Lemma 7.14. Sind σ , τ Stoppzeiten, so sind auch $\sigma \wedge \tau / \sigma \vee \tau$ und $\sigma + \tau$ Stoppzeiten.

Bemerkung. $\sigma - \tau$ ist im Allgemeinen keine Stoppzeit.

Bew. v. Lenna 7.14:

$$STN = STN = S$$

Lemma 7.15. Sind σ, τ Stoppzeiten mit $\sigma \leq \tau$, dann gilt $\mathscr{F}_{\sigma} \subset \mathscr{F}_{\tau}$.

Sei
$$A \in \mathcal{F}_{\sigma}$$
 (d.h. $\forall h: A \cap \{\sigma \leq h\} \in \mathcal{F}_{h}$). $\{\tau \leq h\} \subset \{\sigma \leq h\}$
Sei $h \in N_{o}: A \cap \{\tau \leq h\} = (A \cap \{\sigma \leq h\}) \cap \{\tau \leq h\} \in \mathcal{F}_{h}$
 $\in \mathcal{F}_{h}$

Beobachtung 7.16. Sei $(\mathscr{F}_n)_n$ eine Filtration, T eine Stoppzeit mit $T < \infty$ f.s. und $(X_n)_n$ ein adaptierter stochastischer Prozess mit Werten in (E, \mathcal{B}) . Dann ist $X_T = X_{T(\omega)}(\omega)$ eine \mathcal{F}_T -messbare Zufallsvariable und $X^{(T)} = (X_n^{(T)})_{n \in \mathbb{N}_0} = (X_{T \wedge n})_{n \in \mathbb{N}_0}$ ein adaptierter stochastischer Prozess.

Bemerkung 7.17. $(X_n^{(T)})_n$ ist auch adaptiert an $\mathscr{F}^{(T)} := (\mathscr{F}_{T \wedge n})_n$. $\{T = \omega\} \text{ definiese}\}$

Sei $B \in \mathcal{B}$. $\{X_T \in \mathcal{B}\} = \bigcup_{k=0}^{\infty} \{T_{=k}, X_k \in \mathcal{B}\} \in \mathcal{F}$ Konstart

Sein EN { XT ∈B} n {T ≤ n} = U {T = k, X ∈ B} ∈ Fn. Xn = XTAN ist messbar bzgl. Fran 7 I Lemma 7.

Lemma 7.18. Sei T eine Stoppzeit. Ist $(X_n)_n$ ein (Sub-/Super-) Martingal, so auch $(X_n^{(T)})_n$.

Ben: Sette
$$C_n:=1 \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{n} \frac{1}{n}$$
, $n \in \mathbb{N}$, $(C_n)_n$ ist previsibel: $\{T \ge n\} = \{T \le n-1\}^c \in \overline{J}_{n-1}$. $X_{T_n} = X_0 + \sum_{m=1}^{N} (X_m - X_{m-1})$

$$= X_0 + \sum_{m=1}^{N} \frac{1}{2} \frac$$

Korollar 7.19. Sei X ein Supermartingal und T eine Stoppzeit. Es gelte mindestens eine der folgenden Bedingungen

- i) T ist beschränkt.
- ii) X ist beschränkt, $d.h. \sup_{n \in \mathbb{N}_0} |X_n| \le c f.s.$ für ein $c \in \mathbb{R}_+$, und $T < \infty f.s.$
- iii) $\mathbb{E}[T] < \infty$ und $\sup_{n \in \mathbb{N}} |X_n X_{n-1}| \le c f.s.$ für ein $c \in \mathbb{R}_+$.

Dann gilt $\mathbb{E}[X_T] \leq \mathbb{E}[X_0]$. (Im Falle eines Martingals gilt Gleichheit.)

