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Chapter 1

Genealogical models for fixed-size

populations

1.1 The Wright-Fisher model and the Wright-Fisher dif-

fusion

Consider a population of fixed size 2N (the 2 is partly for historic reasons, partly because of
the author’s bad conscience to talk only about haploid models ...), which evolves in discrete
generations. Assume furthermore that individuals can be of two different types (a and A, say)
which are neutral, i.e. an individual’s reproductive success does not depend on her type, and
that reproduction is random. The latter quality is modelled as follows: Each individual of
the daughter generation picks one uniformly (with replacement) from the previous generation,
declares this to be her mother, and copies her type. Thus denoting

X
(N)
k := #type a-individuals in generation k

we obtain
L

(
X

(N)
k+1

∣
∣X

(N)
k = j

)
= Bin(2N, j/2N), j ∈ {0, 1, . . . , 2N}.

From this we immediately see that (X
(N)
k )k=0,1,... is a (finite state space) Markov chain and a

(bounded) martingale. In particular, X
(N)
k converges almost surely as k → ∞, and as 0 and

2N are absorbing, we will have X
(N)
∞ ∈ {0, 2N}, i.e. eventually, one of the types will be fixed.

Furthermore, as bounded martingales also converge in L1, we have

j = E
[
X

(N)
0

∣
∣X

(N)
0 = j

]
= E

[
X(N)

∞

∣
∣X

(N)
0 = j

]
= 2NP

(
X(N)

∞ = 2N
∣
∣X

(N)
0 = j

)
+ 0,

hence the probability that type a fixates, given we start with j individuals of this type, is just
its initial frequency j/2N .

So, the Wright-Fisher model demonstrates the principal possibility to lose genetic variability
by pure chance (which is called genetic drift in the population genetics literature, even though
the second half of this name is somewhat orthogonal to probabilistic nomenclature).

On the other hand, when N is large, by the central limit theorem, the distribution Bin(2N, j/2N)
is concentrated on j ± const.

√

j(1 − j/2N), which has quite some distance from both 0 and 2N
when j is of the order N . So how long will we typically have to wait before one of the types is
lost? Obviously, if all the living individuals in some future generation k descend from the same
ancestor in generation 0 (and, as we assume here, there is no mutation), then everyone in the
population will have the same type. We can ask this question also ‘backwards in time’:

P(two randomly chosen individuals have a different ancestor one generation ago) = 1 −
1

2N
,
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so

P(two randomly chosen individuals have a different ancestor k generations ago) =
(

1 −
1

2N

)k

,

which is ‘non-trivial’ if k ≈ const. × 2N . Indeed

P

(
the most recent ancestor of two randomly chosen
individuals lived more than [2Nt] generations ago

)

=
(

1 −
1

2N

)[2Nt]

−→
N→∞

e−t. (1.1)

This suggests to consider a renormalised version of X (N):

Y
(N)
t :=

1

2N
X

(N)
[2Nt], t ≥ 0, (1.2)

i.e. we consider the evolution of the fraction of type a-individuals in time units of the population
size. One checks that

E
[
(Y

(N)
t+∆t − Y

(N)
t )

∣
∣Y

(N)
t

]
= 0, E

[
(Y

(N)
t+∆t − Y

(N)
t )2

∣
∣Y

(N)
t

]
≈

1

2
Y

(N)
t (1 − Y

(N)
t )∆t

(when t ∈ Z+/(2N), ∆t = 1/(2N)), so there is hope for convergence towards a diffusion process.
Indeed:

Theorem 1 (Fisher, Wright, Kimura, . . . ). If Y
(N)
0 →d Y0, then L (Y

(N)
· ) → L (Y

(N)
· )

(weakly as probability measures on D[0,1][0,∞), the space of càdlàg paths on [0, 1], where Y· is

the solution of the following well-posed martingale problem: For any f ∈ C (3)([0, 1]), the process

Mt(f) := f(Yt) − f(Y0) −

∫ t

0

1

2
Ys(1 − Ys)f

′′(Ys) ds (1.3)

is a (continuous) martingale (with respect to its own filtration).

Remark 1. There are well-known connections between martingale problems and stochastic
analysis, which read in this simple case as follows: The solution of (1.3) can be alternatively
described as the solution to a stochastic differential equation, namely

dYt =
√

Yt(1 − Yt) dWt, (1.4)

where (Wt) is a Brownian motion: Let Y be a solution of (1.4) and f ∈ C(3)([0, 1]). Then Itô’s
formula yields

df(Yt) = f ′(Yt) dYt +
1

2
f ′′(Yt) d[Y ]t = f ′(Yt)

√

Yt(1 − Yt) dWt +
1

2
Yt(1 − Yt)f

′′(Yt) dt

=
1

2
Yt(1 − Yt)f

′′(Yt) dt + dmartingalet,

hence Y also solves (1.3).
The other direction requires more technical work, we only give an impressionistic sketch: if

Y solves the martingale problem (1.3), we apply (1.3) to f(y) = y and f(y) = y2 to obtain

Y is a cont. martingale with quadratic variation [Y ]t =

∫ t

0

Ys(1 − Ys) ds.

So (modulo integrability and ‘stopping on the boundary issues’), the process W̃t :=
∫ t

0 (Yt(1 −

Yt))
−1/2 dYt, suitably augmented when Y· hits the boundary, is a continuous martingale with

[W̃ ]t = t, hence is a Brownian motion (and of course dYt = (Yt(1 − Yt))
1/2 dW̃t).

Note that (even) pathwise uniqueness holds for (1.4) (by the Yamada-Watanabe criterion, see
e.g. [RW00], Thm. V.40.1), thus in particular, (1.4) characterises L (Y·|Y0 = y) for any y ∈ [0, 1],
as does (1.3). In that sense, the two formulations are equivalent.
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Proof of Thm. 1. There is a well-known three-step choreography which tends to govern the proofs

of such limit theorems for Markov processes: 1) check that the sequence L (Y
(N)
· ) is tight, so

that there are limit points, 2) prove that any limit point solves (1.3), and 3) check that (1.3) has
a unique solution (i.e. prove that there is at most one, as one would have already exhibited at
least one in step 2), so that all limit points have to agree.

In the following, we carry out this programme, sometimes consciously (and possibly sometimes
unconsciously!) glossing over a few details.

3) Even though in the case of a one-dimensional diffusion, other methods to proving well-
posedness of a martingale problem are available, let us use the approach “which, despite its
strange, ad hoc appearance, has found widespread applicability” ([EK86, p. 188]), namely the
use of duality.

Let (Nt) be a pure death process on N with transitions n 7→ n − 1 at rate
(
n
2

)
. Then for any

solution Y· of (1.3) starting from Y0 = y and n ∈ N we have

E Y n
t = E

[
yNt

∣
∣N0 = n

]
, t ≥ 0. (1.5)

In order to prove (1.5), put g(n, y, t) := E Y n
t . Applying (1.3) we see that

g(n, y, t)− yn =

∫ t

0

n(n − 1)

2

(
E Y n−1

s − E Y n
s

)
ds =

∫ t

0

(
n

2

)
(
g(n − 1, y, s) − g(n, y, s)

)
ds.

On the other hand, we see from the form of the transition rates of (Nt) that h(n, y, t) :=
E
[
yNt

∣
∣N0 = n

]
solves the same set of equations. As this is a linear ode system (and hence

uniquely solvable), we must have (1.5). Because the right-hand side of (1.5) only depends on Y0

and polynomials are dense in C([0, 1]), we see immediately that the one-dimensional marginals
of any two solutions of (1.3) with the same initial value agree. It is then standard to ‘patch this
up’ to any finite-dimensional marginal distribution, details are e.g. in [EK86], Prop. 4.4.7.

The processes Y· and N· are said to be dual with respect to the function H(y, n) = yn.
Despite Ethier & Kurtz’ above-cited verdict, there is a very natural interpretation of (1.5) in
the particular case at hand: (Yt) describes (at least approximately) the evolution of the type
decomposition of a (large) population. Imagine we sample n individuals at time t. The left-hand
side of (1.5) is the probability to see only type a in the sample. We can compute this probability
differently: If we know that the n individuals in the sample are the descendants of Nt different
ancestors at time 0 (when the fraction of type a was y), and then average over the random
genealogy, we obtain the right-hand side of (1.5). We will see in Section 1.2.2 that (Nt) is indeed
the number of families related from time t back in Kingman’s n-coalescent (see (1.12)), which
describes the genealogy of a sample in a selectively neutral scenario. An embryonic version of
this statement for n = 2 is already contained in (1.1).

