlegendes Szenario

Es sei E eine abzählbare Menge, $p = (p_{xy})_{x,y \in E}$ eine stochastische Matrix und $X = (X_n)_{n \in \mathbb{N}_0}$ eine (diskrete) p-Markov-Kette, das heißt

$$\mathbf{P}_{x_0}(X_{n+1} = y \mid X_0 = x_0, \dots, X_{n-1} = x_{n-1}, X_n = x) = p_{xy}$$

für alle $n \in \mathbb{N}$ und $x_0, \ldots, x_{n-1}, x, y \in E$ mit $\mathbf{P}_{x_0}(X_0 = x_0, \ldots, X_{n-1} = x_{n-1}, X_n = x) > 0$. Wir notieren die n-ten Potenzen der Übergangsmatrix als $p_{xy}^n = \mathbf{P}_x(X_n = y)$.

Beispiel 6.29 (Erneuerungskette). Sei $E = \mathbb{N}_0$, $\nu = (\nu_k)_{k \in \mathbb{N}} \in \mathcal{M}_1(\mathbb{N})$ und p gegeben durch

$$p_{i,j} = \begin{cases} \nu_{j+1} &, i = 0\\ 1 &, j = i - 1\\ 0 &, \text{sonst} \end{cases}$$

Eine Markov-Kette $(X_n)_{n\in\mathbb{N}_0}$ mit Übergangsmatrix p und Start in $X_0=x_0$ kann folgendermaßen dargestellt werden: Seien $\xi_1,\xi_2,\ldots\sim\nu$ unabhängig, $T_0:=x_0,\,T_m:=T_0+\sum_{k=1}^m\xi_k$ für $m\in\mathbb{N}$ und

$$X_n := \inf\{T_k - n \mid k \in \mathbb{N}_0, T_k \ge n\}.$$

Interpretation: Die T_k sind die "Erneuerungszeitpunkte" — man denke an Zeitpunkte, zu denen jeweils eine defekte Glühbirne ausgetauscht wird — X_n ist dann die "Restlebensdauer" der zum Zeitpunkt n brennenden Birne.

6.4.2 Rekurrenz und Transienz

Definition 6.30. Für $x \in E$ sei $T_x^{(1)} := \inf\{n > 0 \mid X_n = x\}$ und für $k \in \mathbb{N}, k \ge 2$

$$T_x^{(k)} := \inf\{n > T_x^{(k-1)} \mid X_n = x\}$$

 $(mit\ Setzung\ T_x^{(k)} = \infty,\ falls\ T_x^{(k-1)} = \infty).\ T_x^{(k)}\ heißt\ die\ k$ -te Eintrittszeit (auch Rückkehrzeit) von X in x.

Bemerkung 6.31. i) Nach Konvention ist $T_x^{(1)} > 0$, auch bei Start in x.

ii) Die $T_x^{(k)}$ sind Stoppzeiten bezüglich $(\mathcal{F}_n)_n$ mit $\mathcal{F}_n = \sigma(X_0, \dots, X_n)$.

Definition 6.32. $F\ddot{u}r \ x, y \in E \ sei$

$$F(x,y) \coloneqq \mathbf{P}_x(T_y^{(1)} < \infty) = \mathbf{P}\left(\bigcup_{n=1}^{\infty} \{X_n = y\}\right)$$

die Wahrscheinlichkeit, bei Start in x jemals y zu erreichen, beziehungsweise für y = x die Wahrscheinlichkeit, bei Start in x jemals nach x zurückzukehren.

Lemma 6.33. Für $x, y \in E$ und $k \in \mathbb{N}$ gilt $P_x(T_y^{(k)} < \infty) = F(x, y)F(y, y)^{k-1}$.

Intuitiv: Damit $T_y^{(k)} < \infty$ gilt, muss die Kette zunächst y erreichen und dann noch (k-1)-mal zurückkehren.

Beweis. Durch Induktion über $k \in \mathbb{N}$. Für k = 1 gilt die Aussage nach Definition von F(x, y). Sei die Behauptung also für $k \in \mathbb{N}$ erfüllt. Es gilt

$$\begin{aligned} \mathbf{P}_{x}(T_{y}^{(k+1)} < \infty) &= \mathbf{E}_{x} \Big[\mathbf{P}_{x} \Big(T_{y}^{(k+1)} < \infty \, | \, \mathcal{F}_{T_{y}^{(k)}} \Big) \mathbb{1}_{\{T_{y}^{(k)} < \infty\}} \Big] \\ &= \mathbf{E}_{x} \Big[\mathbf{P}_{x} \Big(\inf\{n > 0 : X_{T_{y}^{(k)} + n} = y\} < \infty \, | \, \mathcal{F}_{T_{y}^{(k)}} \Big) \mathbb{1}_{\{T_{y}^{(k)} < \infty\}} \Big] \\ &= \mathbf{E}_{x} \Big[\mathbf{P}_{X_{T_{y}^{(k)}}} \Big(T_{y}^{(1)} < \infty \Big) \mathbb{1}_{\{T_{y}^{(k)} < \infty\}} \Big] \\ &= \mathbf{E}_{x} \Big[\mathbf{P}_{y} \Big(T_{y}^{(k)} < \infty \Big) \mathbb{1}_{\{T_{y}^{(k)} < \infty\}} \Big] \\ &= F(y, y) \mathbf{P}_{x} \Big(T_{y}^{(k)} < \infty \Big) = F(y, y) F(x, y) F(y, y)^{k-1} \\ &= F(x, y) F(y, y)^{k}, \end{aligned}$$

wobei wir in der vierten Zeile die starke Markov-Eigenschaft und in der fünften Zeile die Induktionsannahme verwendet haben. \Box

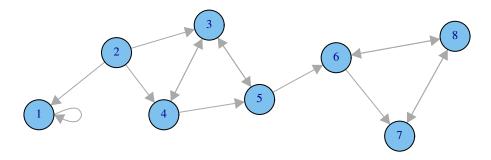
Definition 6.34. Ein Zustand $x \in E$ heißt (bezüglich p)

- rekurrent, falls F(x,x) = 1,
- positiv rekurrent, falls $\mathbf{E}_x[T_x^{(1)}] < \infty$ (also insbesondere F(x,x) = 1),
- null rekurrent, falls $\mathbf{E}_x [T_x^{(1)}] = \infty$ und F(x, x) = 1,
- transient, falls F(x,x) < 1,
- absorbierend, falls $p_{xx} = 1$.

Die Markov-Kette X heißt (positiv / null-) rekurrent, wenn dies für jeden Zustand gilt. X heißt transient, wenn jeder rekurrente Zustand absorbierend ist.

Bemerkung 6.35. Es gilt: x absorbierend $\Rightarrow x$ positiv rekurrent $\Rightarrow x$ rekurrent.

Beispiel 6.36. Betrachte folgende Markov-Kette auf $E = \{1, 2, ..., 8\}$ wobei die Pfeile positiven Übergangswahrscheinlichkeiten entsprechen:



Zustand 1 ist absorbierend, Zustände 2,3,4,5 sind transient und Zustände 6,7,8 sind (positiv) rekurrent.

Definition 6.37. Sei $N(y) := \sum_{n=0}^{\infty} \mathbb{1}_{\{X_n = y\}}$ die Anzahl der Besuche in $y \in E$. Sei

$$G(x,y) \coloneqq \mathbf{E}_x[N(y)] = \sum_{n=0}^{\infty} p_{x,y}^n.$$

 $G hei\beta t Greenfunktion^1 von X$.

Satz 6.38. $F\ddot{u}r \ x, y \in E \ gilt$

$$G(x,y) = \begin{cases} \frac{F(x,y)}{1-F(y,y)}, & y \neq x \\ \frac{1}{1-F(y,y)}, & y = x \end{cases}$$

¹benannt nach George Green (1793-1841), der ein analoges Objekt in der Theorie der partiellen Differentialgleichungen eingeführt hat

mit Konvention $1/0 = \infty$. Insbesondere ist $G(x,y) = F(x,y)G(y,y) + \mathbb{1}_{\{x=y\}}$ und y ist genau dann rekurrent, wenn $G(y,y) = \infty$.

Beweis.

$$G(x,y) = \mathbf{E}_x[N(y)] = \sum_{k=1}^{\infty} \mathbf{P}_x(N(y) \ge k) = \mathbb{1}_{\{x=y\}} + \sum_{k=1}^{\infty} \mathbf{P}_x(T_y^{(k)} < \infty)$$
$$= \mathbb{1}_{\{x=y\}} + \sum_{k=1}^{\infty} F(x,y)F(y,y)^{k-1} = \mathbb{1}_{\{x=y\}} + \frac{F(x,y)}{1 - F(y,y)}$$

Satz 6.39. Sei $x \in E$ rekurrent und es gelte F(x,y) > 0 für ein $y \in E$. Dann ist auch y rekurrent und es gilt F(x,y) = F(y,x) = 1. Falls x positiv rekurrent ist, so auch y und es gilt $\mathbf{E}_x[T_y^{(1)}], \mathbf{E}_y[T_x^{(1)}] < \infty$.

Beweis. Sei ohne Einschränkung $y \neq x$. Wegen F(x,y) > 0 gibt es ein $k \in \mathbb{N}$ und $x_1, \ldots, x_k \in E$ mit $x_k = y$, $x_i \neq x$ für $i = 1, \ldots, k$ und $\mathbf{P}_x(X_1 = x_1, \ldots, X_k = x_k) > 0$. Insbesondere ist $p_{xy}^k > 0$. Es gilt

$$0 = 1 - F(x, x) = \mathbf{P}_{x}(T_{x}^{(1)} = \infty) \ge \mathbf{P}_{x}(X_{1} = x_{1}, \dots, X_{k} = x_{k}, T_{x}^{(1)} = \infty)$$

$$= \mathbf{E}_{x} \left[\mathbf{P}_{x}(X_{1} = x_{1}, \dots, X_{k} = x_{k}, T_{x}^{(1)} = \infty | \mathcal{F}_{k}) \right]$$

$$= \mathbf{P}_{x}(X_{1} = x_{1}, \dots, X_{k} = x_{k}) \mathbf{P}_{y}(T_{x}^{(1)} = \infty),$$

also $\mathbf{P}_y(T_x^{(1)} = \infty) = 0$ und damit $F(y, x) = 1 - \mathbf{P}_y(T_x^{(1)} = \infty) = 1$. Insbesondere gilt $p_{yx}^{\ell} > 0$ für ein $\ell \in \mathbb{N}$, somit

$$G(y,y) = \sum_{n=0}^{\infty} p_{yy}^{n} \ge \sum_{m=0}^{\infty} p_{yx}^{\ell} p_{xx}^{m} p_{xy}^{k} = p_{yx}^{\ell} p_{xy}^{k} G(x,x) = \infty$$

nach Voraussetzung, das heißt y ist rekurrent. Vertauschung der Rollen von x und y zeigt nun auch F(x,y) = 1.

Sei nun x positiv rekurrent und x_1, \ldots, x_k wie zuvor, dann gilt

$$\infty > \mathbf{E}_{x}[T_{x}^{(1)}] \ge \mathbf{E}_{x}[\mathbb{1}_{\{X_{1}=x_{1},...,X_{k}=x_{k}\}}T_{x}^{(1)}] = \mathbf{E}_{x}[\mathbf{E}_{x}[\mathbb{1}_{\{X_{1}=x_{1},...,X_{k}=x_{k}\}}T_{x}^{(1)} | \mathcal{F}_{k}]]$$

$$= \mathbf{E}_{x}[\mathbb{1}_{\{X_{1}=x_{1},...,X_{k}=x_{k}\}}\mathbf{E}_{y}[T_{x}^{(1)}]] = \mathbf{P}_{x}(X_{1}=x_{1},...,X_{k}=x_{k})\mathbf{E}_{y}[T_{x}^{(1)}],$$

demnach ist $\mathbf{E}_y[T_x^{(1)}] < \infty$. Nach Vertauschung der Rollen von x und y erhält man nun auch $\mathbf{E}_x[T_y^{(1)}] < \infty$.

