Blatt 9

Aufgabe 9.1 Die negative Binomialverteilung mit Parametern r > 0, $p \in (0, 1)$ hat Gewichte

$$b_{r,p}^{-}(k) = {r \choose k} (-1)^k p^r (1-p)^k, k \in \{0, 1, 2, \dots\}$$

(wobei $\binom{-r}{k} = (-r)(-r-1)\cdots(-r-k+1)/k!$; für $r \in \mathbb{N}$ is $b^-_{r,p}$ die Verteilung der Anzahl Misserfolge in einer p-Münzwurffolge vor dem r-ten Erfolg). Stellen Sie $b^-_{r,p}$ als $\operatorname{CPoi}_{r\nu}$ mit $\nu \in \mathcal{M}_f(\mathbb{N}), \nu(\ell) = \frac{(1-p)^\ell}{\ell}$ dar und folgern Sie, dass $b^-_{r,p}$ unendlich teilbar ist.

Aufgabe 9.2 Sei $\Phi(x):=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-y^2/2}\,dy$ die Verteilungsfunktion der Standardnormalverteilung und F für $x\in\mathbb{R}$ definiert durch

$$F(x) := \begin{cases} 2 \left(1 - \Phi(1/\sqrt{x}) \right), & \text{für } x > 0, \\ 0, & \text{sonst.} \end{cases}$$

Zeigen Sie: F ist die Verteilungsfunktion einer strikt stabilen Verteilung μ zum Index 1/2, insbesondere ist μ unendlich teilbar.

[*Hinweis*. Bestimmen Sie die Dichte von F und zeigen Sie, dass die Laplace-Transformierte die Gestalt $\lambda \mapsto e^{-\sqrt{2\lambda}}$ hat.]

Aufgabe 9.3 (6+6 Punkte) a) (Beweisdetails für Beobachtung 5.10 der Vorlesungsnotizen) Sei μ unendlich teilbar mit kanonischem Tripel (b, σ^2, ν) . Dann gilt

$$\nu = \operatorname{v-lim}_{n \to \infty} n \mu^{*\frac{1}{n}} |_{\mathbb{R} \setminus \{0\}}.$$

[*Hinweis*. Stellen Sie $\mu^{*\frac{1}{n}}$ wie in der Vorlesung als Verteilung von

$$b/n + \frac{\sigma}{\sqrt{n}}Z + X_0^{(n)} + \sum_{k=1}^{\infty} (X_k^{(n)} - \alpha_k^{(n)})$$

dar. Schätzen Sie $\mathbb{P}\Big(\Big|\sum_{k=m}^{\infty}(X_k^{(n)}-\alpha_k^{(n)})\Big|\geqslant \varepsilon\Big)$ beispielsweise mittels der Chebyshev-Ungleichung ab und verwenden Sie $\mathbb{P}\big(|Z|\geqslant z)\leqslant z^{-4}\mathbb{E}\big[Z^4\big]=3/z^4.]$

b) Sei X eine reellwertige, unendlich teilbare Zufallsvariable mit $\mathbb{P}(|X| \leq K) = 1$ für ein $K \in (0, \infty)$. Zeigen Sie, dass X dann fast sicher konstant ist.

[Hinweis. Betrachten Sie o.E. den Fall $\mathbb{E}[X]=0$. Nach Voraussetzung gibt es zu $n\in\mathbb{N}$ u.i.v. Zufallsvariablen $X_{n,1},X_{n,2},\ldots,X_{n,n}$ mit $X=^dX_{n,1}+\cdots+X_{n,n}$. Folgern Sie, dass dann $\mathbb{P}(X_{n,1}<-K/n)=0$ und $\mathbb{P}(X_{n,1}>K/n)=0$ gilt und nutzen Sie diese Information, um die Varianz von X abzuschätzen.]

Aufgabe 9.4 (Lévy-Khinchin-Formel im nicht-negativen Fall, 6+6 Punkte) a) Sei $\mu \in \mathcal{M}_1([0,\infty))$ unendlich teilbar. Zeigen Sie: Dann gibt es $\alpha \geqslant 0$ und ein σ -endliches Maß ν auf $(0,\infty)$ mit $\int_{(0,\infty)} (x \wedge 1) \nu(dx) < \infty$, so dass

$$-\log\left(\int e^{-\lambda x}\,\mu(dx)\right) = \alpha t + \int \left(1 - e^{-tx}\right)\nu(dx), \quad t \geqslant 0 \tag{*}$$

gilt.

[*Hinweis*. Approximieren Sie μ mittels geeigneten CPoi_{ν_n} analog zum in der Vorlesung behandelten Fall.]

b) Seien α und ν wie in a) gegeben, dann gibt es ein unendlich teilbares $\mu \in \mathcal{M}_1([0,\infty))$ mit Log-Laplacetransformierter (*).

[*Hinweis*. Sie können μ als Verteilung der Summe der Konstante α und einer f.s. konvergenten Reihe von positiven compound Poisson-Zufallsvariablen gewinnen.]