2) y = k/2N , k ∈ {0, 1, . . . , 2N}, f ∈ C(3)([0, 1]). Let B(2N,y) be a binomial(2N ,y)-distributed
random variable. By Taylor expansion,

G(N)f(y) := E

[

f
( 1

2N
B(2N,y)

)
− f(y)

]

= E

[( 1

2N
B(2N,y) − y

)
f ′(y) +

1

2

( 1

2N
B(2N,y) − y

)2
f ′′(y)

+
1

6

( 1

2N
B(2N,y) − y

)3
f (3)(ξ)

]

=
1

2N
·
1

2
y(1 − y)f ′′(y) + rN (y),

where the error term satisfies

|rN (y)| ≤
1

6
||f (3)||∞ sup

y∈[0,1]

E

∣
∣
∣

1

2N
B(2N,y) − y

∣
∣
∣

3

= O(N−3/2).
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Standard results for discrete time Markov chains yield that for 0 ≤ t ≤ T ,

M
(N)
t := f(Y

(N)
t ) − f(Y

(N)
0 ) −

[2Nt]−1
∑

i=0

G(N)f(Y
(N)
i/(2N))

= f(Y
(N)
t ) − f(Y

(N)
0 ) −

∫ [2Nt]/(2N)

0

1

2
Y (N)

s (1 − Y (N)
s )f ′′(Y (N)

s ) + 2NrN (Y (N)
s ) ds

is a bounded martingale (w.r.t. the filtration generated by Y (N)), so for any 0 ≤ s < t ≤ T and
any bounded, continuous function ϕ : D[0,1][0, s) → R we have

E

[

M
(N)
t ϕ

(
(Y (N)

u )0≤u≤s

)]

= E

[

M (N)
s ϕ

(
(Y (N)

u )0≤u≤s

)]

. (1.6)

Assume that Y
(Nk)
· →d Ỹ· along some subsequence (Nk) as k → ∞. Then by (1.6) and the

Dominated Convergence Theorem, Ỹ solves (1.3).

1) A well-known criterion for tightness on path space (e.g. [EK86, Thm. 3.7.2]) requires that a)
the one-dimensional marginals are tight, and b) ‘big jumps cannot accumulate’, technically this
is captured by the requirement

∀T > 0, ε > 0 ∃ δ > 0 such that sup
N

P
(
w(Y

(N)
· , δ, T ) ≥ ε

)
≤ ε, (1.7)

where for g ∈ D[0,1][0,∞) the modulus of continuity is defined as

w(g, δ, T ) := inf
(ti)

max
i

sup
u,v∈[ti−1,ti)

|g(u) − g(v)|

(the infimum in the definition ranges over all possible partitions 0 = t0 < t1 < · · · < tn−1 ≤
T < tn (n ∈ N) satisfying ti − ti−1 > δ; thus, big jumps are ‘okay’ as long as they are at least δ
apart).

In our scenario, a) is trivial because [0, 1] is itself compact. In order to verify b), we will
prove more, namely

∀T > 0, ε > 0 ∃CT,ε < ∞ ∀ δ > 0 : sup
N

P
(
∃ 0 ≤ s < t ≤ T : t ≤ s+δ, |Y

(N)
t −Y (N)

s | ≥ ε
)
≤ CT,εδ.

(1.8)
Note that this implies (1.7). In fact, it even implies that any limit point concentrates on the set
of continuous paths (see e.g. [EK86, Thm. 3.10.2]).

Let B(2N,y) be as above, and note that

sup
y∈[0,1]

E
(
B(2N,y) − y

)2
≤ CN, sup

y∈[0,1]

E
(
B(2N,y) − y

)4
≤ CN2 (1.9)

(e.g. decompose B(2N,y) into a sum of independent Bernoulli variables to prove this). Let s =
i/2N < t = j/2N , i, j ∈ N0. We have

E
(
Y

(N)
t − Y (N)

s

)4
=

1

(2N)4
E

( j−1
∑

k=i

(
X

(N)
k+1 − X

(N)
k

)
)4

=
1

(2N)4
E

j−1
∑

k1,...,k4=i

4∏

`=1

(
X

(N)
k`+1 − X

(N)
k`

)

≤
1

(2N)4

{

(j − i) sup
y∈[0,1]

E
(
B(2N,y) − y

)2
+ (j − i)2 sup

y∈[0,1]

E
(
B(2N,y) − y

)4
}

≤ C
(j − i

2N

)2

= C(t − s)2
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because only (k1, . . . , k4) with #{k1, . . . , k4} ∈ {1, 2} contribute to the expectation. Now consider
s ∈ Z+/2N , and ε, δ > 0. From the above and Doob’s Lp-inequality we obtain

P

(

sup
s≤t≤t+δ

∣
∣Y

(N)
t − Y (N)

s

∣
∣ ≥ ε/4

)

≤
(4

ε

)4

E

[

sup
s≤t≤s+δ

∣
∣Y

(N)
t − Y (N)

s

∣
∣
4
]

≤ C ′
E

[∣
∣Y

(N)
s+δ − Y (N)

s

∣
∣
4
]

≤ C ′′δ2.

Cutting [0, T ] into intervals of length δ, we see that

P
(
∃ 0 ≤ s < t ≤ T : t ≤ s + δ, |Y

(N)
t − Y (N)

s | ≥ ε
)

≤

[T/δ]+1
∑

i=0

P

(

sup
iδ≤t≤(i+1)δ

∣
∣Y

(N)
t − Y

(N)
iδ

∣
∣ ≥ ε/4

)

+

[T/δ]+1
∑

i=0

P

(∣
∣Y

(N)
(i+1)δ − Y

(N)
iδ

∣
∣ ≥ ε/4

)

≤ 2C ′′
(
[T/δ] + 1

)
δ2 ≤ C ′′′δ,

proving (1.8).

1.2 Neutral genealogies

1.2.1 Cannings’ model

Consider a population of fixed size N of (haploid, asexual) individuals which live and reproduce
in discrete generations in a temporally stable environment such that each individual’s chance to
contribute to the next generation is ‘the same’ (i.e. neutrality). A way to formalise this scenario
mathematically is due to Chris Cannings: Imagine that the individuals of the first generation
are labelled in some arbitrary way, and let νr

i , i = 1, . . . , N be the number of offspring of the
i-th individual in the r-th generation (r = 0, 1, . . . ). Necessarily, νr

1 + · · ·+ νr
N = N . To formally

specify the model, we would have to define the labelling of individuals in generation r, r ≥ 1.
This will not matter very much for our following considerations, but for definiteness let us e.g.
imagine that the labels are assigned randomly (but of course consistent with the prescribed
offspring numbers).

Cannings imposed the following conditions on the vectors of offspring numbers:

νr, r ∈ N0 are i.i.d. copies of ν, (1.10)

L(ν) is exchangeable, i.e.
(
ν1, . . . , νN

) d
=

(
νπ(1), . . . , νπ(N)

)
for any permutation π ∈ SN .(1.11)

By exchangeability, we have E ν1 = 1, and further on we will assume that Var(ν1) > 0, so that
the trivial case P(ν1 = · · · = νN = 1) = 1 is excluded.

Note that this naturally generalises the Wright-Fisher model, in which ν is multinomial, i.e.

P(ν1 = k1, . . . , νN = kn) =

(
N

k1 . . . kN

)

N−N .