Definition 6.40. Eine diskrete Markov-Kette heißt irreduzibel, wenn

$$F(x,y) > 0 \quad \forall x,y \in E.$$

Bemerkung 6.41. i) Eine irreduzible Kette X besitzt entweder nur rekurrente oder nur transiente Zustände. Falls |E| > 1, so gibt es keine absorbierenden Zustände.

ii) Ist $|E| < \infty$ und X irreduzibel, so ist X rekurrent.

Beweis. i) Die Aussage folgt aus Satz 6.39.

ii) Sei $x \in E$. Es gilt

$$\sum_{y \in E} G(x, y) = \sum_{n=0}^{\infty} \sum_{y \in E} p_{xy}^n = \sum_{n=0}^{\infty} 1 = \infty,$$

das heißt es gibt ein y mit $G(x,y)=\infty$. Wegen der Irreduzibilität von X existiert ein $k\in\mathbb{N}$ mit $p_{yx}^k>0$, somit gilt auch

$$G(x,x) \ge \sum_{m=0}^{\infty} p_{xy}^m p_{yx}^k = G(x,y) p_{yx}^k = \infty.$$

Beispiel 6.42 (Irrfahrten auf \mathbb{Z}^d). Seien Y_1, Y_2, \ldots unabhängige und identisch verteilte, \mathbb{Z}^d wertige Zufallsvariablen. Sei $(X_n)_{n \in \mathbb{N}_0}$ eine Markov-Kette mit Übergangsmatrix $p_{xy} = \mathbf{P}(Y_1 = y - x)$, das heißt unter \mathbf{P}_x ist

$$(X_n)_{n\in\mathbb{N}_0} \stackrel{d}{=} (x + Y_1 + \dots + Y_n).$$

i) Sei $\mu := \mathbf{E}[Y_1] \neq \mathbf{0}$. Dann gilt für jedes $x \in \mathbb{Z}^d$

$$\frac{X_n}{n} \to \mu \quad \mathbf{P}_x$$
-f.s.,

insbesondere ist $\#\{n \in \mathbb{N}_0 \mid X_n = x\} < \infty$ \mathbf{P}_x -f.s., das heißt X ist transient.

ii) Sei $\mu := \mathbf{E}[Y_1] = \mathbf{0}$, $\mathbf{E}[||Y_1||^2] < \infty$, die Kovarianzmatrix $C = (\mathbf{Cov}[Y_{1_i}, Y_{1,j}])_{i,j=1,\dots,d}$ sei invertierbar und die von $\{y \mid \mathbf{P}(Y_1 = y) > 0\}$ erzeugte Gruppe sei \mathbb{Z}^d . Dann gilt

$$p_{\mathbf{0},\mathbf{0}}^{n} = \mathbf{P}_{0}(X_{n} = \mathbf{0}) = \mathbf{P}(Y_{1} + \dots + Y_{n} = \mathbf{0}) \sim \frac{1}{(2\pi)^{d/2} |\det(C)|^{1/2} n^{d/2}}$$

für $n \to \infty$ (lokaler Zentraler Grenzwertsatz, zum Beispiel via Fourier-Inversion). Somit

ist

$$G(\mathbf{0}, \mathbf{0}) = \sum_{n=0}^{\infty} p_{\mathbf{0}, \mathbf{0}}^{n} \begin{cases} = \infty, & d = 1, 2, \\ < \infty, & d \ge 3, \end{cases}$$

das heißt eine zentrierte Irrfahrt mit endlicher Varianz ist genau dann rekurrent, wenn $d \le 2$.

6.4.3 Invariante Verteilungen

Für ein Maß μ auf E sei $\mu p(\lbrace x \rbrace) = \sum_{y \in E} \mu(\lbrace y \rbrace) p_{yx}$ (Transport von μ durch den Übergangskern p).

Definition 6.43. Ein $(\sigma$ -endliches) Maß μ heißt (p-)invariant, falls $\mu p = \mu$. Ist μ zudem ein Wahrscheinlichkeitsmaß, so heißt es auch eine invariante Verteilung (auch: Gleichgewichtsverteilung) von p.

Lemma 6.44. Sei jeder Zustand transient. Dann gibt es keine invariante Verteilung für p.

Beweis. Nach Voraussetzung und Satz 6.38 ist $G(x,y) = \sum_{n} p_{xy}^{n} < \infty$, insbesondere gilt $p_{xy}^{n} \to 0$ für $n \to \infty$ für alle $x, y \in E$.

Angenommen μ wäre eine invariante Verteilung. Dann gibt es ein $y \in E$ mit $\mu(\{y\}) > 0$, ein endliches $E' \subset E$ mit $\mu(E \setminus E') \leq \frac{1}{4}\mu(\{y\})$ und für genügend großes n ist

$$\max_{x \in E'} p_{xy}^n < \frac{\mu(\{y\})}{4\mu(E')}.$$

Somit folgt

$$\mu(\{y\}) = \mu p(\{y\}) = \dots = \mu p^n(\{y\}) = \sum_{x \in E'} \mu(\{x\}) p_{xy}^n + \sum_{x \in E \setminus E'} \mu(\{x\}) p_{xy}^n$$

$$\leq \frac{1}{4} \mu(\{y\}) + \frac{1}{4} \mu(\{y\}) = \frac{1}{2} \mu(\{y\}),$$

also ein Widerspruch.

Satz 6.45. Sei x rekurrenter Zustand, dann definiert

$$\mu_x(\{y\}) \coloneqq \mathbf{E}_x \left[\sum_{n=0}^{T_x^{(1)} - 1} \mathbb{1}_{\{X_n = y\}} \right] = \sum_{n=0}^{\infty} \mathbf{P}_x(X_n = y, T_x^{(1)} > x), \quad y \in E$$

ein invariantes Ma $\beta \mu_x$.

Diese Konstruktion wird auch der "Zyklus-Trick" genannt. Intuitiv ist $\mu_x(\{y\})$ die erwar-

tete Anzahl Besuche in y während $\{0,1,\ldots,T_x^{(1)}-1\}$ und $\mu_x p(\{y\})$ die erwartete Anzahl Besuche in y während $\{1,2,\ldots,T_x^{(1)}\}$, diese Anzahlen sind aber wegen $X_{T_x^{(1)}}=x$ gleich.

Beweis. Zeige zunächst $\mu_x(\{y\}) < \infty$ für alle $y \in E$. Es gilt $\mu_x(x) = 1$ und $\mu_x(y) = 0$, falls F(x,y) = 0. Falls F(x,y) > 0 für $y \neq x$, so setze $\hat{F}(x,y) := \mathbf{P}_x(T_y^{(1)} < T_x^{(1)})$. Dann ist $\hat{F}(x,y) > 0$ und $\hat{F}(y,x) > 0$ und es gilt

$$\mathbf{E}_{y} \left[\sum_{n=0}^{T_{x}^{(1)}-1} \mathbb{1}_{\{X_{n}=y\}} \right] = 1 + \mathbf{E}_{y} \left[\sum_{n=T_{y}^{(1)}}^{T_{x}^{(1)}-1} \mathbb{1}_{\{X_{n}=y\}} \mathbb{1}_{\{T_{y}^{(1)} < T_{x}^{(1)}\}} \right]$$

$$= 1 + \mathbf{E}_{y} \left[\mathbf{E}_{y} \left[\sum_{n=T_{y}^{(1)}}^{T_{x}^{(1)}-1} \mathbb{1}_{\{X_{n}=y\}} \mathbb{1}_{\{T_{y}^{(1)} < T_{x}^{(1)}\}} \mid \mathcal{F}_{T_{y}^{(1)}} \right] \right]$$

$$= 1 + \mathbf{E}_{y} \left[\mathbb{1}_{\{T_{y}^{(1)} < T_{x}^{(1)}\}} \mathbf{E}_{y} \left[\sum_{n=0}^{T_{x}^{(1)}-1} \mathbb{1}_{\{X_{n}=y\}} \right] \right]$$

$$= 1 + \left(1 - \hat{F}(y, x) \right) \mathbf{E}_{y} \left[\sum_{n=0}^{T_{x}^{(1)}-1} \mathbb{1}_{\{X_{n}=y\}} \right],$$

das heißt

$$\mathbf{E}_y \left[\sum_{n=0}^{T_x^{(1)} - 1} \mathbb{1}_{\{X_n = y\}} \right] = \frac{1}{\hat{F}(y, x)}.$$

Damit folgt

$$\mu_{x}(\{y\}) = \mathbf{E}_{x} \left[\sum_{n=0}^{T_{x}^{(1)}-1} \mathbb{1}_{\{X_{n}=y\}} \right] = \mathbf{E}_{x} \left[\mathbb{1}_{\{T_{y}^{(1)} < T_{x}^{(1)}\}} \sum_{n=T_{y}^{(1)}}^{T_{x}^{(1)}-1} \mathbb{1}_{\{X_{n}=y\}} \right]$$
$$= \mathbf{P}_{x} \left(T_{y}^{(1)} < T_{x}^{(1)} \right) \mathbf{E}_{y} \left[\sum_{n=0}^{T_{x}^{(1)}-1} \mathbb{1}_{\{X_{n}=y\}} \right] = \frac{\hat{F}(x,y)}{\hat{F}(y,x)} < \infty$$

Setze nun $\overline{p}_n(x,y) := \mathbf{P}_x(X_n = y, T_x^{(1)} > n)$, dann gilt

$$\mu_x p(\{z\}) = \sum_{y \in E} \mu_x(\{y\}) p_{yz} = \sum_{n=0}^{\infty} \sum_{y \in E} \overline{p}_n(x, y) p_{yz}.$$

1. Fall: $x \neq z$. Es gilt

$$\sum_{y \in E} \overline{p}_n(x, y) = \sum_{y \in E} \underbrace{\mathbf{P}_x(X_n = y, \ T_x^{(1)} > n, \ X_{n+1} = z)}_{=\mathbf{P}_x(X_n = y, \ X_{n+1} = z, \ T_x^{(1)} > n+1)} = \mathbf{P}_x(X_{n+1} = z, \ T_x^{(1)} > n+1)$$

und somit wegen $\overline{p}_0(x,z) = 0$ für $x \neq z$

$$\mu_x p(z) = \sum_{n=0}^{\infty} \overline{p}_{n+1}(x,y) \sum_{n=0}^{\infty} \overline{p}_n(x,y) = \mu_x(\{z\}).$$

2. Fall: x = z. Es gilt

$$\sum_{y \in E} \overline{p}_n(x, y) p_{yx} = \sum_{y \in E} \mathbf{P}_x(X_n = y, \ T_x^{(1)} > n, \ X_{n+1} = x) = \mathbf{P}_x(T_x^{(1)} = n+1),$$

das heißt

$$\mu_x p(\lbrace x \rbrace) = \sum_{n=0}^{\infty} \sum_{y \in E} \overline{p}_n(x, y) p_{yz} = \sum_{n=0}^{\infty} \mathbf{P}_x(T_x^{(1)} = n+1) = 1 = \mu_x(\lbrace x \rbrace).$$

Damit ist μ_x ein invariantes Maß.

Korollar 6.46. *Ist x positiv rekurrent, so definiert*

$$\pi \coloneqq \frac{1}{\mathbf{E}_x \big[T_x^{(1)} \big]} \mu_x$$

eine invariante Verteilung.

Satz 6.47. Eine irreduzible Markov-Kette besitzt höchstens eine invariante Verteilung.

Beweis. Seien $\pi, \nu \in \mathcal{M}_1(E)$ invariante Verteilungen. $\tilde{p}_{xy} := \sum_{n=1}^{\infty} 2^{-n} p_{xy}^n$ ist eine stochastische Matrix und aufgrund der Irreduzibilität gilt $\tilde{p}_{xy} > 0$ für alle $x, y \in E$.

