7.3 Gleichgradig integrierbare Martingale und optionales Stoppen

Satz 7.23. Sei $(X_n)_n$ ein gleichgradig integrierbares Supermartingal. Dann existiert $X_\infty \in \mathcal{L}^1(\mathbb{P})$ mit $X_n \to X_\infty$ f.s. und in $\mathcal{L}^1(\mathbb{P})$. Es gilt

$$\mathbb{E}[X_{\infty} \mid \mathscr{F}_n] \leq X_n f.s. \text{ für alle } n \in \mathbb{N}.$$

(Analog gilt $\mathbb{E}[X_{\infty} \mid \mathscr{F}_n] \geq X_n$, falls $(X_n)_n$ ein gleichgradig integrierbares Submartingal, und $\mathbb{E}[X_{\infty} \mid \mathscr{F}_n] = X_n$, falls $(X_n)_n$ ein gleichgradig integrierbares Martingal.) Erhhering: (Xh)n

ofgr. inthar (=>) Bew.: Existent von X 6 EZ1 und Xn 7.5 X so folgt Satz 7.21 (denn sup E[Xn] = sup E(IXnIco) lin sup E[IXnI 1/2|Xn/3/4] = 0, dann implizient X, >X, and X, >X Mit gleichgrædiger Integnetsenheit: E[1X6-X1] ->60. = = $\mathbb{E}[\mathbb{E}[|X_{\infty}-X_{n}||F_{m}]],$ Sei m = n: $\mathbb{E}\left[\left|\mathbb{E}[X_{\infty}|\mathcal{F}_{m}]-\mathbb{E}[X_{n}|\mathcal{F}_{m}]\right|\right]=\mathbb{E}\left[\left|\mathbb{E}[X_{\infty}|X_{n}|\mathcal{F}_{m}]\right|\right]$

7.3 Gleichgradig integrierbare Martingale und optionales Stoppen

Satz 7.23. Sei $(X_n)_n$ ein gleichgradig integrierbares Supermartingal. Dann existiert $X_\infty \in \mathcal{L}^1(\mathbb{P})$ mit $X_n \to X_\infty$ f.s. und in $\mathcal{L}^1(\mathbb{P})$. Es gilt

$$\mathbb{E}[X_{\infty} \mid \mathscr{F}_n] \leq X_n f.s. \text{ für alle } n \in \mathbb{N}.$$

(Analog gilt $\mathbb{E}[X_{\infty} | \mathscr{F}_n] \ge X_n$, falls $(X_n)_n$ ein gleichgradig integrierbares Submartingal, und $\mathbb{E}[X_{\infty} | \mathscr{F}_n] = X_n$, falls $(X_n)_n$ ein gleichgradig integrierbares Martingal.)

Sei
$$m \le n$$
:

$$E[IE[X_{\infty}-X_{n}IIF_{m}]]$$

$$E[IE[X_{\infty}-X_{n}IF_{m}]] = E[IE[X_{\infty}-X_{n}IF_{m}]] \rightarrow E[X_{\infty}-X_{n}IF_{m}]]$$

$$E[X_{\infty}-X_{n}IF_{m}] \rightarrow E[X_{\infty}-X_{n}IF_{m}]] \rightarrow E[X_{\infty}-X_{n}IF_{m}] \rightarrow E[X_{\infty}-X_{n}I$$

Satz 7.24. Sei $Y \in \mathcal{L}^1(\mathbb{P})$ und $(\mathscr{F}_n)_n$ eine Filtration. Sei $\mathscr{F}_\infty := \sigma(\mathscr{F}_n, n \in \mathbb{N})$ und $X_n := \mathbb{E}[Y \mid \mathscr{F}_n]$. Dann ist $(X_n)_n$ ein gleichgradig integrierbares Martingal und es gilt

$$X_n \xrightarrow[n \to \infty]{} X_\infty := \mathbb{E}[Y \mid \mathscr{F}_\infty] \text{ f.s. und in } \mathcal{L}^1(\mathbb{P}).$$

Lemma 7.25. $Y \in \mathcal{L}^1(\mathbb{P})$ und $\mathscr{F}_n \subset \mathscr{F}$ σ -Algebren, dann ist $(\mathbb{E}[Y \mid \mathscr{F}_n])_{n \in \mathbb{N}}$ gleichgradig integrierbar.