1.2.2 Kingman’s coalescent

Imagine we pick n < N individuals at random without replacement from the ‘present generation’
of a population of size N which is governed by Cannings model (and which ‘has been living
forever’). Let us label the sampled individuals with 1, 2, . . . , n and write i ∼r j (i, j ∈ {1, . . . , n},
r = 0, 1, . . . ) if i and j have the same ancestor r generations back in the past. Let us denote

the collection of such relations by R
(N,n)
r . Each R

(N,n)
r is a (random) equivalence relation on

{1, . . . , n}, which we can equivalently encode by listing its equivalence classes. Obviously i ∼0 j

⇐⇒ i = j, i.e. R
(N,n)
0 is the trivial equivalence relation.
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For ξ, η ∈ En := {equivalence relations on {1, . . . , n}} let us write ξ ⊆ η if i ∼ξ j ⇒ i ∼η j, i.e.

if η can be constructed by lumping some classes of ξ together. For fixed N and n, (R
(N,n)
r )r=0,1,...

is a Markov chain.
Let η = {C1, . . . , Ca} consist of |η| = a classes, and assume that it can be obtained from a ξ =

{Cαβ : 1 ≤ α ≤ a, 1 ≤ β ≤ bα} with |ξ| = b1+ · · ·+ba =: b classes by coarsening: Cα = ∪bα

β=1Cαβ .

Assume that R
(N,n)
r = ξ. Then there are presently b ‘active lineages’ (one representative for each

equivalence class). In order to have R
(N,n)
r+1 = η, representatives 1, . . . , b1 have to pick the same

ancestor, b1 + 1, . . . , b1 + b2 have to pick the same ancestor (but different from the one chosen
by {1, . . . , b1}, etc. Fix a possible offspring vector (k1, . . . , kn) with k1 + · · · + kN = N and a
pairwise different indices i1, . . . , ia ∈ {1, . . . , N}. The probability that representatives 1, . . . , b1

pick i1 as their ancestor in the previous generations, representatives b1 + 1, . . . , b1 + b2 pick i2,
etc. is

ki1(ki1 − 1) · · · (ki1 − b1 + 1)

N(N − 1) · · · (N − b1 + 1)
·

ki2(ki2 − 1) · · · (ki2 − b2 + 1)

(N − b1)(N − b1 − 1) · · · (N − b1 − b2 + 1)
· · ·

·
kia

(kia
− 1) · · · (kia

− ba + 1)

(N − b1 − · · · − ba−1)(N − b1 − · · · − ba−1 − 1) · · · (N − b1 − b2 − · · · − ba− + 1)

=
1

(N)b

a∏

j=1

(kij
)bj

,

where (x)c := x(x − 1) · · · (x − c + 1) is the lower factorial. Thus the transition probabilities are

p(N,n)(ξ, η) := P
(
R

(N,n)
r+1 = η

∣
∣R(N,n)

r = ξ
)

=
1

(N)b

∑

i1,...,ia
pairwise distinct

E

[ a∏

j=1

(νij
)bj

]

=
(N)a

(N)b
E

[ a∏

j=1

(νj)bj

]

(the last identity uses exchangeability).
Let

cN :=
1

N(N − 1)

N∑

i=1

E
[
νi(νi − 1)

]
=

1

N − 1
E
[
ν1(ν1 − 1)

]

be the probability that two individuals chosen today have the same ancestor one generation back
(or equivalently, that two lineages will coalesce in the next generation backwards). Alternatively,
in this model cN = (N − 1)×variance of the number of offspring of one individual. Assume that
as N → ∞, cN → 0. Note that

P(1 6∼r 2) = (1 − cN )r ≈ e−t if r = t/cN ,

which suggests to look at

R
(N,n)
t := R

(N,n)
[t/cN ], t ≥ 0.

Let (R
(n)
t )t≥0 be a continuous time Markov chain on En with rate matrix given by

qξη =







1 if η arises from ξ by merging exactly two classes,

−
(
|ξ|
2

)
if ξ = η,

0 otherwise.

(1.12)

This is Kingman’s (n-)coalescent.

Theorem 2 (Kingman, Möhle-Sagitov).
(
R

(N,n)
t

)

t≥0
−→ (R

(n)
t )t≥0 in distribution (on

D[−,∞)(En)) if and only if cN → 0 as N → ∞ and limN→∞ dN/cN = 0, where

dN :=
(N)1
(N)3

E
[
(ν1)3

]
=

1

(N − 1)(N − 2)
E
[
ν1(ν1 − 1)(ν2 − 2)

]
(1.13)
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is the probability to observe a triple merger within the sample in one generation.

Proof. Fix n for the moment. For sufficiency, we have to show that (1.13) implies

p(N,n)(ξ, η) = δξ,η + cNqξη + o(cN ), (1.14)

where the error term is uniformly small for all ξ, η ∈ En. The claimed convergence follows from
(1.14) by standard arguments, see e.g. Lemma 1 below.

Note that a useful estimate is

E
[
ν2f(ν1)

]
≤

N

N − 1
E
[
f(ν1)

]
for any f : {0, 1, . . . , N} → R+, (1.15)

which holds true because by exchangeability,

(N − 1)E
[
ν2f(ν1)

]
=

N∑

j=2

E
[
νjf(ν1)

]
= E

[
(N − ν1)f(ν1)

]
≤ NE

[
f(ν1)

]
.

Let I1, I2, . . . , In be random (ordered) picks from the (ordered) offspring generated by ν, i.e.

P
(
I1 = i1, . . . , In = in

)
=

1

(N)n
E

[ n∏

i=1

νi1

(
νi2 − 1i2=i1

)
· · ·

(
νi2 −

∑n−1
`=1 1in=i`

)
]

.

We have cN = P(I1 = I2), dN = P(I1 = I2 = I3), i.e. (1.13) means

lim
N→∞

P(I1 = I2 = I3)

P(I1 = I2)
= 0. (1.16)

Furthermore, the Markov inequality and (1.13) imply for any ε > 0

P(ν1 > εN) ≤
1

(εN)3
E
[
(ν1)3

]
=

1

ε3N3
o
(
NE[(ν1)2]

)
= ε−3o

(
cN/N

)
. (1.17)

From this, we obtain

E
[
(ν1)2(ν2)2

]
≤ εNE

[
(ν1)2ν21(ν2 ≤ εN)

]
+ N2

E
[
(ν1)21(ν2 > εN)

]

≤ εNE
[
(ν1)2ν2

]
+ N3

E
[
ν11(ν2 > εN)

]

≤ εN
N

N − 1
E
[
(ν1)2

]
+ N3 N

N − 1
P(ν2 > εN),

where we used (1.15) in the last inequality. Combing this with (1.17) we see that for any ε > 0

lim sup
N→∞

E
[
(ν1)2(ν2)2

]

NE
[
(ν1)2

] ≤ ε + lim sup
N→∞

NP(ν1 > εN)

cN
= ε,

which yields

lim
N→∞

P(I1 = I2 6= I3 = I4)

P(I1 = I2)
= lim

N→∞

(N)2E
[
(ν1)2(ν2)2

]

(N)4
·

(N)2

NE
[
(ν1)2

] = 0. (1.18)

Consider ξ = {C11, C12, C2, . . . , Ca} and η = {C1, . . . , Ca}, where C1 = C11 ∪ C12. We have

p(N,n)(ξ, η) = P
(
{I1 = I2} ∩ {Im 6= I1, m = 3, . . . , a} ∩ {I` 6= Im, 3 ≤ ` < m ≤ a}),(1.19)

so p(N,n)(ξ, η) ≤ P(I1 = I2), on the other hand

p(N,n)(ξ, η) ≥ P
(
I1 = I2

)
− P

(
{I1 = I2} ∩ {∃ 3 ≤ m ≤ a : Im = I1}

)

− P
(
{I1 = I2} ∩ {∃ 3 ≤ ` < m ≤ a : I` = Im 6= I1}).

7



Note that

P
(
{I1 = I2} ∩ {∃ 3 ≤ m ≤ a : Im = I1}

)
≤ (a − 2)P

(
I1 = I2 = I3) = o

(
P(I1 = I2)

)

by (1.13) and that

P
(
{I1 = I2} ∩ {∃ 3 ≤ ` < m ≤ a : I` = Im 6= I1}) ≤

(
a − 2

2

)

P
(
I1 = I2 6= I3 = I4

)

= o
(
P(I1 = I2)

)

by (1.18), so that indeed p(ξ, η) = cN + o(cN ) in this case.
Similarly, if η′ arises from ξ by merging more than two classes, we have p(ξ, η′) = o(cN ),

as then there must be at least either a triple merger or two double mergers. Finally, as
∑

η∈En
p(ξ, η) = 1 and |En| < ∞, we must also have p(ξ, ξ) = 1 −

(
|ξ|
2

)
cN + o(cN ). Combin-

ing, we obtain (1.14).