 $\mu := \pi - \nu$ ist ein signiertes Maß mit $\mu \tilde{p} = \mu$ und $\mu(E) = 0$. Angenommen μ ist nicht das Nullmaß, dann gibt es $x_1, x_2 \in E$ mit $\mu(\{x_1\}) < 0 < \mu(\{x_2\})$, somit

$$\left| \mu(\{x_1\}) \tilde{p}_{x_1 y} + \mu(\{x_2\}) \tilde{p}_{x_2 y} \right| < \left| \mu(\{x_1\}) \tilde{p}_{x_1 y} \right| + \left| \mu(\{x_2\}) \tilde{p}_{x_2 y} \right| \quad \forall \ y \in E$$

und

$$\|\mu \tilde{p}\|_{\mathrm{TV}} = \sum_{y} \left| \sum_{x} \mu(\{x\}) \tilde{p}_{xy} \right| < \sum_{y} \sum_{x} |\mu(\{x\})| \tilde{p}_{xy} = \sum_{x} |\mu(\{x\})| = \|\mu\|_{\mathrm{TV}} = \|\mu \tilde{p}\|_{\mathrm{TV}}.$$

Dies ist ein Widerspruch, μ muss also das Nullmaß sein und somit gilt $\pi = \nu$.

Satz 6.48. Eine irreduzible Markov-Kette X ist genau dann positiv rekurrent, wenn sie eine

(notwendigerweise eindeutige) invariante Verteilung π besitzt. Diese ist dann gegeben durch

$$\pi(\lbrace x \rbrace) = \frac{1}{\mathbf{E}_x \lceil T_x^{(1)} \rceil} > 0, \quad x \in E.$$

Beweis. Wenn x positiv rekurrent ist, so gibt es nach Korollar 6.46 eine invariante Verteilung, welche nach Satz 6.47 eindeutig ist.

Sei nun π eine invariante Verteilung. Wegen $\pi p = \pi$ und der Irreduzibilität von X gilt $\pi(\{x\}) > 0$ für jedes $x \in E$. Setze $\mathbf{P}_{\pi} \coloneqq \sum_{x \in E} \pi(\{x\}) \mathbf{P}_{x}$, das heißt unter \mathbf{P}_{π} ist $X_{0} \sim \pi$. Für $x \in E$ und $n \in \mathbb{N}$ sei $\sigma_{x}^{(n)} \coloneqq \sup\{m \le n : X_{m} = x\}$ mit Werten in $\{0, 1, \ldots, n\} \cup \{-\infty\}$. Für $k \le n$ ist

$$\mathbf{P}_{\pi}(\sigma_{x}^{(n)} = k) = \mathbf{P}_{\pi}(X_{k} = x, X_{k+1} \neq x, \dots, X_{n} \neq x)$$

$$= \mathbf{P}_{\pi}(X_{k} = x)\mathbf{P}_{x}(X_{1} \neq x, \dots, X_{n-k} \neq x)$$

$$= \pi(\{x\})P_{x}(T_{x}^{(1)} \geq n - k + 1),$$

wobei wir in der zweiten Zeile die Markov-Eigenschaft und in der dritten Zeile die Invarianz von π ausnutzen. Somit folgt

$$1 = \sum_{k=0}^{n} \mathbf{P}_{\pi}(\sigma_{x}^{(n)} = k) + \mathbf{P}_{\pi}(\sigma_{x}^{(n)} = -\infty)$$

$$\stackrel{(\dagger)}{=} \pi(\{x\}) \sum_{k=0}^{n} P_{x}(T_{x}^{(1)} \ge n - k + 1) + \mathbf{P}_{\pi}(T_{x}^{(1)} \ge n + 1).$$

Weiter gilt wegen der Irreduzibilität und mit monotoner Konvergenz

$$\mathbf{P}_{\pi}(T_x^{(1)} \ge n+1) = \sum_{y} \pi(\{y\}) \mathbf{P}_y(T_x^{(1)} \ge n+1) \xrightarrow[n \to \infty]{} 0,$$

das heißt mit $n \to \infty$ folgt aus (†)

$$1 = \pi(\{x\}) \sum_{\ell=1}^{\infty} P_x(T_x^{(1)} \ge \ell) = \pi(\{x\}) \mathbf{E}_x [T_x^{(1)}].$$

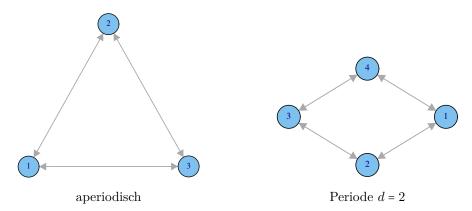
Damit ist $\mathbf{E}_x[T_x^{(1)}] < \infty$ und folglich x positiv rekurrent.

6.4.4 Konvergenz ins Gleichgewicht

Definition 6.49. Für $x, y \in E$ sei $N(x, y) := \{n \in \mathbb{N} \mid p_{xy}^n > 0\}.$

- i) $d_x := ggT(N(x,x))$ heißt Periode des Zustands x.
- ii) Falls $d_x = d_y = d$ für alle $x, y \in E$, so heißt d die Periode der Markov-Kette X.
- iii) X heißt aperiodisch, wenn $d = d_x = 1$ für alle $x \in E$.

Beispiel 6.50.



Lemma 6.51. i) Für $x \in E$ gibt es ein $n_x \in \mathbb{N}$ mit $p_{xx}^{nd_x} > 0$ für alle $n \ge n_x$.

ii) Im irreduziblen Fall gilt $d_x = d_y$ für alle $x, y \in E$.

Beweis. i) Setze $\tilde{N} := \frac{N(x,x)}{d_x}$, dann ist $\tilde{N} \subset \mathbb{N}_0$ mit $ggt(\tilde{N}) = 1$ und \tilde{N} ist abgeschlossen unter Addition.

Zeige: Es gibt ein $n' \in \mathbb{N}_0$ mit $n', n' + 1 \in \tilde{N}$. Seien dazu $n_0, n_0 + k \in \tilde{N}$. Falls k = 1, so ist $n' = n_0$. Ist k > 1, so gibt es ein $n_1 \in \tilde{N}$ mit $k + n_1$, das heißt $n_1 = mk + r$ mit $m \in \mathbb{N}$ und $r \in \{1, \ldots, k - 1\}$. Es gilt $\tilde{N} \ni (m + 1)(n_0 + k) > (m + 1)n_0 + n_1 \in \tilde{N}$ mit Differenz $(m + 1)k - n_1 = k - r < k$. Iteriere dieses Argument maximal k mal und erhalte n'.

Sei nun $n_x := (n')^2$. Für $n \ge n_x$ schreibe $n = (n')^2 + n - (n'^2) = (n')^2 + kn' + r$ mit $r \in \{0, 1, ..., n' - 1\}$ und $k \in \mathbb{N}_0$, demnach ist $n = r(n' + 1) + (n' - r + k)n' \in \tilde{N}$.

ii) Es gilt $N(x,y) + N(y,z) \subset N(x,z)$ für alle $x,y,z \in E$, denn $p_{xz}^{m+n} \ge p_{xy}^m p_{yz}^n$.

Wegen der Irreduzibilität existieren $m \in N(x,y)$ und $n \in N(y,x)$. Sei $k \ge n_y$ (das heißt $kd_y \in N(y,y)$), dann folgt $m + kd_y \in N(x,y)$ und $m + n + kd_y \in N(x,x)$, also

$$d_x \mid \underbrace{(m+n)}_{\in N(x,x)} + kd_y$$
 für alle $k \ge n_y$.

Demnach gilt $d_x \mid d_y$ und mit vertauschten Rollen von x und y auch $d_y \mid d_x$, das heißt $d_x = d_y$.

Bericht 6.52. Im irreduziblen Fall mit Periode d>1 kann man $E=E_0\cup E_1\cup\cdots\cup E_{d-1}$ disjunkt zerlegen, so dass

$$p_{xy} > 0, x \in E_i \implies y \in E_{(i+1) \mod d}$$

gilt (vgl. [Kle13, Satz 18.4]).

Satz 6.53. Sei X eine aperiodische, irreduzible Markov-Kette mit invarianter Verteilung π . Dann gilt für jedes $x \in E$

$$\sum_{y \in E} \left| \mathbf{P}_x(X_n = y) - \pi(\{y\}) \right| \xrightarrow[n \to \infty]{} 0.$$

Beweis. Wir konstruieren eine Kopplung von \mathbf{P}_x und \mathbf{P}_{π} .

 $\overline{p}_{(x_1,x_2),(y_1,y_2)} \coloneqq p_{x_1,y_1}p_{x_2,y_2}$ ist eine irreduzible stochastische Matrix auf $E \times E$ (die Irreduzibilität verwendet Lemma 6.51), $\overline{\pi}(\{x,y\}) \coloneqq \pi(\{x\})\pi(\{y\})$ ist zugehörige invariante Verteilung. Sei $(X_n,Y_n)_n$ eine \overline{p} -Markov-Kette mit Startverteilung $\delta_x \otimes \pi$. Nach Satz 6.48 ist (X,Y) rekurrent, insbesondere ist $T \coloneqq \inf\{n \in \mathbb{N}_0 : X_n = Y_n\} < \infty$ f.s. und es gilt

$$\mathbf{P}(X_{n} = y, T \leq n) = \sum_{m=0}^{n} \sum_{x} \underbrace{\mathbf{P}(T = m, X_{m} = x, X_{n} = y)}_{=\mathbf{P}(T = m, X_{m} = x) p_{xy}^{n-m} = \mathbf{P}(T = m, Y_{m} = x) p_{xy}^{n-m}$$

$$= \sum_{m=0}^{n} \sum_{x} \mathbf{P}(T = m, Y_{m} = x, Y_{n} = y) = \mathbf{P}(Y_{n} = y, T \leq n),$$

$$\mathbf{P}(X_{N} = y) = \mathbf{P}(Y_{n} = y, T \leq n) + \mathbf{P}(X_{N} = y, T > n) \leq \mathbf{P}(Y_{N} = y) + \mathbf{P}(X_{N} = y, T > n)$$

und analog $\mathbf{P}(Y_N = y) \leq \mathbf{P}(X_N = y) + \mathbf{P}(Y_N = y, T > n)$, somit

$$\sum_{y \in E} \left| \mathbf{P}_x(X_n = y) - \pi(\{y\}) \right| = \sum_{y \in E} \left| \mathbf{P}(X_n = y) - \mathbf{P}(Y_n = y) \right| \le 2\mathbf{P}(T > n) \xrightarrow[n \to \infty]{} 0.$$

Beispiel 6.54 (Erneuerungskette). Sei $E = \mathbb{N}_0$, $\nu \in \mathcal{M}_1(\mathbb{N})$ und X eine Markov-Kette mit Übergangsmatrix $p_{0,j} = \nu(\{j+1\})$ für $j \in \mathbb{N}_0$, $p_{i,i-1} = 1$ für $i \in \mathbb{N}$ und $p_{ij} = 0$ sonst.

Sei $\mu := \sum_{x \in \mathbb{N}} x \nu(\{x\}) < \infty$ und ggT($\{x : \nu(\{x\}) > 0\}$) = 1, dann ist X aperiodisch, irreduzibel und positiv rekurrent mit (eindeutiger) invarianter Verteilung π , gegeben durch

$$\pi(\lbrace x \rbrace) = \frac{1}{\mu} \nu(\lbrace x+1, x+2, \dots \rbrace), \quad x \in \mathbb{N}_0$$

(falls $m := \sup\{x : \nu(\{x\}) > 0\} < \infty$ so muss man wörtlich auf $E' := \{0, 1, \dots, m+1\}$ einschränken).