Es gelle i) d.h. $T \le m$ für ein $m \in IN$. $(X_{T \land n})_n$ ist Supermartingal (Lemma 7.18), somit $E[X_0] \ge E[X_{T \land m}] = E[X_T]$

= E[XTNO]

Es gelte in):

XT = lim XTAN (f.s.)

mit dominieter Rouvergent:

E[XT] = lin E[XTIN

Korollar 7.19. Sei X ein Supermartingal und T eine Stoppzeit. Es gelte mindestens eine der folgenden Bedingungen

- i) T ist beschränkt.
- ii) X ist beschränkt, $d.h. \sup_{n \in \mathbb{N}_0} |X_n| \le c f.s.$ für ein $c \in \mathbb{R}_+$, und $T < \infty f.s.$
- iii) $\mathbb{E}[T] < \infty$ und $\sup_{n \in \mathbb{N}} |X_n X_{n-1}| \le c$ f.s. für ein $c \in \mathbb{R}_+$.

Dann gilt $\mathbb{E}[X_T] \leq \mathbb{E}[X_0]$. (Im Falle eines Martingals gilt Gleichheit.)

#\$ gelk iii) Wegen
$$E[T] < \infty \Rightarrow T < \infty f.s.$$

with $X + \sum_{n=1}^{\infty} (X_n - X_{n-1})$
 $= \sum_{n=1}^{\infty} |X_n| \le |X_n| + (T_n) \cdot c \le |X_n| + c.T$

with dominister Row, gift $|X_n| + c.T \in \mathbb{Z}^1$
 $E[X_T] = \lim_{n \to \infty} |E(X_{T_n})| \le E[X_n]$

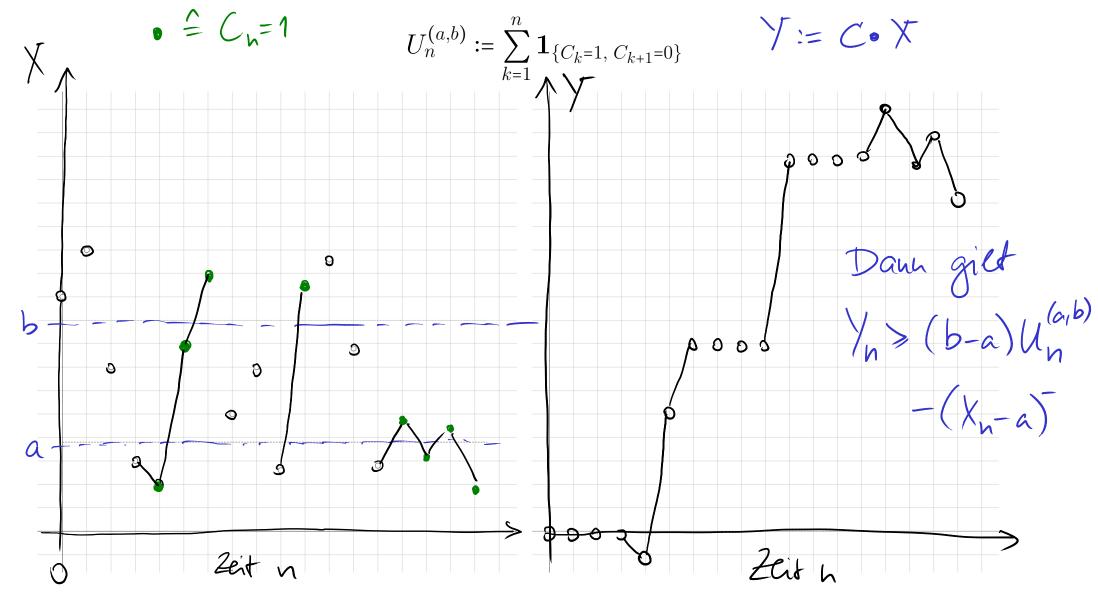
Sei Xin = Genin von Spieler i nach Runde n. Xn = \(\frac{1}{2} \times \times \) der Gescontgewinn der Spieler wach Runde in. "Fairness" => $0 = \mathbb{E}[X_0] = \mathbb{E}[X_n] = \mathbb{E}[X_{R+3}]$ Zum Zeitpuntet R+3: Spieler R hat 15 € Gevinn, Spieler R+2 het 3 € Gewinn, die übrigen R+1 Spieler haber −1 € Gerinn Ehn Standbsp. & Rov. 7.19, Fall iii): $|X_{h}-X_{h-1}| \leq 1+2+4+8$, $\mathbb{E}(R+3) < \infty$, $P(R > 4k) = P((W_{4j+1}, W_{4j+2}, W_{4j+3}, W_{4j+4}) \neq (Z_{1}k_{1}Z_{1}k),$ $= (1 - \frac{1}{16})^{k}, daher = P(R > n) < \omega, d.l. |E(R) = \omega$