Lemma 1. Let E be a finite set and q = (qxy)x,y∈E a conservative rate matrix (i.e. qxy ≥ 0
for x 6= y, qxx = −

∑

y 6=x qxy), so that there is a unique continuous time Markov chain X on

E with generator matrix q. Let furthermore X (N), N ∈ N be discrete time Markov chains with
transition matrix p(N) satisfying

p(N)(x, y) = δx,y + cNqxy + o(cN ), x, y ∈ E,

where cN → 0 as N → ∞. Then X
(N)
0 →d X0 implies that the processes (X

(N)
[t/cN ])t≥0 converge in

distribution (on D[0,∞)(E)) to (Xt)t≥0.

Let R(n) start from the trivial relation on En, and denote by Tk the length of the time interval
during which one sees k classes (k = n, n−1, . . . , 2, T1 = ∞ because the all-relation is absorbing).
We see from (1.12) that the variables

Tn, Tn−1, . . . , T2 are independent, and L (Tk) = Exp
(k(k − 1)

2

)

,

so the expected time until one sees only one class (i.e. the time to the most recent common
ancestor of all the individuals in the sample) is

n∑

k=2

2

k(k − 1)
= 2

n∑

k=2

1

k − 1
−

1

k
= 2

(

1 −
1

n

)

. (1.20)

Kingman’s (n-)coalescents have a consistency property (which is natural from the viewpoint
of modelling a sample from a very large population): Let n′ > n, and denote by dn(R) the
restriction of R ∈ En′ to En, then

dn

(
(R

(n′)
t )t≥0

) d
=(R

(n)
t )t≥0.

This allows to define Kingman’s coalescent (Rt) as the Markov process on E := {equivalence relations on N}

with the property that dn

(
(Rt)

)
=d(R

(n)
t ) for each n. We see from (1.20) that (Rt) comes down

from infinity , i.e. starting from R0 = {{1}, {2}, . . .}, we will have |Rt| < ∞ almost surely
for any t > 0. Note that while coalescence is very quick at the beginning, the end does come
comparatively slowly: (1.20) shows that the expected time to the MRCA of an infinite sample
is 2, but the expected time to merge the last two classes into one is 1.

8



1.3 Infinitely many alleles

In the previous section, we have considered models for the genealogy connecting a sample from a
population with random ‘mating’, but we have not really looked at types. Let us now introduce
types, which can change through mutation. In this section, we consider a neutral scenario
with parent independent mutation, i.e. an individual’s type does not affect her (chances of)
reproductive success, and given that someone is hit by a mutation, her new type will be just
a random draw from a fixed mutation law, independent of the previous type. While these
assumptions seem quite restrictive, there are some applications (e.g. two neutral types or the
so-called infinitely-many-alleles model), and furthermore, they allow a nice decoupling of the
genealogy and the types in a sample.

Let E be the set of possible types, µ ∈ M1(E). Consider a population of 2N (haploid)
individuals, each with a type ∈ E, which evolves according to the Wright-Fisher model. Types
are passed on from parent to offspring, but assume that for each offspring independently with
probability θ/(4N) (θ ∈ R+ is a parameter) there occurs a mutation, and the child gets a random
type according to (an independent draw from) µ. If N is very large, the results above may render
the following description of the genealogy and type history of a sample of size n � N , measured
in units of 2N generations, plausible:

The genealogy is given by Kingman’s n-coalescent. Additionally, on each lineage there is a(n
independent) Poisson process with rate θ/2 of mutation events, mutations are marked indepen-
dently according to µ. The type of sample no. i is determined by following its lineage backwards
until it hits the first mutation, from which we can read off the type. See e.g. the following picture.

.......
.......
....................

.......
........
...................

.......
........
...................

.......
........
...................

........
.......
...................

1 32 4 5 6 7

Figure 1.1: An example. Note that we have shamelessly drawn a rather unlikely realisation in
which no ‘crossing of lineages’ occurs.

The infinitely-many-alleles model refers to such a situation where each mutation produces a
novel type, realised e.g. via E = [0, 1] and µ = Lebesgue measure. Essentially, one only records
whether two given samples are of the same type or not. For example, in the picture above, the
families are {1}, {2}, {3, 4}, {5}, {6, 7}, i.e. we observe 3 singletons and 2 families of size 2.

Note that, because a mutation completely erases the information about the previous type
in the infinitely-many-alleles model, the part of the coalescent ‘below’ a mutation is irrelevant
for the determination of the types in the sample. Thus, if we are only interested in the type
distribution in the sample, we could as well discontinue (or ‘kill’) a lineage once it has hit a
mutation, like in the following variant of the above picture

9
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which is
equivalent to

.......
.......
....................
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1 32 4 5 6 7

We can produce this killed coalescent as follows: Start with {{1}, {2}, . . . , {n}}, i.e. initially only
singleton classes, as usual.

Any pair of active classes is merged at rate 1, and

any active class is killed at rate θ/2.
(1.21)

When a class is ‘killed’, all its elements are assigned the same (novel) type. Finish when there
are no classes left.

1.3.1 Hoppe’s urn

Assume that there are presently k active lineages in the killed coalescent described by (1.21).
Then the probability that the next event (backwards in time) will be a coalescence is

(
k
2

)

(
k
2

)
+ k θ

2

=
k − 1

k − 1 + θ
,

and with probability
k θ

2
(
k
2

)
+ k θ

2

=
θ

k − 1 + θ

it will be a mutation (corresponding to killing of a lineage). By the symmetry of the model,
given this type, all possible coalescences resp. killings are equally likely. The history of a sample
of size n corresponds to n events en, en−1, . . . , e1 ∈ {coal, mut} (say, indexed by the number of
lineages active before the event), and the probability to observe a particular sequence is thus

n∏

k=1

(
θ1(ek = mut) + (k − 1)1(ek = coal)

)

n∏

k=1

(k − 1 + θ)

. (1.22)

Fred Hoppe [Hop84] observed that one can also generate this sequence ‘forwards in time’
using an urn model (in the spirit of Pólya’s urn):

Hoppe’s urn model. Initially, the urn contains one black ball of mass θ. In each step, a ball is

10



drawn from the urn with probability proportional to its mass. If the drawn ball is black, return it
together with a ball of mass 1 of a new, not previously used colour; if the chosen ball is coloured,
return it together with another ball of mass 1 and the same colour.

In the k-th step, there are k balls (including the black or ‘mutation’ ball) in the urn, thus
the probability to pick the mutation ball is θ/(k − 1 + θ), and the probability to pick a coloured
ball is k/(k − 1 + θ). Hence, if we denote

ek =

{
mut if in the k-th step, the black ball is chosen,
coal otherwise,

we see that the probability to observe any particular sequence of length n is also given by (1.22).
Furthermore, given that ek = coal, each of the then present k− 1 coloured balls is equally likely
to be picked. Thus:

The distribution of the family sizes generated by the n non-black balls
in Hoppe’s urn after n steps is the same as the one induced by the
n-coalescent in the infinitely-many-alleles model.

(1.23)

But note different labellings: Hoppe’s urn produces ‘age order’, we had numbered the lineages
in ‘sample order’.

Immediate upshot: Let

Kn := no. of different types observed in a sample of size n,

then we see

E Kn =

n∑

i=1

θ

θ + i − 1
∼ θ log n, Var(Kn) =

n∑

i=1

θ

θ + i − 1
·

i − 1

θ + i − 1
∼ θ log n, (1.24)

and
Kn − E Kn
√

Var(Kn)

d
−→ standard normal.

In order to see this it suffices to write Kn = A1 + · · ·+ An, where Ai = 1(black ball is drawn in
the i-th step) and note that A1, . . . , An are independent with P(Ai = 1) = θ/(θ + i − 1).