Bew: Es gibt h:
$$E_{0,\infty} \rightarrow E_{0,\infty}$$
, monoton wachsend, konwex, Superlinear (d.h. $\frac{h(x)}{x} \Rightarrow \infty$) mit $E(h(1/1)) < \infty$
 $R \Rightarrow x \mapsto h(|x|)$ sist $(vgl. Satz 3.333)$, konvex

 $E(x) \Rightarrow x \mapsto h(|x|)$ sist gleicly: ind. bar)

$$E\left[h(|E[Y|F_n])\right] \leq E\left[E[h(|Y|)|F_n]\right]$$

$$= E[h(|Y|)]$$

$$Ungl.f.d.bcd.Env.$$

Satz 7.24. Sei $Y \in \mathcal{L}^1(\mathbb{P})$ und $(\mathscr{F}_n)_n$ eine Filtration. Sei $\mathscr{F}_{\infty} \coloneqq \sigma(\mathscr{F}_n, n \in \mathbb{N})$ und $X_n \coloneqq \mathbb{E}[Y \mid \mathscr{F}_n]$. Dann ist $(X_n)_n$ ein gleichgradig integrierbares Martingal und es gilt M=M2 Chf U Fm $X_n \xrightarrow[n \to \infty]{} X_\infty \coloneqq \mathbb{E}[Y \mid \mathscr{F}_\infty] \text{ f.s. und in } \mathcal{L}^1(\mathbb{P}).$ rist N- Sdabilei Erzengur von Foo Y= YT- Y__ N1=N2 € **Lemma 7.25.** $Y \in \mathcal{L}^1(\mathbb{P})$ und $\mathscr{F}_n \subset \mathscr{F}$ σ -Algebren, dann ist $(\mathbb{E}[Y \mid \mathscr{F}_n])_{n \in \mathbb{N}}$ gleichgradig integrier-1 umeigen schaff Bew. v. Sate 7.24: E[XH1 | Fn) = E[E[Y | Fnt,] | Fn] = E[Y | Fn] d.h. (Xn)n sist Wonstingal, rist glar. intbar. nach = X Obeigen Lemma. Xn N > 0 f.s. und in L2 (z.B. wähle X 0 = limsep Xn), Zeige: X = E[YIFw]. V X w ist Fw-m.b. Bedr. den Fall Y > 0. 2.2. El Dohiniere (dann and X >> 0 f.s.) E(X ~ 1 A) = E[Y 1 A] VAE Jo dies sind endhiche Maße auf Fos $\mu_1(A) := \mathbb{E}[X_{\infty} 1_A], A \in \mathcal{F}_{\infty}$ $\mu_2(A) := \mathbb{E}[Y 1_A],$ A E Fm für lin m E IN E[XNIA] = E[YIA] 1 **Bemerkung 7.26.** Für ein gleichgradig integrierbares Martingal $(X_n)_n$ gilt

$$\mathbb{E}[X_{\infty} \mid \mathscr{F}_n] = X_n \text{ für alle } n \in \mathbb{N}.$$

Solche Martingale heißen Doob'sche Martingale.

Lemma 7.27. Sei $(X_n)_n$ ein Supermartingal und T eine Stoppzeit mit $T \le m$ f.s. für ein $m \in \mathbb{N}$. Dann ist $X_T \in \mathcal{L}^1(\mathbb{P})$ und es gilt $\mathbb{E}[X_m \mid \mathscr{F}_T] \le X_T$ f.s. Im Falle eines Martingals gilt Gleichheit.

Bew.:
$$(X_{T,n})_{n \in IN_0}$$
 ist ein Supermantingel (Lemma 7.18), $X_T = X_{T,nm}$ somid $X_T \in \mathcal{Z}^1(P)$, X_T ist \mathcal{T}_T -messbar. Sei $A \in \mathcal{F}_T$:

$$= \mathbb{E} \left[X_n 1_{A_n} S_{T=n} \right]$$

Lemma 7.28. Ist $(X_n)_n$ ein gleichgradig integrierbares Martingal, so ist

 $\{X_T \mid T \text{ Stoppzeit}\}\ gleichgradig integrierbar.$

Bew:
$$\exists s$$
 gild $h: [0, \infty) \rightarrow [0, \infty)$, mon. wachsend, k envex, $h(x) \rightarrow \infty$ mit $sup \mathbb{E}[h(|X_n|)] = M$

