Blatt 7

Aufgabe 7.1 (Eine reskalierte Koordinate eines uniform aus der Einheitssphäre im \mathbb{R}^n gezogenen Punkts ist approximativ standardnormalverteilt.) Sei $X^{(n)}=(X_1^{(n)},X_2^{(n)},\ldots,X_n^{(n)})$ ein uniform aus der (n-1)-dimensionalen Einheitsspähre $S^{n-1}=\{(x_1,\ldots,x_n):x_1^2+\cdots+x_n^2=1\}\subset\mathbb{R}^n$ gezogener Punkt. Zeigen Sie, dass

$$\sqrt{n}X_1^{(n)} \underset{n\to\infty}{\Longrightarrow} \mathcal{N}(0,1)$$

[Hinweis: Seien Z_1, Z_2, \dots u.i.v. $\sim \mathcal{N}(0, 1)$, so ist

$$X^{(n)} \stackrel{d}{=} \left(\frac{Z_1}{\sqrt{Z_1^2 + \dots + Z_n^2}}, \frac{Z_2}{\sqrt{Z_1^2 + \dots + Z_n^2}}, \dots, \frac{Z_n}{\sqrt{Z_1^2 + \dots + Z_n^2}} \right)$$

Aufgabe 7.2 a) (Approximation auf [0,1] via Bernstein-Polynome) Für $f \in C([0,1])$ gilt

$$\max_{0 \leqslant x \leqslant 1} \left| f(x) - \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k} \right| \xrightarrow[n \to \infty]{} 0$$

b) Die Voraussetzung im Satz von Stone-Weierstraß (Satz 3.23), dass E kompakt ist, ist notwendig. [Hinweis: Konstruieren Sie z.B. auf $E = \mathbb{R}$ eine abzählbare Algebra $\mathcal{C}' \subset C_b(\mathbb{R})$, die Punkte trennend ist. $C_b(\mathbb{R})$ mit Supremumsnorm ist nicht separabel.]

Aufgabe 7.3 (4+4+4 Punkte) a) Sei $\mu_n = \mathcal{N}(a_n, b_n)$ mit $a_n \in \mathbb{R}$, $b_n > 0$. Zeigen Sie:

$$\{\mu_n:n\in\mathbb{N}\}\text{ ist straff}\qquad\Longleftrightarrow\qquad\sup_{n\in\mathbb{N}}|a_n|<\infty\text{ und }\sup_{n\in\mathbb{N}}b_n<\infty$$

b) Für ein Wahrscheinlichkeitsmaß $P \in \mathcal{M}_1([0,\infty))$ mit $m_P := \int x \, P(dx) \in (0,\infty)$ definiert

$$\widehat{P}(A) := \frac{1}{m_P} \int_A x P(dx), \quad A \in \mathcal{B}(\mathbb{R}_+)$$

ein Wahrscheinlichkeitsmaß $\widehat{P}(A) \in \mathcal{M}_1([0,\infty))$, die sogenannte *größenverzerrte* Verteilung von P. Seien $(X_i)_{i \in I}$ nicht-negative Zufallsvariablen mit $\mathbb{E}[X_i] = 1$ für alle $i \in I$, $P_i := \mathcal{L}(X_i)$. Zeigen Sie:

$$\{\hat{P}_i : i \in I\}$$
 straff \iff $\{X_i : i \in I\}$ gleichgradig integrierbar.

c) (E_1,d_1) und (E_2,d_2) metrische Räume, $E=E_1\times E_2$ mit Produktmetrik $d((x,x'),(y,y'))=d_1(x,y)+d_2(x',y'),$ $\pi_1:E\to E_1$ und $\pi_2:E\to E_2$ die Koordinatenprojektionen. Sei $\mathcal{H}\subset\mathcal{M}_1(E),$ dann gilt

$$\mathcal{H}$$
 ist straff \iff $\{\mu \circ \pi_1^{-1} : \mu \in \mathcal{H}\}$ und $\{\mu \circ \pi_2^{-1} : \mu \in \mathcal{H}\}$ sind straff

b.w.

Aufgabe 7.4 (4+4+4 Punkte) a) Seien X, X', X'' unabhängig und identisch verteilt und es gelte

$$X \stackrel{\mathcal{D}}{=} (X' + X'')/\sqrt{2}$$

Dann ist $X \sim \mathcal{N}(0, \sigma^2)$ für ein $\sigma^2 \ge 0$.

[*Hinweis*. Betrachten Sie die charakteristische Funktion φ_X .]

- b) Sei $\alpha > 2$. Es gibt kein Wahrscheinlichkeitsmaß auf $\mathbb R$ mit charakteristischer Funktion $t \mapsto e^{-|t|^{\alpha}}$. [*Hinweis*. Argumentieren Sie beispielsweise per Widerspruch: Nehmen Sie an, X hätte $\varphi_X(t) = e^{-|t|^{\alpha}}$, und bestimmen Sie Mittelwert und Varianz von X.]
- c) Eine Funktion $f: \mathbb{R}^d \to \mathbb{C}$ heißt positiv semi-definit, wenn gilt

$$\sum_{i,j=1}^n \alpha_i \overline{\alpha_j} f(t_i - t_j) \geqslant 0 \quad \text{für alle } n \in \mathbb{N}, t_1, \dots, t_n \in \mathbb{R}^d, \alpha_1, \dots, \alpha_n \in \mathbb{C}.$$

Die charakteristische Funktion φ_{μ} eines endlichen Maßes $\mu \in \mathcal{M}_f(\mathbb{R}^d)$ ist positiv semi-definit. [Bericht. Nach einem Satz von Bochner (siehe z.B. W. Feller, An Introduction to Probability Theory, Vol. 2, 2. ed., Wiley, 1971) ist jede stetige und positiv semi-definite Funktion die charakteristische Funktion eines endlichen Maßes auf \mathbb{R}^d .]