Remark 2. There is a nice relation between Hoppe’s urn and random permuations, as noted by
[JT87]: Think of the coloured balls as being numbered in the order of their appearance. The
family decomposition generated by n draws from Hoppe’s urn can then be uniquely represented
as the cyclic decomposition of a permuation of {1, 2, . . . , n} which arises as follows: If in the k-th
step we draw the black ball, start a new cycle consisting only of (k). Otherwise, add k (say, to
the left) of the number of the drawn ball.

For example, the picture on the right encodes the per-
mutation (1)(52)(73)(4)(6), which arose sequentially as (1),
(1)(2), (1)(2), (1)(2)(3), (1)(2)(3)(4), (1)(2)(3)(4), (1)(52)(3)(4),
(1)(52)(3)(4)(6), (1)(52)(73)(4)(6).

.......
........
...................

.......
........
...................

.......
.......
....................

.......
........
...................

........
.......
...................
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1.3.2 Ewens’ sampling formula

Here, we derive a formula (first found by, and subsequently named after, Warren Ewens) for
the probability distribution of the type spectrum in a sample of size n from the equilibrium
distribution of the infinitely many alleles model.

Theorem 3 (Ewens’ sampling formula). Let b1, . . . , bn ∈ N0 with
∑n

j=1 bj = k ≤ n,
∑n

j=1 jbj = n be given. The probability to observe bj types with j representatives (j = 1, . . . , n)
in a sample of size n is given by

n!

1b12b2 · · ·nbn
·

1

b1!b2! · · · bn!
·

θk

θ(θ + 1) · · · (θ + n − 1)
. (1.25)

Note that an alternative way to write (and possibly remember) (1.25) is

C(n, θ) ×

n∏

j=1

e−θ/j (θ/j)bj

bj !
(1.26)

(where C(n, θ) = n! exp
(
θ
∑n

j=1 1/j
)
/(θ(θ+1) · · · (θ+n−1))) which shows that the distribution

of the type spectrum (B1, . . . , Bn) in an n-sample is ⊗n
j=1Poi(θ/j), conditioned on

∑n
j=1 jBj = n.

Proof. We follow [GL04]. Let us consider an n-coalescent in which the sampled individuals are
(artificially) labelled by 1, 2, . . . , n. In the infinitely-many-alleles model, mutations (to novel
types) ’rain down’ at rate θ/2 per lineage. Imagine we follow this coalescent backwards in time
and sequentially record the changes we see. Once a lineage has hit a mutation, we do not follow
it backwards any more: irrespectively of what happened before, the type is defined by this
mutation. This fine protocol will be a sequence e1, e2, . . . , en of n elementary events , which will
be either of type

mut(i), i.e. lineage i hits a mutation event, or

coal(i → j), i.e. lineage i coalesces into lineage j (6= i)

for some i (and possibly j) ∈ {1, . . . , n}. Unlike the ’classical’ coalescent thinking, we keep
track of who coalesces into whom for the moment. Note that both coal(i → j) and mut(i)
render lineage no. i inactive, meaning that it cannot appear again in an elementary event later
in the protocol. Obviously, the possible fine protocols have to satisfy this consistency condition.
Furthermore, the last event en must necessarily be a mutation.

There is a coalescence rate of 1/2 per ordered pair of (still active) lineages, and a mutation
rate of θ/2 per lineage. Before the m-th elementary event, there are n − m + 1 active lineages,
so the probability of observing a particular em is







1/2
1
2 (n − m)(n − m + 1) + θ

2 (n − m + 1)
=

1

(n − m + 1)(n − m + θ)
if em is a coalescence,

θ/2
1
2 (n − m)(n − m + 1) + θ

2 (n − m + 1)
=

θ

(n − m + 1)(n − m + θ)
if em is a mutation.

(1.27)
Consequently the probability to observe a given (consistent) fine protocol which contains k (≤ n)
mutation events, and thus describes the history of a sample in which we observe k distinct types,
is given by

θk

∏n
m=1(n − m + 1)(n − m + θ)

=
θk

n! θ(θ + 1) · · · (θ + n − 1)
. (1.28)

For given type spectrum b1, . . . , bn with
∑n

j=1 bj = k (and, of course,
∑n

j=1 jbj = n), we have
to count how many possible fine protocols would yield exactly this type spectrum:
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To facilitate our reasoning, let us assume for the moment that there are k artificially labelled
types. Pick family sizes n` ∈ N, ` = 1, 2, . . . , k subject to #{` : n` = j} = bj , j = 1, 2, . . . , n.
Let us also enrich our notion of fine protocols with these labels, in the sense that a mutation
event now also carries the information which type was produced, e.g. mut`(i) means that (the
presently active) lineage i hits a mutation event which produces type `. Of course, these enriched
fine protocols have to obey the additional condition that each of the types from {1, . . . , k} appears
exactly once in a mutation event.

In order to produce a fine protocol with labelled types which describes a sample with n`

representatives of type `, ` = 1, . . . , k, we can proceed as follows:

1. Fix an order in which the lineages become inactive. There are n! possibilities.

2. Assign a type to each lineage. There are
(

n
n1n2...nk

)
possibilities: this amounts to putting

n distinguishable balls (the lineages) into k distinguishable boxes (the types) such that n`

balls land in box `, ` = 1, . . . , k.

3. Prescribe ‘coalescence targets’ within each type. While the previous two steps were com-
pletely independent, we now have to respect the previous choices.

Consider type `, and assume that in Step 2, we have decided that samples i1, i2, . . . , in`

are of this type, and that our choice of ordering from Step 1 dictates that i1 is lost first, i2
second, etc. So we are free to chose into which one of the n` − 1 other lineages {ij , 2 ≤ j ≤
n`} lineage i1 coalesces, etc, yielding (n` − 1)(n` − 2) · · · 2 = (n` − 1)! possibilities. We can
(and have to) prescribe these ‘targets’ within each of the k types, leading to altogether

(n1 − 1)! × (n2 − 1)! × · · · × (n` − 1)!

possible choices.

We see that the choices from Steps 1–3 together determine a fine protocol with labelled types,
and vice versa. Combining the number of possible choices in the three steps, we obtain

n! ×

(
n

n1 . . . n`

)

× (n1 − 1)! · · · (n` − 1)! =
(n!)2

∏k
`=1 n`

=
(n!)2

∏n
j=1 jbj

(1.29)

different fine protocols with labelled types which produce n` representatives of type ` (` =
1, . . . , k) in the sample.

Finally, we translate this back to unlabelled fine protocols: A fine protocol with labelled
types immediately yields one without labels by simply ignoring the labels. We have to correct
for over-counting: if we exchange two types ` and `′ with the same number of representatives
n` = n`′ in the sample, the corresponding unlabelled fine protocols will be identical. Thus,
b1! · b2! · · · bn! labelled protocols correspond to the same unlabelled one. Altogether we find

(n!)2
∏n

j=1(bj !jbj )
(1.30)

different (unlabelled) fine protocols which produce the desired type spectrum. Note that (1.30)
multiplied with (1.28) yields (1.25), which is the claim.

1.3.3 Estimating θ

We see from (1.24) that Kn/ logn is an asymptotically normal (and consistent) estimate of θ,
but we also see that the variance of this estimator decays only like 1/ logn. Unfortunately, one
cannot do really better:

Kn is a sufficient statistic for θ, (1.31)
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Figure 1.2: An example. The corresponding fine protocol is (coal(7 → 6), coal(1 → 3), mut(5),
coal(2 → 4), mut(3), coal(6 → 4), mut(4)), the type spectrum produced is b1 = 1, b2 = 1, b3 =
0, b4 = 1, b5 = b6 = b7 = 0.

i.e. for each k, the distribution of the types in the sample, given Kn = k, does not depend on θ.
Let

Ck,n :=
∑′

(b1,...,bn)

n∏

i=1

n!

ibi i!
,

where the sum
∑′

extends over all (b1, . . . , bn) ∈ Nn
0 such that

∑
bi = k,

∑
ibi = n. Note that

Ck,n counts the number of permutations of {1, . . . , n} with exactly k cycles, it is known as (the
modulus of) a Stirling number of the first kind in the literature. Then we see from (1.25) that
the probability to observe a given type spectrum (b1, . . . , bn) with k types in a sample of size n
from the infinitely-many-alleles model with mutation rate θ/2, conditioned on seeing k different
types, is

1

Ck,n

n!