Beweis. Die Irreduzibilität und Aperiodizität von X sind klar. Weiter gilt

$$\pi(\{j+1\})p_{j+1,j}+\pi(\{0\})p_{0,j}=\frac{1}{u}(\nu(\{j+2,\dots\})\cdot 1+1\cdot \nu(\{j+1\}))=\pi(\{j\}),$$

somit ist π die invariante Verteilung.

Satz 6.55 (Diskreter Erneuerungssatz). Mit der Darstellung

$$X_n := \inf \left\{ T_k - n \mid k \in \mathbb{N}_0, T_k \ge n \right\}$$

 $mit \ \xi_1, \xi_2, \dots \sim \nu \ unabhängig, \ \mathbf{E}[\xi_1] = \mu, \ T_0 \coloneqq x_0 \ und \ T_m \coloneqq x_0 + \xi_1 + \dots + \xi_m \ f\"{u}r \ m \in \mathbb{N} \ ergibt \ sich \ aus \ Satz \ 6.53$

$$\mathbf{P}(\exists k \in \mathbb{N} : T_k = n) = \mathbf{P}_{x_0}(X_n = 0) \xrightarrow[n \to \infty]{} \pi(\{0\}) = \frac{1}{\mu}.$$

6.4.5 Markov-Ketten und Randwertprobleme

Definition 6.56. Sei $f: E \to \mathbb{R}$, $pf(x) := \sum_{y \in E} p_{xy} f(y)$ (f sei derart, dass die Summe existiert). f heißt harmonisch (für p), wenn pf = f. f heißt subharmonisch, wenn $pf \ge f$ und superharmonisch, falls $pf \le f$.

Bemerkung 6.57. Ist f harmonisch und $(X_n)_n$ eine p-Markov-Kette, so ist $(f(X_n))_n$ ein Martingal.

Definition 6.58. Sei $\emptyset \neq A \subset E$ und $g: A \to \mathbb{R}$ beschränkt. f löst das Dirichlet-Problem (zu p-I) auf $E \setminus A$ mit Randwerten g (auf A), wenn gilt

$$(pf-f)(x) = 0, x \in E \setminus A,$$

 $f(x) = g(x), x \in A.$

Beobachtung 6.59. Sei $(X_n)_n$ *p*-Markovkette, $\tau_A := \inf\{n \in \mathbb{N}_0 : X_n \in A\}$ (die Treffzeit von $A \subset E$) und es gelte $\mathbf{P}_x(\tau_A < \infty) = 1$ für alle $x \in E$. Dann löst $f(x) := \mathbf{E}_x[g(X_{\tau_A})]$ das Dirichlet-Problem mit Randwerten g.

Beweis. Offenbar ist f(x) = g(x) für $x \in A$, denn dann ist $\mathbf{P}_x(\tau_A = 0) = 1$. Für $x \notin A$ gilt wegen der Markov-Eigenschaft

$$\mathbf{E}_{x}[g(X_{\tau_{A}})|X_{1}=y] = \begin{cases} g(y) = f(y), & y \in A, \\ \mathbf{E}_{y}[g(X_{\tau_{A}})] = f(y), & y \notin A. \end{cases}$$

Demnach ist für $x \notin A$

$$f(x) = \sum_{y} \mathbf{P}_{x}(X_{1} = y) \mathbf{E}_{x}[g(X_{\tau_{A}})|X_{1} = y] = \sum_{y} p_{xy}f(y) = pf(x).$$

Bemerkung 6.60. Auch $\tilde{f}(x) = \mathbf{E}_x[g(X_{\tau_A})\mathbb{1}_{\{\tau_A < \infty\}}]$ löst das Dirichlet-Problem. Ist $\mathbf{P}_x(\tau_A = \infty) > 0$, so kann es verschiedene Lösungen geben.

Sei $\tilde{p}_{xy} := \mathbb{1}_{E \setminus A}(x) p_{xy} + \mathbb{1}_A \delta_{xy}$ (\tilde{p} ist die Übergangsmatrix von $\tilde{X}_n := X_{n \wedge \tau_A}$, der in A absorbierten Kette). Wir treffen folgende Annahme:

$$\forall x \in E \setminus A, y \in E : \exists n \in \mathbb{N}_0 : \tilde{p}_{xy}^n > 0 \quad \text{und} \quad \inf_{x \in E} \mathbf{P}_x(\tau_A < \infty) = 1$$
 (Irr_A)

Satz 6.61 (Maximumprinzip). Es gelte (Irr_A). Sei $f: E \to \mathbb{R}$ mit (pf - f)(x) = 0 für $x \in E \setminus A$ und es gebe $x^* \in E \setminus A$ mit $f(x^*) = \sup_{x \in E} f(x)$. Dann ist f konstant.

Beweis. Es gilt $f(x) = \tilde{p}f(x) = \cdots = \tilde{p}^n f(x)$, insbesondere

$$f(x^*) = \tilde{p}^n f(x^*) = \sum_{y} \tilde{p}_{x^*y}^n f(y) \le f(x^*),$$

also gilt $f(y) = f(x^*)$ für alle $y \in \{z \in E \mid \tilde{p}^n_{x^*z} > 0\}$. Nach Annahme ist $\cup_{n=1}^{\infty} A_n = E$.

Satz 6.62. Unter der Annahme (Irr_A) ist für jede beschränkte Funktion $g: A \to \mathbb{R}$ das Dirichlet-Problem mit Randwerten g eindeutig lösbar durch $f(x) = \mathbf{E}_x[g(X_{\tau_A})]$.

Beweis. Seien f_1 und f_2 Lösungen. Da g beschränkt ist, sind gemäß Satz 6.61 (Maximum-prinzip) auch f_1 und f_2 beschränkt mit $||f_1||_{\infty}, ||f_2||_{\infty} \le ||g||_{\infty}$.

 $\hat{f} := f_1 - f_2$ erfüllt $(p\hat{f} - \hat{f})|_{E \setminus A} \equiv 0$ und $\hat{f}|_A \equiv 0$, also muss $\hat{f} \equiv 0$ sein, denn ein $x^* \in E \setminus A$ mit $f(x^*) > 0$ oder $-f(x^*) > 0$ ergäbe einen Widerspruch zum Maximumprinzip.

Beispiel 6.63 (Einfache Irrfahrt auf \mathbb{Z} mit Drift). Sei $E = \mathbb{Z}, r \in (\frac{1}{2}, 1)$ und

$$p_{xy} = r\delta_{y,x+1} + (1-r)\delta_{y,x-1}.$$

 $\varphi(x) \coloneqq \left(\frac{1-r}{r}\right)^x$ ist harmonisch. Sei $A \coloneqq \left((-\infty,a] \cup [b,\infty)\right) \cap \mathbb{Z}$ mit $-a,b \in \mathbb{N}$ und betrachte $g(a) = 1, \ g(b) = 0$. Für a < x < b ist

$$\mathbf{P}_x(\tau_{\{a\}} < \tau_{\{b\}}) = \mathbf{E}_x[g(\tau_A)] = \frac{\left(\frac{1-r}{r}\right)^b - \left(\frac{1-r}{r}\right)^x}{\left(\frac{1-r}{r}\right)^b - \left(\frac{1-r}{r}\right)^a}.$$

6.4.6 Beispiel Gibbs-Sampler und Isingmodell

Das Ising-Modell² ist ein einfaches thermodynamisches und quantenmechanisches Modell für (Ferro-) Magnetismus von Kristallen.

²Ernst Ising, 1924

- Die Atome sitzen auf den Knoten des Gitters, wir denken an $\Lambda = \{0, 1, \dots, L-1\}^2$ für ein $L \in \mathbb{N}$.
- Jedes Atom $(i,j) \in \Lambda$ besitzt ein magnetisches Moment $x_{(i,j)} \in \{-1,+1\}$ (Spin).
- Atome wechselwirken (nur) mit ihren direkten Nachbarn auf dem Gitter, und sie bevorzugen dieselbe (Spin-) Orientierung wie ihre Nachbarn zu haben.
- Die Energiefunktion eines Zustands $x \in \{\pm 1\}^{\Lambda}$ ist gegeben durch

$$H(x) = -\sum_{(i,j)\sim(i',j')} x_{(i,j)}x_{(i',j')},$$

wobei $(i,j) \sim (i',j')$ bedeutet, dass (i,j) und (i',j') benachbarte Gitterpunkte sind. Demnach ist die Energie eines Zustands umso kleiner, je mehr "gleichsinnige" Nachbarpaare (+/+ oder -/-) es gibt.

• Wegen thermischer Fluktuationen ist der ("mikroskopische") Zustand eines Systems bei Temperatur T>0 zufällig.

Bei Temperatur T>0 hat ein Zustand x die Wahrscheinlichkeit

$$\mu_{\beta}(x) \coloneqq \frac{1}{Z_{\beta}} \exp(-\beta H(x))$$

mit $\beta = \frac{1}{T}$ (inverse Temperatur) und Normierungskonstante (Zustandssumme)

$$Z_{\beta} \coloneqq \sum_{y \in \{\pm 1\}^{\Lambda}} \exp(-\beta H(x)).$$

 μ_{β} ist ein Wahrscheinlichkeitsmaß auf $\{\pm 1\}^{\Lambda}$, die Gibbs³-Verteilung (oft auch Boltzmann⁴-Verteilung).

Um "typische" Konfgurationen im thermischen Gleichgewicht zu beschreiben, müssen wir Erwartungswerte bezüglich μ_{β} ausrechnen. Da Z_{β} eine Summe über $2^{|\Lambda|}$ Terme ist, kann man $\mu_{\beta}(x)$ aber nur sehr schwer ausrechnen (zum Beispiel für ein Gitter der Größe 100×100 sind dies $2^{10000} \approx 2 \cdot 10^{3010}$ Summanden).

Lösungsvorschlag: Finde eine Markov-Kette $(X_n)_{n\in\mathbb{N}_0}$, die $\mu_{\beta}(x)$ als einziges Gleichgewicht besitzt, denn dann hat (für $n\gg 1$) X_n (ungefähr) Verteilung μ_{β} .

Gibbs-Sampler. Für $(i,j) \in \Lambda$, $x \in \{\pm 1\}^{\Lambda}$ sei $x^{(i,j),+} \in \{\pm 1\}^{\Lambda}$ gegeben durch

$$x_{(i',j')}^{(i,j),+} = \begin{cases} +1, & (i',j') = (i,j) \\ x_{(i',j')} & (i',j') \neq (i,j) \end{cases}$$

 $^{^3}$ Josiah Willard Gibbs (1839-1903)

⁴Ludwig Boltzmann, 1844-1906

und analog $x^{(i,j),-}$. Definiere $(A(x,y))_{x,y\in\{\pm 1\}^{\Lambda}}$ durch

$$A(x, x^{(i,j),+}) := \frac{1}{|\Lambda|} \frac{\mu_{\beta}(x^{(i,j),+})}{\mu_{\beta}(x^{(i,j),+}) + \mu_{\beta}(x^{(i,j),-})},$$

$$A(x, x^{(i,j),-}) := \frac{1}{|\Lambda|} \frac{\mu_{\beta}(x^{(i,j),-})}{\mu_{\beta}(x^{(i,j),+}) + \mu_{\beta}(x^{(i,j),-})},$$

$$A(x, y) := 0, \quad \text{falls } y \notin \cup_{(i,j)} \{x^{(i,j),+}, x^{(i,j),-}\}$$

Beachte: A ist eine (irreduzible und aperiodische) stochastische Matrix und man braucht Z_{β} nicht zu kennen, um A zu bestimmen. Interpretation von A: Wähle zufällig einen Gitterpunkt, flippe den Spin dort gemäß μ_{β} , bedingt auf alle anderen Spins. Es gilt

$$\mu_{\beta}(y)A(y,z) = \mu_{\beta}(z)A(z,y)$$
 für alle $y, z \in \{\pm 1\}^{\Lambda}$

(es genügt hier, dies für $y=x^{(i,j),+},\ z=x^{(i,j),-}$ für alle $x\in\{\pm 1\}^\Lambda,\ (i,j)\in\Lambda$ zu prüfen) und somit

$$\sum_{z} \mu_{\beta}(z) A(z, y) = \mu_{\beta}(y) \quad \text{für alle } y \in \{\pm 1\}^{\Lambda}.$$

 μ_{β} ist ein (reversibles) Gleichgewicht für A.