Sei $\exists eine Stoppzeit$, $n \in \mathbb{N}$

$$\mathbb{E}[h(|X_T|) 1_{T=n}] = \mathbb{E}[h(|X_T|) 1_{T=n}]$$

$$= \mathbb{E}[\mathbb{E}[h(|X_n|) | \mathbb{E}[h(|X_n|)] = \mathbb{E}[h(|X_n|)] = \mathbb{E}[h(|X_n|)]$$

mit $h \rightarrow \infty$: $\mathbb{E}[h(|X_T|) 1_{T<\infty}] = M$

Beiter ist

 $\mathbb{E}[h(|X_n|)] = M$, somit $\sup \mathcal{E}[h(|X_T|)] = \mathbb{E}[h(|X_T|)] = M$

Satz 7.29 (optional-sampling-Theorem). Sei $(X_n)_n$ ein gleichgradig integrierbares Martingal, $X_\infty := \lim X_n$ und T eine Stoppzeit. Dann ist $X_T \in \mathcal{L}^1(\mathbb{P})$ und es gilt

$$\mathbb{E}[X_{\infty} \mid \mathscr{F}_T] = X_T \quad \text{f.s.}$$

Insbesondere gilt $\mathbb{E}[X_T] = \mathbb{E}[X_\infty] = \mathbb{E}[X_0]$. Ist S eine Stoppzeit mit $S \leq T$, so gilt

Bew:
$$\mathbb{E}[X_{T}|\mathcal{F}_{S}] = X_{S} f.s.$$

$$X_{m} = \mathbb{E}[X_{\infty}|\mathcal{F}_{m}] (f.s) \text{ nad } Satz + 24, \quad \mathbb{E}[X_{m}|\mathcal{F}_{tam}] = X_{tam}f.s.$$

$$\Rightarrow \quad \mathbb{E}[X_{\infty}|\mathcal{F}_{tam}] = \mathbb{E}[\mathbb{E}[X_{\infty}|\mathcal{F}_{m}]|\mathcal{F}_{tam}] = X_{tam}f.s.$$
Sei $A \in \mathcal{F}_{tam} A \cap \{T \leq m\} \in \mathcal{F}_{tam}, \text{ denn: } n \in \mathbb{N}_{0}.$

$$\mathbb{E}[X_{\infty}|\mathcal{F}_{tam}] = \mathbb{E}[\mathbb{E}[X_{\infty}|\mathcal{F}_{tam}] \cap \{T_{tam}\} \cap \{T_{t$$

Satz 7.29 (optional-sampling-Theorem). Sei $(X_n)_n$ ein gleichgradig integrierbares Martingal, $X_\infty := \lim X_n$ und T eine Stoppzeit. Dann ist $X_T \in \mathcal{L}^1(\mathbb{P})$ und es gilt

$$\mathbb{E}[X_{\infty} \mid \mathscr{F}_T] = X_T \quad \text{f.s.}$$

Insbesondere gilt $\mathbb{E}[X_T] = \mathbb{E}[X_\infty] = \mathbb{E}[X_0]$. Ist S eine Stoppzeit mit $S \leq T$, so gilt

$$\mathbb{E}[X_T \mid \mathscr{F}_S] = X_S$$
 f.s.

For
$$A \in J_T$$
 ist $(fir jedes m \in IN)$
 $E[X \bowtie A \cap \S T \leq m] = IE[X_T \cdot 1_{A \cap \S T \leq m}]$

mit $m \to \omega$:

 $E[X \bowtie A \cap \S T \leq \omega \S] = IE[X_T \cdot 1_{A \cap \S T \leq \omega}]$

(mit dom. Kenv. bew. glegr. Ind.b. beit)

2ndem: $IE[X \bowtie 1_{A \cap \S T = \omega \S}] = IE[X \bowtie 1_{A \cap \S T = \omega \S}]$

 $=\sum_{X} \mathbb{E}[X_{\infty} \mathbb{1}_{A}] = \mathbb{E}[X_{T} \cdot \mathbb{1}_{A}] \quad (\text{und}: X_{T} \text{ ist } \mathcal{F}_{T} - \text{h.b.})$

Satz 7.29 (optional-sampling-Theorem). Sei $(X_n)_n$ ein gleichgradig integrierbares Martingal, $X_\infty := \lim X_n$ und T eine Stoppzeit. Dann ist $X_T \in \mathcal{L}^1(\mathbb{P})$ und es gilt

$$\mathbb{E}[X_{\infty} \mid \mathscr{F}_T] = X_T$$
 f.s.