1b12b2 · · ·nbn
·

1

b1!b2! · · · bn!
, (1.32)

proving (1.31).
Denote by Pθ(·) the probability distribution governing the infinitely-many-alleles model with

mutation rate θ/2 per lineage. From (1.25) we obtain for k ≤ n

Pθ(Kn = k) = Ck,n
θk

θ(θ + 1) · · · (θ + n − 1)
.

For a given observation Kn = k, we want to maximise this likelihood Ln(θ, k) := Pθ(Kn = k)
with respect to θ. Note that

∂

∂θ
log Ln(θ, k) =

∂

∂θ

(

k log θ −
n−1∑

i=0

log(θ + i)

)

=
k

θ
−

n−1∑

i=0

1

θ + i
=

1

θ

(

k −
n−1∑

i=0

θ

θ + i

)

,

so the maximum likelihood estimate θ̂ is the solution of

k =

n−1∑

i=0

θ̂

θ̂ + i
= Eθ̂ Kn, (1.33)

i.e. it is that value of θ under which the expected number of types equals the observed number.
Furthermore we see from this that the Fisher information is in this scenario

I(θ) = Eθ

( ∂

∂θ
log Ln(θ, Kn)

)2

=
1

θ2
Eθ

(

Kn −

n−1∑

i=0

θ

θ + i

)2

=
1

θ2
Varθ(Kn).

14



As Varθ(Kn) ∼ θ log n by (1.24), we see that I(θ) ∼ θ−1 log n as n → ∞, and the variance of θ̂
decays (only) like 1/ logn.

1.3.4 The GEM distribution

In this section, we study the asymptotic distribution of the frequencies we observe in a (large)
sample from the infinitely many alleles model with mutation rate θ/2 per lineage. In order to do
this let us consider a Hoppe urn, label the types (or ‘families’) in the order of appearance (‘age
order’) and denote

Xk(n) := size of family k after the n-th draw from Hoppe’s urn.

(obviously X1(1) = 1, Xk(n) = 0 if k > n). Mathematically, our problem is to describe the
distribution of ( 1

n
X1(n),

1

n
X2(n),

1

n
X3(n), . . .

)

(1.34)

for n → ∞. Note that (n + θ)−1X1(n) (n = 2, 3, . . . ) is a bounded martingale:

E

[ 1

n + 1 + θ
X1(n + 1)

∣
∣
∣Fn

]

=
X1(n) + 1

n + 1 + θ

X1(n)

n + θ
+

X1(n)

n + 1 + θ

θ + n − X1(n)

n + θ
=

X1(n)

n + θ

and thus converges almost surely. Similarly, if αk denotes the time of the first appearance of
type k, (n + αk + θ)−1Xk(n + αk), k = 1, 2, . . . is a martingale. As n/(n + θ) → 1, we see that
(1.34) converges almost surely (at least in the sense that any finite initial piece converges).

The following representation of the GEM distribution appeared in [Tav87].

Theorem 4 (GEM distribution, named for Griffiths, Engen, McCloskey). Let B1, B2, . . .
be i.i.d. Beta(1, θ), i.e. with density θ(1 − b)θ−1 on [0, 1]. The distribution of the limit of (1.34)
is given by

(

B1, (1 − B1)B2, (1 − B1)(1 − B2)B3, (1 − B1)(1 − B2)(1 − B3)B4, . . .
)

.

It is convenient to represent (1.34) by means of a (continuous-time) Yule process with im-
migration. Let 0 < T1 < T2 < · · · be the jump times of a homogeneous Poisson point process
with rate θ on R+. At time Ti, the i-th immigrant appears and founds the i-th family, which
from then on grows independently of everything else as a (rate 1) Yule process (i.e. a pure birth
process on N with linear birth rate). Denote by Zi(t) the size of family i at time t. In particular,
Zi(Ti) = 1, Zi(t) = 0 if t < Ti. S(t) :=

∑∞
i=1 Zi(t) is the total size of the population at time t.

Let τn := min{t : S(t) = n}. Then we have

( 1

n
Z1(τn),

1

n
Z2(τn),

1

n
Z3(τn), . . .

)

n=1,2,...

d
=

( 1

n
X1(n),

1

n
X2(n),

1

n
X3(n), . . .

)

n=1,2,...
(1.35)

In order to see this note that if there are presently k families of sizes j1, j2, . . . , jk with j1 + · · ·+
jk = n, the jump rate of S(t) is n + θ, so the probability that the next event in the Yule process
is an immigration is θ/(n+ θ), while it will be an increase of family i with probability ji/(n+ θ).
In words, Hoppe’s urn describes the skeleton chain of our Yule process with immigration.

We see from Lemma 2 that
(

e−tZ1(t), e
−tZ2(t), e

−tZ3(t), . . .
)

→
(

e−T1A1, e
−T2A2, e

−T3A3, . . .
)

a.s., (1.36)

where A1, A2, . . . are i.i.d. Exp(1). Consequently,

e−tS(t) →

∞∑

n=1

e−TnAn a.s. (1.37)
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(In order to justify the exchange of limit and infinite summation note e.g. that Mi := supt≥0 e−tZi(Ti+t)
are i.i.d. with EM1 < ∞, hence lim supMn/n = 0 by the Borel-Cantelli Lemma. Additionally, Tn/n →
θ−1 by the strong law, which yields for m ≥ N0

sup
t≥0

∞
X

n=m

e−Tne−(t−Tn)Zn(t) ≤
∞
X

n=m

e−TnMn ≤
∞
X

n=m

ne−2n/θ . )

Furthermore,

L

( ∞∑

n=1

e−TnAn

)

= Gamma(θ). (1.38)

In order to see this, note that
∑

i δ(Ai,Ti) is a Poisson process on R+×R+ with intensity measure

θdt ⊗ e−xdx. Then Π̃ :=
∑

i δe−TiAi
is a Poisson process on R+ with intensity measure θ

y e−ydy,

which we recognise as the Lévy measure of the Gamma process, see e.g. [Ber96], p. 73. To check
the claimed form of the intensity measure, let h : (0,∞) → R+ be, say continuous with compact
support, and note that

∫ ∞

0

∫ ∞

0

h(e−ta) θdt e−ada =

∫ ∞

0

∫ a

0

h(r)θ
dr

r
e−ada =

∫ ∞

0

h(r)

∫ ∞

r

e−a da θ
dr

r
=

∫ ∞

0

h(r)θe−r dr

r
.

The general observation behind this is of course that if Π =
∑

δai
is a PPP on E with intensity

measure ν, f : E → E′ is measurable, and Π̃ =
∑

δf(ai), then Π̃ is a PPP on E′ with intensity
measure ν̃ = ν ◦ f−1.

The argument that led to (1.38) shows also that

L (G, T ) = Gamma(1 + θ) ⊗ Exp(1) ⇒ L (e−T/θG) = Gamma(1 + θ), (1.39)

because
∑∞

n=1 e−TnAn = e−T1
(
A1+

∑∞
n=2 e−(Tn−T1)An

)
(alternatively, one can note that e−T/θ ∼

Beta(θ, 1) and then use Lemma 3).

We see from the above that

Z1(t)

S(t)
=

eT1−tZ1(t)

eT1−tZ1(t) +
∑∞

i=2 eT1−tZi(t)
→

A1

A1 +
∑∞

i=2 e−(Ti−T1)Ai
=: B1 a.s.,

and by Lemma 3, L (B1) = Beta(1, θ), and B1 and A1 +
∑∞

i=2 e−(Ti−T1)Ai are independent. Put

Cn := An +
∞∑

i=n+1

e−(Ti−Tn)Ai, Bn :=
An

Cn
.

We prove by induction that for any n ∈ N,

L

(

C1, B1, B2, . . . , Bn

)

= Gamma(1 + θ) ⊗ Beta(1, θ)⊗n. (1.40)

By the argument above, (1.40) holds true for n = 1. Assume that it is satisfied for n, then
the stationarity and independence properties of (Ai) and the increments of a Poisson pro-
cess imply that also L (C2, B2, B3, . . . , Bn+1) = Gamma(1 + θ) ⊗ Beta(1, θ)⊗n. Furthermore,
(C2, B2, B3, . . . , Bn+1) and (A1, T2 − T1) are independent. We have

C1 = A1 + e−(T2−T1)C2, B1 =
A1

C1
=

A1

A1 + e−(T2−T1)C2
.