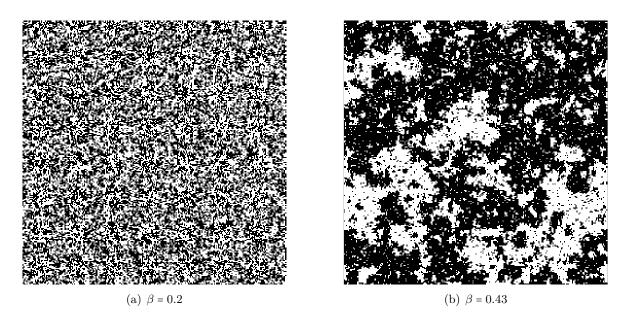


Abbildung 6.1: Simulationen eines Zustands gemäß μ_{β} für L=256

Für einen "Mikro"-Zustand $x\{\pm 1\}^{\Lambda}$ ist

$$m(x) \coloneqq \frac{1}{|\Lambda|} \sum_{(i,j) \in \Lambda} x_{(i,j)}$$

die Magnetisierung (pro Spin) und

$$m_eta \coloneqq \sum_{x \{\pm 1\}^\Lambda} \mu_eta(x) \, |m(x)|$$

die mittlere (absolute) Magnetisierung bei inverser Temperatur β .

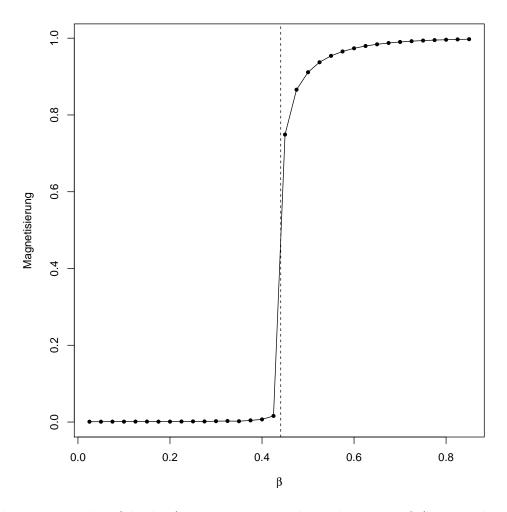


Abbildung 6.2: mittlere (absolute) Magnetisierung als Funktion von β (basierend auf einer Simulation für L=1000)

7 (Etwas) Ergodentheorie

Zur Etymologie des Worts "ergodisch" vgl. auch G. Gallavotti, J. Stat. Phys. 78, 1571-1589 (1995).

Definition 7.1. Ein stochastischer Prozess $(X_n)_{n\in\mathbb{N}_0}$ mit Werten auf einem polnischen Raum E heißt stationär, wenn für alle $m\in\mathbb{N}$ gilt

$$\mathbf{P}((X_n)_{n\in\mathbb{N}_0}\in\cdot)=\mathbf{P}((X_{n+m})_{n\in\mathbb{N}_0}\in\cdot).$$

Beispiel 7.2. i) Sind X_1, X_2, X_3, \ldots unabhängig und identisch verteilt, so ist $(X_n)_{n \in \mathbb{N}_0}$ stationär.

- ii) Ist $(X_n)_{n\in\mathbb{N}_0}$ eine Markov-Kette mit invarianter Verteilung π und $X_0 \sim \pi$, so ist $(X_n)_{n\in\mathbb{N}_0}$ stationär.
- iii) Für $k \in \mathbb{Z}$ seien Y_k unabhängige und identisch verteilte, reelle Zufallsvariablen. Seien $m \in \mathbb{N}_0, c_0, c_1, \ldots, c_m \in \mathbb{R}$ und $X_n := \sum_{j=0}^m c_j Y_{n-j}$ ("gleitendes Mittel"). Dann ist $(X_n)_{n \in \mathbb{N}_0}$ stationär.

Definition 7.3. Sei $(\Omega, \mathcal{A}, \mathbf{P})$ ein Wahrscheinlichkeitsraum und $\tau: \Omega \to \Omega$ messbar.

- i) $A \in \mathcal{A}$ hei βt invariant, falls $\tau^{-1}(A) = A$. $A \in \mathcal{A}$ hei βt quasi-invariant, falls $\mathbf{P}(\tau^{-1}(A) \triangle A) = 0$. $\mathcal{I} := \{A \in \mathcal{A} \mid A \text{ invariant}\}$ hei βt σ -Algebra der invarianten Ereignisse (auch invariante σ -Algebra).
- ii) τ heißt maßtreu (auch maßerhaltend), falls $\mathbf{P}(\tau^{-1}(A)) = \mathbf{P}(A)$ für alle $A \in \mathcal{A}$. $(\Omega, \mathcal{A}, \mathbf{P}, \tau)$ heißt dann (maßerhaltendes) dynamisches System.
- iii) $(\Omega, \mathcal{A}, \mathbf{P}, \tau)$ heißt ergodisch, wenn \mathcal{I} \mathbf{P} -trivial ist, das heißt $\mathbf{P}(A) \in \{0, 1\}$ für alle $A \in \mathcal{I}$.

Bemerkung 7.4. i) Sei $f: \Omega \to \mathbb{R}$ messbar. f ist genau dann \mathcal{I} -messbar, wenn $f = f \circ \tau$.

ii) Ist $A \in \mathcal{I}$ mit $\mathbf{P}(A) \in (0,1)$, so ist $(A, \mathcal{A}_{|A}, \mathbf{P}(\cdot | A), \tau_{|A})$ ein maßerhaltendes dynamisches System $(\mathcal{A}_{|A}$ bezeichnet dabei die Spur- σ -Algebra über A).

Beispiel 7.5 (Rotation des Einheitskreises). Sei $\Omega = [0,1)$ (mit "periodischem Rand"), $\mathcal{A} = \mathcal{B}(\Omega)$, **P** das Lebesgue-Maß auf Ω und $\tau_r: x \mapsto x + r \mod 1$ (alternative Parametrisierung via $x \mapsto e^{2\pi i x}$).

Sei zunächst $r = \frac{p}{q} \in (0,1)$ mit $p,q \in \mathbb{N}$ teilerfremd. Dann gilt

$$\tau_r^q(x) = (x + qr) \mod 1 = (x + p) \mod 1 = x \mod 1 = x,$$

das heißt τ_r hat periodische Orbits. Sei $A_0 := [0, \frac{1}{2q})$ und $A := \bigcup_{n=0}^{q-1} \tau_r^n(A_0)$. Dann ist $\tau_r^{-1}(A) = A$ und $\mathbf{P}(A) = \frac{1}{2} \notin \{0, 1\}$, also ist $(\Omega, \mathcal{A}, \mathbf{P}, \tau_r)$ in diesem Fall nicht ergodisch.

Sei nun $r \in (0,1) \setminus \mathbb{Q}$. Zeige: Die Orbits liegen dicht. Setze dazu $x_n := \tau_r^n(0)$. Es gilt $x_n \neq x_m$ für $n \neq m$, denn sonst wäre rm = rn + k, also $r = \frac{k}{m-n} \in \mathbb{Q}$, was zu einem Widerspruch führen würde. Für alle $N \in \mathbb{N}$ existieren $m, n \in \mathbb{N}_0$ mit $|x_n - x_m| < \frac{1}{N}$ ("Schubfachprinzip"), also existiert auch ein $k \in \mathbb{N}$ mit $0 < x_k \le \frac{1}{N}$ (wähle zum Beispiel k = |n - m|). Für $L := \lceil \frac{1}{x_k} \rceil$ haben $0 < x_k < x_{2k} < \ldots < x_{Lk} < 1$ jeweils einen Abstand kleiner gleich $\frac{1}{N}$, folglich liegen die Orbits dicht.

Sei $A \in \mathcal{I}$ mit $\mathbf{P}(A) > 0$. Falls es ein $x \in A$ und ein $\varepsilon > 0$ gibt mit $(x - \varepsilon, x + \varepsilon) \subset A$, so folgt $[0,1) = \bigcup_{n=0}^{\infty} \tau_r^n((x - \varepsilon, x + \varepsilon)) \subset A$, also A = [0,1) und somit $\mathbf{P}(A) = 1$. Andernfalls benutze den Dichtesatz von Lebesgue:

Bericht 7.6 (Dichtesatz von Lebesgue). Sei λ das Lebesgue-Maß auf \mathbb{R} und $A \in \mathcal{B}(\mathbb{R})$ mit $\lambda(A) > 0$. Dann gilt für $\lambda(\cdot \cap A)$ -fast alle x und $B_{\varepsilon}(x) := (x - \varepsilon, x + \varepsilon)$

$$\lim_{\varepsilon \searrow 0} \frac{\lambda(A \cap B_{\varepsilon}(x))}{\lambda(B_{\varepsilon}(x))} = 1,$$

das heißt

$$\lambda\left(\left\{x\in\mathcal{A}\mid \liminf_{\varepsilon\searrow 0}\frac{\lambda(A\cap B_{\varepsilon}(x))}{\lambda(B_{\varepsilon}(x))}<1\right\}\right)=0.$$

Es gibt ein $x \in A$ mit $\frac{\mathbf{P}(A \cap B_{\varepsilon}(x))}{\mathbf{P}(B_{\varepsilon}(x))} > \frac{3}{4}$ für $0 < \varepsilon < \varepsilon_0$. Falls $A^{\mathsf{c}} = \emptyset$, so ist $\mathbf{P}(A) = 1$. Andernfalls sei $y \in A^{\mathsf{c}}$. Zu $\varepsilon > 0$ gibt es ein $n \in \mathbb{N}$ mit $B_{\varepsilon}(\tau_r^n(x)) \subset B_{2\varepsilon}(y)$, demnach

$$\frac{\mathbf{P}(A^{\mathsf{c}} \cap B_{2\varepsilon}(y))}{\mathbf{P}(B_{2\varepsilon}(y))} = \underbrace{\frac{\mathbf{P}(A^{\mathsf{c}} \cap \tau_r^n(B_{\varepsilon}(x)))}{4\varepsilon}}_{=\frac{1}{4\varepsilon}\mathbf{P}(\tau_r^n(A^{\mathsf{c}} \cap B_{\varepsilon}(x)))} + \underbrace{\frac{\mathbf{P}(A^{\mathsf{c}} \cap (B_{2\varepsilon}(y) \setminus \tau_r^n(B_{\varepsilon}(x))))}{4\varepsilon}}_{\leq \frac{1}{4\varepsilon}\mathbf{P}(B_{2\varepsilon}(y) \setminus \tau_r^n(B_{\varepsilon}(x))) = \frac{2\varepsilon}{4\varepsilon} = \frac{1}{2}}_{\leq \frac{1}{4\varepsilon}\mathbf{P}(B_{\varepsilon}(x))} + \frac{1}{2} \leq \frac{1}{4\varepsilon}\frac{2\varepsilon}{4} + \frac{2\varepsilon}{4\varepsilon} = \frac{5}{8}.$$

Damit gilt $\liminf_{\varepsilon \searrow 0} \frac{\mathbf{P}(A^c \cap B_{\varepsilon}(y))}{\mathbf{P}(B_{\varepsilon}(y))} < 1$ für jedes $y \in A^c$, wonach mit dem Dichtesatz von Lebesgue $\mathbf{P}(A^c) = 0$ folgt. In diesem Fall ist $(\Omega, \mathcal{A}, \mathbf{P}, \tau_r)$ somit ergodisch.