7.2 Martingalkonvergenzsatz

Sei $(X_n)_n$ ein adaptierter, reellwertiger Prozess und $-\infty < a < b < \infty$.

C rist previsibel

Setze $C_1 := \mathbf{1}_{\{X_0 < a\}}$, für n > 1 rekursiv $C_n := \mathbf{1}_{\{C_{n-1} = 1, X_{n-1} \le b\}} + \mathbf{1}_{\{C_{n-1} = 0, X_{n-1} < a\}}$ und



Lemma 7.20 (Doobs² Aufkreuzungslemma). Sei X ein Supermartingal. Dann gilt für alle $n \in \mathbb{N}$

$$\mathbb{E}[U_n^{(a,b)}] \le \frac{1}{b-a} \mathbb{E}[(X_n - a)^-].$$

Bow:
$$Y = C \cdot X$$
, C ist widt-neg., previsibel

 $\Rightarrow Y$ ist Supermondingal

 $\Rightarrow O = IE(Y_0] \Rightarrow IE(Y_n)$
 $\Rightarrow IE((b-a)U_n^{(a_1b)} - (X_n-a))$
 $\Rightarrow (b-a)IE(U_n^{(a_1b)}] - IE((X_n-a))$

> Xh >> Xw := limsup Xh f.s.

Satz 7.21 (Doobs (Super-) Martingalkonvergenzsatz). *Ist* $(X_n)_n$ ein Supermartingal $mit \sup_n \mathbb{E}[X_n^-] < \infty$, $dann \ gibt \ es \ ein \ X_\infty \in \mathcal{L}^1(\mathbb{P}) \ mit \ X_n \to X_\infty f.s_1$

Bew.:
$$-\omega = a < b < \omega$$
, $U_n^{(a_1b)} \nearrow U_\infty^{(a_1b)} = \sup_{m \to \infty} U_m^{(a_1b)}$.

 $\mathbb{E}(U_\infty^{(a_1b)}) \stackrel{!}{=} \lim_{n \to \infty} \mathbb{E}[U_n^{(a_1b)}] = \sup_{m \to \infty} \frac{1}{b-a} \mathbb{E}[X_m-a]$
 $= \sum_{m \to \infty} U_m^{(a_1b)} = \sum_{m \to \infty} U_m^{(a_$

$$O_{a_1b} := \{ \text{ liminf } X_h \geq a \} \cap \{ \text{ limsup } X_h > b \} \subset \{ \mathcal{U}_{\omega}^{(a_1b)} = \omega \}$$

$$\Rightarrow \mathbb{P}(\delta_{a_1b}) = 0 . \Rightarrow \mathbb{P}(\text{ liminf } X_h \geq \text{ limsup } X_h) = \mathbb{P}(\mathcal{U} \circ a_1b \in \mathbb{Q}, a_2b)$$

$$\Rightarrow X_h \Rightarrow X_m := \text{ limsup } X_h \neq S$$

Satz 7.21 (Doobs (Super-) Martingalkonvergenzsatz). *Ist* $(X_n)_n$ ein Supermartingal mit $\sup_n \mathbb{E}[X_n^-] < \infty$, dann gibt es ein $X_\infty \in \mathcal{L}^1(\mathbb{P})$ mit $X_n \to X_\infty$ f.s.

Zeige:
$$X_{\infty} \in \mathcal{I}^{1}$$
.

Bem. 7.22

= E[Xn] + E(Xn]

< E[Xo]