By (1.39), e−(T2−T1)C2 ∼ Gamma(θ), so Lemma 3 shows that (1.40) is satisfied for n + 1. (We
remark that of course, (1.40) can be also proved by direct calculation, cf. [Tav87], p. 167.)
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Finally we observe that

e−tZn(t)

e−tS(t)
→

e−TnAn
∑∞

i=1 e−TiAi
=

∑∞
i=2 e−TiAi

∑∞
i=1 e−TiAi

× · · · ×

∑∞
i=n e−TiAi

∑∞
i=n−1 e−TiAi

×
e−TnAn

∑∞
i=n e−TiAi

= (1 − B1) × · · · × (1 − Bn) ×
An

An +
∑∞

i=n+1 e−(Ti−Tn)Ai

= (1 − B1) × · · · × (1 − Bn−1)Bn.

This concludes the proof of Theorem 4.

Lemma 2. Let (Yt) be a rate 1 Yule process starting from Y0 = 1. Then L (Yt) = geom(e−t).
(e−tYt)t≥0 is an L2-bounded martingale, its limit is Exp(1)-distributed.

Proof. Let Ti := |{t : Yt = i}| be the time during which there are i individuals in the popu-
lation. By the form of the transition rates, T1, T2, . . . are independent, and L (Ti) = Exp(i).
Consequently for n = 0, 1, 2, . . . we have

P(Yt > n) = P(T1 + · · · + Tn < t) = P
(

max
i=1,...,n

τi < t
)

= (1 − e−t)n,

where the τi are i.i.d. Exp(1). This shows that L (Yt) = geom(e−t). Alternatively, one can note
that the solution of the forward equation

∂

∂t
P1(Yt = n) = (n − 1)P1(Yt = n − 1) − nP1(Yt = n), P1(Y0 = n) = δ1n

is P1(Yt = n) = e−t(1 − e−t)n−1, or just look up the answer e.g. in Athreya & Ney. This
together with the branching property of the Yule process (i.e. L (Yt|Y0 = k + j) = L (Yt|Y0 =
k) ∗ L (Yt|Y0 = j), which stems from the linearity of the birth rates) yields E[Yt+h|Yt] = ehYt,
proving that (e−tYt) is a martingale.

Elementary properties of the geometric distribution imply that supt≥0 E[(e−tYt)
2] < ∞ and

L (e−tYt) → Exp(1).

Lemma 3. Let G1 and G2 be independent, Gi be Gamma(θi)-distributed (i.e. density (Γ(θi))
−1gθi−1e−g

on R+). Then

L

(

G1 + G2,
G1

G1 + G2

)

= Gamma(θ1 + θ2) ⊗ Beta(θ1, θ2).

Proof. Put G := G1 + G2. The joint density of (G1, G) is

f(G1,G)(g1, g) = c1(0 ≤ g1 ≤ g)gθ1−1
1 e−g1(g−g1)

θ2−1e−(g−g1) = ce−g1(0 ≤ g1 ≤ g)gθ1−1
1 (g−g1)

θ2−1,

so the conditional density of G1, given G = g is

fG1|G=g(g1) = c(g)1(0 ≤ g1 ≤ g)gθ1−1
1 (g − g1)

θ2−1,

and hence the conditional density of G1/G, given G = g is

f(G1/G)|G=g(b) = c̃(g)1(0 ≤ b ≤ 1)bθ1−1(1 − b)θ2−1.

On the other hand, as
∫ 1

0
f(G1/G)|G=g(b) db = 1, we see that c̃(g) = Γ(θ1 + θ2)/(Γ(θ1)Γ(θ2)) is in

fact independent of g.
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The Poisson-Dirichlet distribution

The GEM distribution describes the frequency spectrum in a particular random order (‘age
order’, or ‘size-biased order’ in random partition jargon). A possibly natural question is to look
at the distribution of the ranked type frequencies. Let 1 ≥ V1 > V2 > · · · be the frequency of
the most frequent, the second most frequent type, etc., in the stationary infinitely many alleles
model. So (V1, V2, . . . ) is the order statistic of the distribution described in Thm. 4. By ranking
and then normalising the right-hand side of (1.36), we obtain

Corollary 1. Let Π =
∑

i δXi
be a Poisson point process on R+ with intensity measure (θ/x)e−xdx.

Put S :=
∑

Xi, and let X[1] > X[2] > · · · be the ranked sequence of the Xis. Then

(
X[1]/S, X[2]/S, . . .

) d
=

(
V1, V2, . . .

)
.

In words, the ranked type frequencies have the distribution of the ranked jumps of a ‘standard’
gamma subordinator (up to time θ), normalised to sum to one. This distribution is called the
Poisson-Dirichlet distribution .

Unfortunately, the Poisson-Dirichlet distribution is, as Kingman writes , “not very user-
friendly”.

Parent-independent mutation with finitely many types

Imagine a situation with k different neutral types, where mutations occur at rate θ/2 per line and
a mutation leads to type j with probability πj (> 0) (π is a probability measure on {1, 2, . . . , k})
independently of the type of the parent. We can now easily read off the stationary distribution:

L

(

X1(∞), . . . , Xk(∞)
)

= Dirichlet(θπ1, . . . , θπk), (1.41)

i.e. the joint density is
Γ(θ)

Γ(θπ1) · · ·Γ(θπk)
xθπ1−1

1 · · ·xθπk−1
k

with respect to Lebesgue measure on {(x1, . . . , xk) : 0 ≤ xi ≤ 1, x1 + · · · + xk = 1}.
In order to see this note that to generate the stationary distribution of the k-allele model

with parent independent mutation, we can first generate a realisation of the type frequencies in
the infinitely-many-alleles model and then ‘colour’ each of the types independently according to
π. Corollary 1 tells us that the type frequencies are given (up to normalisation) by the jumps
of a gamma subordinator. It is well-known that the jumps of a subordinator form a Poisson
process, and if we colour the jumps independently, the coloured jumps will form independent
Poisson processes. Thus if Yi ∼ Gamma(θπi) and the Y1, . . . , Yk are independent, then

(

X1(∞), . . . , Xk(∞)
)

d
=

(
Y1

Y1 + · · · + Yk
, . . . ,

Yk

Y1 + · · · + Yk

)

,

and the right-hand side has the required Dirichlet distribution. This multivariate generalisation
of Lemma 3 can be found e.g. in Chap. 40.5 of [JK72].

Two neutral types

Let us briefly remark that a two-type situation can always be reformulated to fit into the parent
independent context: Assume that there are types a and A, and that mutations a → A occur
at rate θ0/2 (on the underlying coalescent), similarly A → a at rate θ1/2. Put θ := θ0 + θ1,
π = (πa, πA) := (θ1/θ, θ0/θ). Imagine following a line which is currently of type a. It will we
be hit by mutations at rate θ/2, but the mutation will be ‘silent’ (i.e. invisible to us because
it changes a → a) with probability πa, so effectively the rate of mutation on this lineage is
θ/2 × πA = θ0/2, as required.
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In order to describe the state of the population (with respect to the particular locus we are
interested in) it suffices to record the fraction Xt of a-individuals (at time t). Specialising (1.41)
to the first coordinate in the case k = 2, we see that then

L (X∞) = Beta(θπa, θπA) = Beta(θ1, θ0). (1.42)

Remark 3. One can derive this in a completely different way: The forwards in time evolution
of the fraction of a-individuals is given by the Wright-Fisher diffusion with mutation, i.e. (Xt)
solves

dXt =
(

−
θ0

2
Xt +

θ1

2
(1 − Xt)

)

dt +
√

Xt(1 − Xt)dWt

= −
θ

2

(

Xt −
θ1

θ

)

dt +
√

Xt(1 − Xt)dWt = b(Xt) + σ(Xt)dWt

(where W is a BM, b(·) is the drift coefficient, σ(·) the diffusion coefficient). Let φ(x) :=

exp
(
−

∫ x

1/2
2b(z)
σ2(z) dz

)
, x ∈ [0, 1]. (Note that s(x) :=

∫ x
φ(z) dz is a scale function for the diffusion

(Xt): e.g. Itô’s Formula shows that s(Xt) is a martingale.) Then by standard results on one-
dimensional diffusion processes, the equilibrium density of X is given by ρ(x) = C/(φ(x)σ2(x))