Beispiel und Definition 7.7. Sei $X = (X_n)_{n \in \mathbb{N}_0}$ ein stochastischer Prozess mit Werten in E, realisiert als kanonischer Prozess auf $\Omega = E^{\mathbb{N}_0}$, $\mathcal{A} = \mathcal{B}(E)^{\otimes \mathbb{N}_0}$, $\mathbf{P} = \mathcal{L}((X_n)_{n \in \mathbb{N}_0})$ mit $X_i : \Omega \to E$, $(x_0, x_1, \ldots) \mapsto x_i$ und $\tau : \Omega \to \Omega$, $(x_0, x_1, \ldots) \mapsto (x_1, x_2, \ldots)$. Insbesondere gilt $X_n(\omega) = X_0(\tau^n(\omega))$. X ist genau dann stationär, wenn $(\Omega, \mathcal{A}, \mathbf{P}, \tau)$ ein maßerhaltendes dynamisches System ist. Ein stationärer stochastischer Prozess X heißt ergodisch, wenn dies für $(\Omega, \mathcal{A}, \mathbf{P}, \tau)$ gilt.

Beispiel 7.8. i) Sind X_1, X_2, \ldots unabhängig und identisch verteilt, so ist $(X_n)_n$ ergodisch.

ii) Aperiodische, irreduzible Markov-Ketten mit invarianter Verteilung sind ergodisch.

Satz 7.9 (Ergodensatz). Sei $(\Omega, \mathcal{A}, \mathbf{P}, \tau)$ ein maßerhaltendes dynamisches System, $f: \Omega \to \mathbb{R}$ messbar, $X_n := f \circ \tau^n$ und $S_n := \sum_{j=0}^{n-1} X_j$. Falls $f \in \mathcal{L}^p(\mathbf{P})$ für ein $p \ge 1$, so gilt

$$\frac{1}{n}S_n = \frac{1}{n}\sum_{j=0}^{n-1} f \circ \tau^j \xrightarrow[n \to \infty]{} \mathbf{E}[X_0 \mid \mathcal{I}] \quad f.s. \ und \ in \ \mathcal{L}^p.$$

Die f.s.-Konvergenz in Satz 7.9 heißt traditionell "Birkhoffs¹ individueller Ergodensatz", die \mathcal{L}^p -Konvergenz "von Neumanns² statistischer Ergodensatz."

Lemma 7.10 (Hopfs³ Maximal-Ergodenlemma). In der Situation von Satz 7.9 sei $X_0 \in \mathcal{L}^1$ und $M_n := \max\{0, S_1, S_2, \dots, S_n\}$. Dann gilt $\mathbf{E}[X_0 \mathbb{1}_{\{M_n > 0\}}] \ge 0$.

Beweis. Für $1 \le k \le n$ gilt $X_0 + M_n \circ \tau \ge X_0 + S_k \circ \tau = S_{k+1}$, sowie $X_0 \ge S_1 - M_n \circ \tau$. Damit ist $X_0 \ge \max\{S_1, \dots, S_n\} - M_n \circ \tau$. Weiterhin ist $\{M_n > 0\}^c = \{M_n = 0\} \cap \{M_n \circ \tau \ge 0\} \subset \{M_n - M_n \circ \tau \le 0\}$, also

$$\mathbf{E}[X_0 \mathbb{1}_{\{M_n > 0\}}] \ge \mathbf{E}[(\max\{S_1, \dots, S_n\} - M_n \circ \tau) \mathbb{1}_{\{M_n > 0\}}]$$

$$= \mathbf{E}[(M_n - M_n \circ \tau) \mathbb{1}_{\{M_n > 0\}}]$$

$$\ge \mathbf{E}[M_n - M_n \circ \tau]$$

$$= \mathbf{E}[M_n] - \mathbf{E}[M_n]$$

$$= 0.$$

Beweis von Satz 7.9. Sei ohne Einschränkung $\mathbf{E}[X_0 \mid \mathcal{I}] = 0$ (ansonsten betrachte $\tilde{X}_n := X_n - \mathbf{E}[X_n \mid \mathcal{I}] = X_n - \mathbf{E}[X_0 \mid \mathcal{I}]$). Sei $Z := \limsup_n \frac{1}{n} S_n$, $\varepsilon > 0$ und $F := \{Z > \varepsilon\} \in \mathcal{I}$. Weiter

¹George David Birkhoff 1884-1944; 1931

 $^{^2 {\}rm John~von~Neumann~1903\text{-}1957;~1931}$

 $^{^{3}}$ Eberhard Hopf 1902-1983

sei $X_n^{\varepsilon} \coloneqq (X_n - \varepsilon)\mathbbm{1}_F$, $S_n^{\varepsilon} \coloneqq \sum_{k=0}^{n-1} X_k^{\varepsilon}$ und $M_n^{\varepsilon} \coloneqq \max\{0, S_1^{\varepsilon}, \dots, S_n^{\varepsilon}\}$. Für $F_n \coloneqq \{M_n^{\varepsilon} > 0\}$ gilt $F_1 \subset F_2 \subset \dots$ und

$$\bigcup_{n=1}^{\infty} F_n = \left\{ \sup_k \frac{1}{k} S_k^{\varepsilon} > 0 \right\} = \left\{ \sup_k \frac{1}{k} S_k^{\varepsilon} > 0 \right\} \cap F = F,$$

daher folgt mit Lemma 7.10 und monotoner Konvergenz

$$0 \le \mathbf{E} \big[X_0^{\varepsilon} \mathbb{1}_{F_n} \big] \xrightarrow[n \to \infty]{} \mathbf{E} \big[X_0^{\varepsilon} \mathbb{1}_F \big] = \mathbf{E} \big[X_0^{\varepsilon} \big].$$

Demnach gilt

$$0 \le \mathbf{E}[X_0^{\varepsilon}] = \mathbf{E}[(X_0 - \varepsilon)\mathbb{1}_F] = \mathbf{E}[\mathbf{E}[(X_0 - \varepsilon)\mathbb{1}_F \mid \mathcal{I}]] = \mathbf{E}[\mathbb{1}_F(\mathbf{E}[X_0 \mid \mathcal{I}] - \varepsilon)] = -\varepsilon \mathbf{P}(F),$$

das heißt $\mathbf{P}(F) = 0$ und mit $\varepsilon \searrow 0$ folgt $\limsup_{n \to \infty} \frac{1}{n} S_n \le 0$ f.s. Ersetze nun X_n durch $-X_n$ und erhalte $\frac{1}{n} S_n \to 0$, $n \to \infty$ f.s.

Sei nun $p \ge 1$ und $X_0 \in \mathcal{L}^p$. Zeige: $\{|\frac{1}{n}S_n|^p \mid n \in \mathbb{N}\}$ ist gleichgradig integrierbar. $\{|X_0|^p\}$ ist gleichgradig integrierbar, also existiert nach Erinnerung 1.26 eine monoton wachsende, konvexe Funktion $\varphi : [0, \infty) \to [0, \infty)$ mit $\frac{\varphi(x)}{x} \to \infty$, $x \to \infty$ und $\mathbf{E}[\varphi(|X_0|^p)] < \infty$. Nach der Jensen-Ungleichung gilt $|\frac{1}{n}S_n|^p \le \frac{1}{n}\sum_{j=0}^{n-1}|X_j|^p$, also folgt wegen der Monotonie und Konvexität von φ

$$\varphi\left(\left|\frac{1}{n}S_n\right|^p\right) \le \varphi\left(\frac{1}{n}\sum_{j=0}^{n-1}|X_j|^p\right) \le \frac{1}{n}\sum_{j=0}^{n-1}\varphi(|X_j|^p)$$

und somit

$$\sup_{n} \mathbf{E} \left[\varphi \left(\left| \frac{1}{n} S_{n} \right|^{p} \right) \right] \leq \sup_{n} \frac{1}{n} n \mathbf{E} \left[\varphi \left(\left| X_{0} \right|^{p} \right] = \mathbf{E} \left[\varphi \left(\left| X_{0} \right|^{p} \right] \right] < \infty.$$

Demnach ist $\{|\frac{1}{n}S_n|^p \mid n \in \mathbb{N}\}$ gleichgradig integrierbar. Dies zusammen mit $\frac{1}{n}S_n \to 0, n \to \infty$ f.s. impliziert auch $\frac{1}{n}S_n \to 0, n \to \infty$ in \mathcal{L}^p .

Beispiel 7.11. Sei X eine positiv rekurrente, irreduzible Markov-kette auf einer abzählbaren Menge E. Sei π die eindeutige invariante Verteilung und $\mathbf{P}_{\pi} := \sum_{x \in E} \pi(\{x\}) \mathbf{P}_{x}$. Dann ist X ein stationärer Prozess (zum Beispiel auf $\Omega = E^{\mathbb{N}_{0}}$ mit $\tau:(x_{n})_{n} \mapsto (x_{n+1})_{n}$) und $(\Omega, (2^{E})^{\otimes \mathbb{N}_{0}}, \mathbf{P}_{\pi}, \tau)$ ist ergodisch.

Beweis. Sei $A \in \mathcal{I} \subset \mathcal{T} = \bigcap_n \sigma(X_n, X_n + 1, ...)$. Es gilt $\mathbf{P}_{\pi}(X \in A \mid \mathcal{F}_{\eta}) = \mathbf{P}_{X_{\eta}}(X \in A)$ für jede

f.s. endliche Stoppzeit η , denn für $B \in \mathcal{F}_{\eta}$ gilt

$$\mathbf{E}_{\pi}[\mathbb{1}_{\{X \in B\}} \mathbb{1}_{\{X \in A\}}] = \sum_{n=0}^{\infty} \sum_{x \in E} \mathbf{P}_{\pi}(X \in B, \eta = n, X_n = x, \underbrace{X \in A}_{=X \circ \tau^n \in A})$$

$$= \sum_{n=0}^{\infty} \sum_{x \in E} \mathbf{P}_{\pi}(X \in B, \eta = n, X_n = x) \mathbf{P}_{x}(X \in A)$$

$$= \mathbf{E}_{\pi}[\mathbb{1}_{\{X \in B\}} \mathbf{P}_{X_{\eta}}(X \in A)].$$

Insbesondere ist mit $T_x^{(1)} \coloneqq \inf\{n > 0 \mid X_n = x\}$ (< ∞ f.s., da X irreduzibel und rekurrent) und der Markov-Eigenschaft

$$\mathbf{P}_{\pi}(X \in A) = \mathbf{E}_{\pi} \Big[\mathbf{P}_{\pi}(X \in A \mid \mathcal{F}_{T_{x}^{(1)}}) \Big] = \mathbf{E}_{\pi} \Big[\mathbf{P}_{X_{T_{x}^{(1)}}}(X \in A) \Big] = \mathbf{E}_{\pi} \Big[\mathbf{P}_{x}(X \in A) \Big] = \mathbf{P}_{x}(X \in A)$$

für jedes $x \in E$. Somit ist

$$\mathbf{P}_{\pi}(X \in A) = \mathbf{P}_{X_n}(X \in A)$$

$$= \mathbf{P}_{\pi}(\underbrace{X \in A}_{=X \circ \tau^n \in A} \mid X_0, \dots, X_n) \xrightarrow[n \to \infty]{} \mathbf{P}_{\pi}(X \in A \mid \sigma(X_0, X_1, \dots)) = \mathbb{1}_{\{X \in A\}}.$$

Für beliebiges $A \in \mathcal{I}$ gilt demnach $\mathbf{P}_{\pi}(X \in A) \in \{0,1\}$, das heißt $(\Omega, (2^{E})^{\otimes \mathbb{N}_{0}}, \mathbf{P}_{\pi}, \tau)$ ist ergodisch.