Insbesondere gilt $\mathbb{E}[X_T] = \mathbb{E}[X_\infty] = \mathbb{E}[X_0]$. Ist S eine Stoppzeit mit $S \leq T$, so gilt

$$\mathbb{E}[X_T | \mathscr{F}_S] = X_S \quad f.s.$$
 Seien $S \in T$ Stoppzeiten,
$$\text{dann gild} \quad \mathcal{F}_S \subset \mathcal{F}_T ,$$

$$\mathbb{E}[X_T | \mathscr{F}_S] = \mathbb{E}[\mathbb{E}[X_{\infty} | \mathcal{F}_T] | \mathcal{F}_S]$$

$$= \mathbb{E}[X_{\infty}|J_{S}] = X_{S}$$
Turney

Bemerkung und Definition 7.30. Sei $(X_n)_n$ ein adaptierter Prozess mit $X_n \in \mathcal{L}^1(\mathbb{P})$ für $n \in \mathbb{N}_0$. Dann ist $X_n = M_n + A_n$ mit

$$M_0 := X_0, \quad M_n := X_0 + \sum_{k=1}^n (X_k - \mathbb{E}[X_k \mid \mathscr{F}_{k-1}]),$$

$$A_0 := 0, \quad A_n := \sum_{k=1}^n (\mathbb{E}[X_k \mid \mathscr{F}_{k-1}] - X_{k-1}).$$

wobei $(M_n)_n$ ein Martingal und $(A_n)_n$ previsibel ist. Die Darstellung X = M + A als Summe eines Martingals M und eines previsiblen Prozesses A mit $A_0 = 0$ heißt Doob-Zerlegung, sie ist f.s. eindeutig.

 $(X_n)_n$ ist genau dann ein Super- bzw. Submartingal, wenn $(A_n)_n$ nicht-wachsend bzw. nicht-fallend st. Zur Eindeutigheit: X=M+A=M'+A' (mit M, M') Martingale, ist.

$$\Rightarrow M_{n} = M_{n} - M_{n} = A_{n} - A_{n},$$

$$A_{n} = A_{n} - A_{n},$$

d.h. $\widetilde{M} = (\widetilde{M}_n)_{n \in \mathbb{N}_0}$ ist Mondingal and previsibel (mit $\widetilde{M}_0 = 0$) $\widetilde{M}_{h-1} = [\widetilde{M}_n \mid \widetilde{F}_{h-1}] = \widetilde{M}_n = \widetilde{M}_h = \widetilde{M}_h$

$$M_{h-1} = \mathbb{E}[M_{h} | F_{h-1}] = M_{h} = M_{h} = M_{h-1} = M_{h} =$$

Satz 7.31. Sei $(X_n)_n$ ein gleichgradig integrierbares Supermartingal und seien S, T Stoppzeiten mit $S \leq T$. Dann gilt

Bew.: Sei
$$X = M + A$$
 die $Dodo-Zerlegnug$

Dann gilt $0 = A_n > A_{n+1} > \cdots > A_{60} \leq 0$.

$$\mathbb{E}[IA_n I] = \mathbb{E}[-A_n] = \mathbb{E}[M_n - X_n] = \mathbb{E}[M_n - M_0 + X_0 - X_n]$$

$$\Rightarrow \sup_{n \in \mathbb{N}} \mathbb{E}[IA_n I] < \omega = \mathbb{E}[X_0 - X_n] \leq \mathbb{E}[IX_0 I] + \mathbb{E}[X_n I]$$

$$\Rightarrow \mathbb{E}[IA_n I] < \omega \Rightarrow (A_n)_n \text{ ist glaid-gradis}$$

$$\text{Autegrieben}$$

$$\Rightarrow (M_n)_n = (X_n - A_n)_{n \in \mathbb{N}_0} \leq \mathbb{E}[IA_n I M_{\S IA_n I} > K_1]$$

$$\text{ist glaid-gradieg integriebeness handingal} \leq \mathbb{E}[IA_n I M_{\S IA_n I} > K_1]$$

$$\mathbb{E}[X_1 | F_s] = \mathbb{E}[M_1 | F_s] + \mathbb{E}[A_1 | F_s] \leq M_s + \mathbb{E}[A_s | F_s] = X_s'$$