Mathematik I für Brauerei- und Brennereitechnolgen WS 2005/2006, TU Berlin

Semester-Anfangsquiz

Dr. Matthias Birkner 21.10.2005

1. Bruchrechnung, wissenschaftliche Notation

Berechnen Sie

$$\frac{1}{2} + \frac{2}{3} = , \frac{5}{6} - \frac{1}{10} = , 2\frac{1}{5} + 6\frac{1}{3} =$$

$$\frac{4}{3} \cdot \frac{11}{14} = , \frac{1}{6} : \frac{3}{5} = .$$

Stellen Sie die folgenden Zahlen in wissenschaftlicher Notation dar:

$$1.250 = 1.25 \times 10^3$$
, $1.500.000 =$, $0.00076 =$

2. Prozentrechnung, Dreisatz

- 1. Angenommen, Sie erhalten beim Kauf einer Ware 18% Rabatt und zahlen daraufhin 98,40€. Was kostet die Ware ohne Rabatt?
- 2. Wieviel m
l Alkohol sind in einer 33 cl Flasche Leffe Triple (8,5 vol.%) enthalten?
- 3. 500 Blatt Kopierpapier wiegen $2.3~\mathrm{kg}$. Wieviel wiegen dann 19 Blatt? Wieviele Blätter sind in einem Stapel, der $1035~\mathrm{g}$ wiegt?

3. Umformungen, Wurzeln, Potenzen, Logarithmus

Lösen Sie folgende Gleichungen jeweils nach \boldsymbol{x} auf:

1.
$$7(x+1) = 8(x-1)$$
 \implies $x =$

2.
$$3(x+5-2x) = 8$$
 \implies $x =$

$$3. \ \frac{x+1}{x-1} = 2 \qquad \Longrightarrow \qquad x =$$

4.
$$\frac{ax^3(bx)^2}{x^4} = (2x^2)(ax^{-4}) \implies x =$$

$$5. \ \sqrt{2x} = 2 \qquad \Longrightarrow \qquad x =$$

6.
$$(5x)^{2/3} = (2x)^{3/5}$$
 \implies $x =$

7.
$$\exp(2x-3) = 4$$
 \Longrightarrow $x =$

8.
$$\log(2x) - 2\log(x) = 1$$
 \Longrightarrow $x =$

4. Lineare Gleichungen

a)
$$3x + 4 = -1 \implies x =$$

b)
$$ax - d = c + ex \implies x =$$

c) Maria ist fünfmal so alt wie Tania. In vier Jahren wird sie dreimal so alt sein. Wie alt sind die beiden heute?

5. Quadratische Gleichungen

Bestimmen Sie jeweils die Menge aller reellen Zahlen, die die angegebenen Gleichungen lösen.

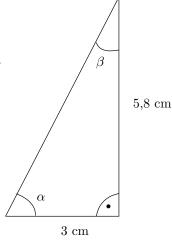
a)
$$x^2 = 4$$

b)
$$(x-2)^2 = 2$$

c)
$$2x^2 - 7x + 5 = 0$$

6. Funktionsgraphen

Skizzieren Sie die Graphen der Funktionen $f_1(x) = 2x - 1$ und $f_2(x) = -x^2 + 4x - 2$ (= $-(x-2)^2 + 2$) in folgendem Koordinatensystem. Machen Sie sich ggfs. zunächst eine geeignete Wertetabelle und/oder benutzen Sie Ihr Wissen über lineare und quadratische Funktionen.



7. Trigonometrie

Wie groß sind die Winkel im nebenstehendem Dreieck?

 $\alpha =$

 $\beta =$

8. Vektoren*

Seien

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}.$$

Berechnen Sie

$$\vec{a} + \vec{b} =$$
 , $\vec{a} \cdot \vec{b} =$

Welche Länge hat \vec{a} , welchen Winkel schließen \vec{a} und \vec{b} ein?

9. Differenziation*

Tragen Sie in der Tabelle die Ableitung der jeweiligen Funktion (nach der Variable \boldsymbol{x}) ein.

$$f(x) \qquad f'(x)$$

$$f(x) = x^{2} \qquad f'(x) = 2x$$

$$f(x) = 2x^{3}$$

$$f(x) = ax^{2} + x$$

$$f(x) = e^{x}$$

$$f(x) = x^{2}e^{x}$$

$$f(x) = \frac{x+2}{x^{2}-1}$$

$$f(x) = e^{-x^{2}}$$

(Ggfs. zur Erinnerung: $(fg)' = f'g + fg', (f/g)' = (f'g - fg')/g^2, (f \circ g)' = g'(f' \circ g).$)

10. Integration*

a) Tragen Sie in der Tabelle eine Stammfunktion (unbestimmtes Integral) der jeweiligen Funktion ein.

$$f(x) \qquad \int f(x) dx$$

$$f(x) = x^2 \qquad \int f(x) dx = \frac{1}{3}x^3 + C$$

$$f(x) = 2x$$

$$f(x) = ax^2 + x$$

$$f(x) = e^x$$

b) Berechnen Sie

$$\int_1^2 x^2 \, dx =$$