Bemerkung 7.12. Insbesondere gilt für jedes $f \in \mathcal{L}^1(\pi)$

$$\frac{1}{n} \sum_{j=0}^{n-1} f(X_j) \xrightarrow[n \to \infty]{} \mathbf{E}_{\pi}(f(X_0)) = \sum_{x \in E} \pi(\{x\}) f(x) \quad \text{f.s.}$$

Definition 7.13. Ein maßerhaltendes dynamisches System $(\Omega, \mathcal{A}, \mathbf{P}, \tau)$ heißt mischend, wenn für alle $A, B \in A$ gilt

$$\lim_{n\to\infty} \mathbf{P}(A \cap \tau^{-n}(B)) = \mathbf{P}(A)\mathbf{P}(B).$$

Ein stochastischer Prozess $X = (X_n)_{n \in \mathbb{N}_0}$ heißt mischend, wenn dies für seine Darstellung als kanonischer Prozess auf $E^{\mathbb{N}_0}$ gilt, das heißt

$$\lim_{n\to\infty} \mathbf{P}((X_m)_{m\in\mathbb{N}_0} \in A, (X_{m+n})_{m\in\mathbb{N}_0} \in B) = \mathbf{P}(X \in A)\mathbf{P}(X \in B).$$

Beobachtung 7.14. Ist $(\Omega, \mathcal{A}, \mathbf{P}, \tau)$ mischend, so ist es auch ergodisch.

Beweis. Sei $(\Omega, \mathcal{A}, \mathbf{P}, \tau)$ mischend und $A \in \mathcal{I}$. Für alle $n \in \mathbb{N}$ gilt $\mathbf{P}(A) = \mathbf{P}(A \cap \tau^{-n}(A))$,

demnach gilt

$$\mathbf{P}(A) = \mathbf{P}(A \cap \tau^{-n}(A)) \xrightarrow[n \to \infty]{} \mathbf{P}(A)\mathbf{P}(A) = \mathbf{P}(A)^2$$

und somit $\mathbf{P}(A) \in \{0, 1\}$.

Bemerkung 7.15. Die irrationale Rotation aus Beispiel 7.5 ist ergodisch, aber nicht mischend. Sei $\tau: x \mapsto x + r \mod 1$ für $x \in [0,1)$ und $r \in (0,1) \setminus \mathbb{Q}$, so ist $\tau^{k_n}(0) \in (\frac{1}{4}, \frac{3}{4})$ für eine Folge $k_n \nearrow \infty$. Für $A := [0, \frac{1}{4})$ ist $A \cap \tau^{-k_n}(A) = \emptyset$, also $\liminf_n \mathbf{P}(A \cap \tau^{-n}(A)) = 0 \neq \frac{1}{16} = \mathbf{P}(A)^2$.

Satz 7.16. Ist $X = (X_n)_{n \in \mathbb{N}_0}$ eine positiv rekurrente, irreduzible und aperiodische Markov-Kette (auf einer diskreten Menge E) mit invarianter Verteilung π , so ist X mischend.

Beweis. Stelle X dar als kanonischer Prozess auf $E^{\mathbb{N}_0}$. Seien $A, B \in (2^E)^{\mathbb{N}_0}$ und $\varepsilon > 0$. Nach dem Approximationssatz für Maße gibt es ein $N \in \mathbb{N}$ und ein $\tilde{A} \in E^{\{0,1,\ldots,N\}}$, sodass mit $A_{\varepsilon} := \tilde{A} \times E^{\mathbb{N} \setminus \{0,1,\ldots,N\}}$ gilt $\mathbf{P}_{\pi}(A \triangle A_{\varepsilon}) < \varepsilon$. Weiter gilt

$$\mathbf{P}_{\pi}(A_{\varepsilon} \cap \tau^{-n}(B)) = \mathbf{P}_{\pi}((X_{0}, \dots, X_{N}) \in \tilde{A}, (X_{m+n})_{m \in \mathbb{N}_{0}} \in B)$$

$$= \sum_{x,y \in E} \mathbf{E}_{\pi} \left[\mathbb{1}_{A_{\varepsilon}} \mathbb{1}_{\{X_{N}=x\}} \mathbb{1}_{\{X_{n}=y\}} \mathbb{1}_{B}(X_{n}, X_{n+1}, \dots) \right]$$

$$= \sum_{x,y \in E} \mathbf{E}_{\pi} \left[\mathbb{1}_{A_{\varepsilon}} \mathbb{1}_{\{X_{N}=x\}} \right] p_{xy}^{n-N} \mathbf{P}_{y}(X \in B).$$

Nach Satz 6.53 gilt $p_{xy}^{n-N} \to \pi(\{y\}), n \to \infty$, demnach ist

$$\lim_{n\to\infty} \mathbf{P}_{\pi}(A_{\varepsilon} \cap \tau^{-n}(B)) = \sum_{x,y\in E} \mathbf{E}_{\pi} \Big[\mathbb{1}_{A_{\varepsilon}} \mathbb{1}_{\{X_N=x\}} \Big] \pi(\{y\}) \mathbf{P}_{y}(X \in B) = \mathbf{P}_{\pi}(A_{\varepsilon}) \mathbf{P}_{\pi}(B).$$

Wegen $|\mathbf{P}_{\pi}(A_{\varepsilon} \cap \tau^{-n}(B)) - \mathbf{P}_{\pi}(A \cap \tau^{-n}(B))| \leq \mathbf{P}_{\pi}(A_{\varepsilon} \triangle A) < \varepsilon$ folgt

$$\mathbf{P}_{\pi}(A_{\varepsilon})\mathbf{P}_{\pi}(B) - \varepsilon \leq \liminf_{n} \mathbf{P}_{\pi}(A \cap \tau^{-n}(B)) \leq \limsup_{n} \mathbf{P}_{\pi}(A \cap \tau^{-n}(B)) \leq \mathbf{P}_{\pi}(A_{\varepsilon})\mathbf{P}_{\pi}(B) + \varepsilon$$

und $\mathbf{P}_{\pi}(A_{\varepsilon}) \to \mathbf{P}_{\pi}(A)$ für $\varepsilon \setminus 0$, also folgt mit $\varepsilon \setminus 0$ die Behauptung.

Satz 7.17. Sei $(X_n)_{n\in\mathbb{N}_0}$ ein stationärer Prozess mit Werten in \mathbb{R}^d . Sei $S_0:=0$ und $S_n:=\sum_{k=1}^n X_n$ für $n\in\mathbb{N}$. Ist $R_n:=|\{S_1,\ldots,S_n\}|$ (die "Größe des Range") und $A=\{S_n\neq 0\ \forall\ n\in\mathbb{N}\}$, dann gilt

$$\frac{1}{n}R_n \xrightarrow[n\to\infty]{} \mathbf{P}(A \mid \mathcal{I}) \quad f.s.$$

Beweis. Wir realisieren $(X_n)_{n\in\mathbb{N}_0}$ als kanonischen Prozess auf dem Produktraum, also X_n =

 $X_0 \circ \tau^n$. Es gilt

$$R_n = \left| \left\{ 1 \le k \le n \mid S_l \neq S_k \ \forall \ l \in \{k+1, \dots, n\} \right\} \right| \ge \left| \left\{ 1 \le k \le n \mid S_l \neq S_k \ \forall \ l > k \right\} \right| = \sum_{k=1}^n \mathbbm{1}_A \circ \tau^k.$$

Nach Satz 7.9 folgt demnach

$$\liminf_{n\to\infty}\frac{1}{n}R_n\geq \liminf_{n\to\infty}\sum_{k=1}^n\mathbb{1}_A\circ\tau^k=\mathbf{P}(A\mid\mathcal{I}).$$

Sei $A_m \coloneqq \{S_l \neq 0 \ \forall \ l = 1, \dots, m\}$ für m < n, dann gilt

$$R_n \leq m + \left|\left\{k \leq n - m \mid S_l \neq S_k \ \forall \ l \in \{k+1, \dots, k+m\}\right\}\right| = \sum_{k=1}^{n-m} \mathbbm{1}_{A_m} \circ \tau^k,$$

somit folgt wieder nach Satz 7.9

$$\limsup_{n\to\infty} \frac{1}{n} R_n \le 0 + \mathbf{P}(A_m \mid \mathcal{I}).$$

Es gilt $A_m \searrow A$, das heißt $\mathbf{P}(A \mid \mathcal{I}) = \lim_{m \to \infty} \mathbf{P}(A_m \mid \mathcal{I})$, also folgt mit $m \to \infty$ die Behauptung.

8 Brownsche Bewegung

Definition 8.1. Ein stochastischer Prozess $(B_t)_{t\geq 0}$ mit Werten in \mathbb{R} heißt Brownsche¹ Bewegung, wenn gilt:

- i) Für alle $n \in \mathbb{N}$ und $0 = t_0 < \ldots < t_n$ sind $B_{t_1} B_{t_0}, \ldots, B_{t_n} B_{t_{n-1}}$ unabhängig und es gilt $B_{t_i} B_{t_{i-1}} \sim \mathbf{N}(0, t_i t_{i-1})$ für alle $i = 1, \ldots, n$.
- ii) $t \mapsto B_t$ ist f.s. stetig.

Bemerkung 8.2. Einen Prozess, der i) erfüllt, haben wir in Beispiel 6.19 konstruiert (als kanonischen Prozess auf $\mathbb{R}^{[0,\infty)}$).

Satz 8.3. Die Brownsche Bewegung im Sinne von Definition 8.1 existiert.

Beweis via Lévy-Konstruktion der Brownschen Bewegung. Betrachte zunächst nur $t \in [0,1]$ und $B_0 = 0$. Sei $\mathcal{D}_n := \left\{ \frac{k}{2^n} \mid k \in \mathbb{N}_0, k \leq 2^n \right\}$ und $\mathcal{D} := \bigcup_{n=1}^{\infty} \mathcal{D}_n$. Für $t \in \mathcal{D}$ seien $Z_t \sim \mathbf{N}(0,1)$ unabhängig. Setze $B(0) = B_0 = 0$ und $B(1) = Z_1$. Sei B(d') konstruiert für $d' \in \mathcal{D}_{n-1}$ und setze für $d \in \mathcal{D}_n \setminus \mathcal{D}_{n-1}$

$$B(d) := \frac{1}{2} (B(d-2^{-n}) + B(d+2^{-n})) + \frac{Z_d}{\sqrt{2^{n+1}}}.$$

Es gilt (nach Konstruktion)

$$\{B_d \mid d \in \mathcal{D}_n\} \text{ und } \{Z_t \mid t \in \mathcal{D} \setminus \mathcal{D}_n\} \text{ sind unabhängig.}$$
 (8.1)

Zeige:

$$B(d) - B(d - 2^{-n}), d \in \mathcal{D}_n \setminus \{0\} \text{ sind u.i.v. mit } B(d) - B(d - 2^{-n}) \sim \mathbf{N}(0, 2^{-n})$$
 (8.2)

durch Induktion über n. Für n=0 ist die Behauptung klar. Sei also (8.2) für n-1 erfüllt. Betrachte $d=\frac{k}{2^n}$ für k ungerade, das heißt $d\in\mathcal{D}_n\setminus\mathcal{D}_{n-1}$. Setze

$$A_{n,k} := \frac{1}{2} \left(B(\underbrace{d+2^{-n}}_{\in \mathcal{D}_{n-1}}) - B(\underbrace{d-2^{-n}}_{\in \mathcal{D}_{n-1}}) \right) \sim \mathbf{N}(0, \frac{1}{4}2^{-(n-1)}) = \mathbf{N}(0, 2^{-n-1}),$$

 $^{^{1}}$ Robert Brown (1773-1858)

$$B_{n,k} \coloneqq \frac{Z_d}{\sqrt{2^{n+1}}} \sim \mathbf{N}(0, 2^{-n-1}).$$

Nach (8.1) sind $A_{n,k}$ und $B_{n,k}$ unabhängig, also sind auch $A_{n,k} + B_{n,k} = B(d) - B(d - 2^{-n})$ und $A_{n,k} - B_{n,k} = B(d + 2^{-n}) - B(d)$ unabhängig und es gilt

$$A_{n,k} + B_{n,k}, A_{n,k} - B_{n,k} \sim \mathbf{N}(0, 2^{-n}).$$

Demnach ist

$$\left(B\left(\frac{2j}{2^n}\right) - B\left(\frac{2j-1}{2^n}\right), \ B\left(\frac{2j-1}{2^n}\right) - B\left(\frac{2j-2}{2^n}\right)\right)_{j=1,\dots,2^{n-1}} \stackrel{d}{=} \left(\mathbf{N}(0,2^{-n}) \otimes \mathbf{N}(0,2^{-n})\right)^{\otimes 2^{n-1}},$$

das heißt (8.2) gilt auch für n.

Setze nun

$$F_0(t) \coloneqq \begin{cases} 0 & ,t = 0 \\ Z_1 & ,t = 1 \\ \text{linear interpoliert} & ,t \in (0,1) \end{cases}$$

und für $n \in \mathbb{N}$

$$F_n(t) := \begin{cases} \frac{Z_t}{\sqrt{2^{n+1}}} & , t \in \mathcal{D}_n \setminus \mathcal{D}_{n-1} \\ 0 & , t \in \mathcal{D}_{n-1} \\ \text{linear interpoliert} & , \text{sonst} \end{cases}$$

und zeige für $d \in \mathcal{D}_n$

$$B(d) = \sum_{i=0}^{n} F_i(d) = \sum_{i=0}^{\infty} F_i(d)$$
 (8.3)

durch Induktion über n. Für n=0 ist die Aussage klar. Sei also (8.3) für n-1 erfüllt. Für $d \in \mathcal{D}_n \setminus \mathcal{D}_{n-1}$ gilt nach Induktionsvoraussetzung

$$\sum_{i=0}^{n-1} = \sum_{i=0}^{n-1} \frac{F_i(d-2^{-n}) + F_i(d+2^{-n})}{2} = \frac{1}{2} (B(d-2^{-n}) + B(d+2^{-n})),$$

wobei wir im ersten Schritt die Linearität von F_i auf $[d-2^{-n}, d+2^{-n}]$ ausgenutzt haben. Nach Konstruktion ist $F_n(d) = \frac{Z_d}{\sqrt{2^{n+1}}}$, demnach ergibt sich zusammen mit der Definition von B(d)

$$\sum_{i=0}^{n} F_i(d) = B(d),$$

das heißt (8.3) gilt auch für n.

Für c > 1 und $n \in \mathbb{N}$ gilt

$$\mathbf{P}(|Z_d| \ge c\sqrt{n}) = \frac{2}{\sqrt{2\pi}} \int_{c\sqrt{n}}^{\infty} e^{-\frac{x^2}{2}} dx \le \int_{c\sqrt{n}}^{\infty} x e^{-\frac{x^2}{2}} dx = \left[-e^{-\frac{x^2}{2}} \right]_{c\sqrt{n}}^{\infty} = e^{-\frac{c^2n}{2}},$$

das heißt für $c > \sqrt{2 \log 2}$ gilt

$$\sum_{n=1}^{\infty} \mathbf{P}(\exists \ d \in \mathcal{D}_n : |Z_d| \ge c\sqrt{n}) \le \sum_{n=1}^{\infty} (2^n + 1)e^{-\frac{c^2n}{2}} < \infty.$$

Somit existiert nach Borel-Cantelli ein (zufälliges) N_0 , sodass für alle $n \geq N_0$ gilt

$$||F_n||_{\infty} := \sup_{t \in [0,1]} |F_n(t)| \le c\sqrt{n}2^{-\frac{n+1}{2}},$$

das heißt $\sum_{n=0}^{\infty} ||F_n||_{\infty} < \infty$. Demnach ist $B(t) = \sum_{n=0}^{\infty} F_n(t)$, $t \in [0,1]$ als Grenzwert einer gleichmäßig konvergenten Reihe von stetigen Funktionen selbst stetig.

Wegen (8.2) gilt für $t_0 < \ldots < t_n \in \mathcal{D}$

$$\mathcal{L}((B_{t_1} - B_{t_0}, \dots, B_{t_n} - B_{t_{n-1}})) = \mathbf{N}(0, t_1 - t_0) \otimes \dots \otimes \mathbf{N}(0, t_n - t_{n-1}).$$

Der Fall allgemeiner t_i folgt durch Approximation mit $t'_{i_k} \in \mathcal{D}$ (vgl. [Per10]).

Für $t \in [0, \infty)$ betrachte nach obiger Konstruktion $(B_0(t))_{t \in [0,1]}, (B_1(t))_{t \in [0,1]}, \ldots$ als unabhängige Kopien und setze

$$B(t) \coloneqq \sum_{i=0}^{\lfloor t \rfloor - 1} B_i(1) + B_{\lfloor t \rfloor}(t - \lfloor t \rfloor).$$

Beobachtung 8.4. $(B_t)_{t\geq 0}$ ist genau dann eine (Standard-) Brownsche Bewegung (das heißt eine Brownsche Bewegung mit $B_0 = 0$), wenn $(B_t)_{t\geq 0}$ ein zentrierter Gaußscher Prozess mit $\mathbf{Cov}[B_s, B_t] = s \wedge t$ und stetigen Pfaden ist.

Beweis. Sei zunächst $(B_t)_{t\geq 0}$ eine (Standard-) Brownsche Bewegung. Für $0\leq s\leq t$ gilt

$$\mathbf{Cov}[B_s, B_t] = \mathbf{Cov}[B_s, B_s + (B_t - B_s)] = \mathbf{Var}[B_s] + \mathbf{Cov}[B_s, B_t - B_s] = s + 0 = s = s \wedge t.$$

Die Umkehrung folgt aus der Tatsache, dass die endlich dimensionalen Verteilungen eines (zentrierten) Gaußschen Prozesses durch die Kovarianzen festgelegt sind (vgl. Beispiel 4.5).

Г

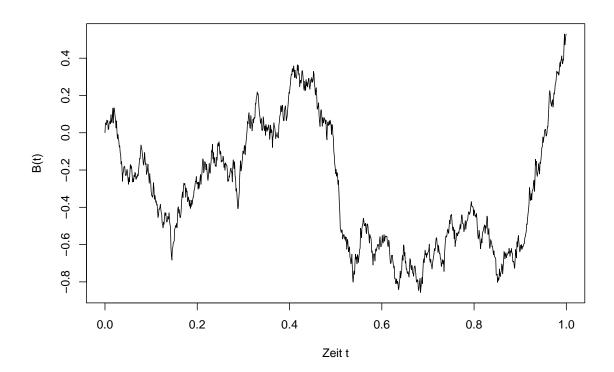


Abbildung 8.1: Simulation einer (Standard-) Brownschen Bewegung mit Gitterweite $\frac{1}{N},\,N=1000$

Korollar 8.5. Ist $(B_t)_{t\geq 0}$ eine (Standard-) Brownsche Bewegung und $c\neq 0$, so ist auch $\widetilde{B}(t):=\frac{1}{c}B_{c^2t},\ t\geq 0$ eine (Standard-) Brownsche Bewegung.

Beweis. Es gilt $\widetilde{B}_0=0,\,\widetilde{B}$ hat stetige Pfade und für die Kovarianzen gilt

$$\mathbf{Cov}[\widetilde{B}_s,\widetilde{B}_t] = \frac{1}{c^2}\mathbf{Cov}[B_{c^2s},B_{c^2t}] = \frac{1}{c^2}(c^2s \wedge c^2t) = s \wedge t.$$

Beobachtung 8.6. Für alle $\varepsilon > 0$ gilt $B_{\varepsilon} \stackrel{\mathrm{d}}{=} \sqrt{\varepsilon} B_1$, was nahe legt, dass für kleines h die "typische" Größe von $B_{t+h} - B_t \approx \sqrt{h}$ ist. Genauere Auskunft gibt der folgende Satz.

Satz 8.7. Es gibt ein $c < \infty$ und ein (zufälliges) $h_0 > 0$, sodass

$$|B(t+h) - B(t)| \le c\sqrt{h\log\frac{1}{h}}$$

für alle $h \in (0, h_0)$ und $t \in [0, 1-h]$ gilt.

Beweis. Schreibe $B(t) = \sum_{n=0}^{\infty} F_n(t)$ wie im Beweis von Satz 8.3. F_n ist differenzierbar bis auf endlich viele "Knickstellen", es gilt

$$\|F_n'\|_{\infty} \le \frac{\|F_n\|_{\infty}}{2^{-n}} \le c\sqrt{n}2^{\frac{n-1}{2}}$$

für alle $n \geq N_0$ mit N_0 aus dem Beweis von Satz 8.3. Damit folgt für $l > N_0$

$$|B(t+h) - B(t)| \leq \sum_{n=0}^{\infty} |F_n(t+h) - F_n(t)| \leq \sum_{n=0}^{l} h \|F'_n\|_{\infty} + \sum_{n=l+1}^{\infty} 2 \|F_n\|_{\infty}$$

$$\leq h \underbrace{\sum_{n=0}^{N_0 - 1} \|F'_n\|_{\infty}}_{=:S_1} + h \underbrace{\sum_{n=N_0}^{l} \frac{c}{\sqrt{2}} \sqrt{n} 2^{\frac{n}{2}}}_{=:S_2} + \underbrace{\sum_{n=l+1}^{\infty} 2\sqrt{n} 2^{-\frac{n}{2}}}_{=:S_3}.$$

Für h genügend klein ist $S_1 \leq \sqrt{\log \frac{1}{h}}$. Wähle $l > N_0$, sodass $2^{-l} \leq h \leq 2^{-l+1}$ (dies ist möglich für h genügend klein). Dann gilt

$$S_2 \le c_2' \sqrt{l2^l} \le c_2'' \sqrt{\frac{1}{h} \log \frac{1}{h}}$$

und

$$S_3 \le c_3' \sqrt{l2^{-l}} \le c_3'' \sqrt{h \log \frac{1}{h}}$$

für gewisse Konstanten $c_2', c_2'', c_3', c_3''.$ Damit folgt für $c\coloneqq 1+c_2''+c_3''$

$$|B(t+h) - B(t)| \le hS_1 + hS_2 + S_3 \le h\sqrt{\log\frac{1}{h}} + hc_2''\sqrt{\frac{1}{h}\log\frac{1}{h}} + c_3''\sqrt{h\log\frac{1}{h}} \le c\sqrt{h\log\frac{1}{h}}$$

Bericht 8.8 (Lévys Stetigkeitsmodul der Brownschen Bewegung). Es gilt

$$\limsup_{h \searrow 0} \sup_{t \in [0,1]} \frac{B_{t+h} - B_t}{\sqrt{2h \log \frac{1}{h}}} = 1 \quad \text{f.s.}$$

fs

Literaturverzeichnis

- [Bre68] Leo Breiman. *Probability*. Wiley, 1968.
- [Dep14] Andrej Depperschmidt. Stochastik 1. Vorlesungsskript, 2014.
- [Fel71] William Feller. An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley, 2. edition, 1971.
- [Kal02] Olav Kallenberg. Foundations of Modern Probability. Springer New York, 2. edition, 2002.
- [Kle13] Achim Klenke. Wahrscheinlichkeitstheorie. Springer Spektrum, 3. edition, 2013.
- [Per10] Peter Mörters; Yuval Peres. Brownian Motion. Cambridge University Press, 1. edition, 2010.
- [Wil00] Leonard C.G. Rogers; David Williams. *Diffusions, Markov processes and martingales, Vol. 1.* Cambridge University Press, 2. edition, 2000.