(where 1/C =
∫ 1

0 1/(φ(x)σ2(x))dx). See e.g. Satz 3 in § 23 of I.I. Gichman and A.W. Skorochod,
Stochastische Differentialgleichungen, Akademie-Verlag, Berlin, 1971.
A ‘quick and dirty’ way to check this at least heuristically is as follows: Assuming that an equilibrium
density ρ(x) exists, we must have for f in the domain of the generator

0 =

Z

ρ(x)
ˆ

b(x)f ′(x) +
1

2
σ2(x)f ′′(x)

˜

dx =

Z

ˆ

− (ρb)′(x) +
1

2
(ρσ2)′′(x)

˜

f(x) dx,

by integration by parts (assuming that the boundary terms vanish). As this must hold for ‘many’ fs,

we have (ρb)′ = 1
2
(ρσ2)′′, for which a sufficient condition is ρb = 1

2
(ρσ2)′, or equivalently

`

log(ρσ2)
´′

=

(ρσ2)′/(ρσ2) = 2b/σ2. Hence ρ = const/(σ2φ).

In the situation at hand,

∫ x

1/2

2b(z)

σ2(z)
dz =

∫ x

1/2

−
θ(z − θ1

θ )

z(1 − z)
dz =

∫ x

1/2

θ1 − θ

1 − z
+

θ1

z
dz = θ0 log(1 − x) + θ1 log(x) + const.,

yielding

ρ(x) = C exp
(

θ0 log(1 − x) + θ1 log(x)
) 1

x(1 − x)
= C xθ1−1(1 − x)θ0−1.

1.3.5 The infinitely-many-sites model

If in a genetic study, information on (a certain piece of) the, say DNA or polypeptide, sequences
of the sampled individuals is available, then it seems that the infinitely-many-alleles model is too
‘rough’: With sequence information, one can not only decide whether two samples have exactly
the same type; given that they are different, we can now ask by which mutation(s) they differ.
A model that allows to take this information into account is the infinitely-many-sites model,
introduced by M. Kimura in 1971.

We model a sequence as the unit interval [0, 1], and we assume that in the course of evolutions,
mutations ‘rain down’ one the sequence (as it is passed through the generations) at rate θ/2.
Given that a mutation occurs, it hits a uniformly (and independently of everything else) chosen
position in [0, 1]. In particular, each mutation hits a new site (thence the name of the model).
So the type of an individual is described by a simple counting measure on [0, 1], which describes
the pattern of mutations that we see in this individual compared to some hypothetical reference
type. We still assume that mutations are neutral with respect to an individuals fitness.

Note that there is no true stationary distribution for the actual types in the population,
because as time increases, more and more mutations occur. On the other hand, a mutation
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that is carried by everyone in the population is invisible to us because we do not know the
founding reference type. Thus, if we agree that mutation patterns are defined only relative to
the (unknown) type of the most recent common ancestor, we can generate a sample of size n as
follows:

First, grow an n-coalescent. Second, throw down mutations at the lineages at rate θ/2 per
lineage, and mark each mutation with an independent, unif([0, 1]) label. The type of a leaf is
the point measure on [0, 1] whose atoms are the labels of the mutations which occurred on the
lineage which connects this leaf to the MRCA (a rigorous definition of the model is in [EG87]).
See the picture below.
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This is still a bit more than the information that is actually contained in the sampled sequences:
if we observe that sequence i and j differ at a certain site, we do not know which of them carries
the mutation relative to the type of the MRCA. A site is called segregating if at least one pair of
samples differs at this site. So, the information from an n-sample under the infinitely-many-sites
model is

Sn = # segregating sites, and Dm(i, j) =

{
1 if samples i and j differ at segregating site m
0 otherwise

for m = 1, . . . , Sn, 1 ≤ i < j ≤ n. Note that Sn = total number of mutations on the coalescent
connecting the sample up to the MRCA, so given the total length Ttot of the coalescent, Sn

is Poi
(
(θ/2)Ttot

)
-distributed. As Ttot =d

∑n
j=2 jTj , where T2, . . . , Tn are independent, L (Tj)

= Exp
((

j
2

))
, we see that

Eθ Sn =
θ

2

n∑

j=2

j

(
j

2

)

= θ

n−1∑

i=1

1

i
, (1.43)

Varθ(Sn) = Eθ

[
Varθ(Sn|Ttot)

]
+ Varθ

(
Eθ[Sn|Ttot]

)

= Eθ

[θ

2
Ttot

]
+ Varθ

(θ

2
Ttot

)
= θ

n−1∑

i=1

1

i
+ θ2

n−1∑

i=1

1

i2
. (1.44)
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Thus, Sn/
∑n−1

i=1 (1/i) is an unbiased estimate of θ, and its variance decays like 1/ logn as the
sample size tends to infinity. No closed-form expression for the likelihood of a given pattern, say
as a function of θ, under the infinitely-many-sites model is known, so for inference questions, one
usually has to rely on computer-intensive methods. See e.g. [SD00], Section 5.5.

Note that if we ignore the fine structure of the sequences and just record which samples
were identical, the model reduces to the infinitely-many-alleles model. Also note that, unlike the
case of the latter, it is possible that data explicitly contradict the infinitely-many-sites model.
Consider the following example:
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ba Tree a Tree b

Here, the mutation pattern at site a requires that the topology of the genealogical tree connecting
the sampled individuals 1,2,3,4 must be tree a, whereas the observations from site b dictate that
it must be tree b. So, if there was a genealogical tree at all, one of the sites must have been hit
twice.

1.3.6 ‘Tests for neutrality’

The quotation marks around the title of this subsection refer to the following general problem: if
in a statistical test, we use some neutral model as the null hypothesis and find that the data allow
to reject this null hypothesis at a certain level of significance, this does not necessarily mean that
we have found evidence for selection acting in the population. Other violations of the model,
like spatial substructure, assortative mating, non-constant population size, recombination, non-
appropriateness of the mutation model etc. could have a similar effect.

Watterson’s test

Assume that we observe a Kn = k certain type frequency spectrum (B1, B2, . . . , Bn) in a sample
of size n (i.e. Bj types with j representatives,

∑

j Bj = Kn) and we would like to test whether
this is plausible under the infinitely-many-alleles model. Watterson (1977) suggested to consider

F :=

n∑

j=1

Bj

( j

n

)2

, the ‘sample homozygosity’. (1.45)

If the observed value of F is less than the α/2-quantile or larger than the 1−α/2 of f under the
infinitely-many-alleles model, we can reject it at the α-significance level. An enjoyable property
of the infinitely-many-alleles model is that by (1.31), L (F |Kn = k) does not depend on θ. No
closed form for of distribution of F , given Kn = k types in a sample of size n is known. In
principle (at least for moderate n, where moderate depends on the available computing power),
(1.32) allows to explicitly compute this distribution numerically by brute force. On the other
hand, it is also easy using a Hoppe urn to simulate L (F |Kn = k). A table of values can be
found e.g. in Appendix B of [Ewe04].

Tajima’s D

In the situation of the infinitely-many-sites model, F. Tajima (1989) noted that one can build

a statistical test out of two different estimators for θ. Let Tij :=
∑Sn

m=1 Dm(i, j) be the number
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of differences we observe between the sampled sequences i and j. As the expected coalescent
distance between any two samples is 2, we have Eθ Tij = θ, so

θ̂T :=
1

(
n
2

)

∑

1≤i<j≤n

Tij

is an unbiased estimate of θ. One can show by a lengthy coalescent calculation that Varθ(θ̂T ) =
n+1

3(n−1)θ + 2(n2+n+3)
9n(n−1) θ2, see e.g. [Dur02], p. 44–50. Note that this converges to θ/3 + 2θ2/9 > 0

as n → ∞, which makes it a rather unreliable estimator, but this does not prevent its use in
a statistical test. We have seen above that θ̂S := Sn/

∑n−1
i=1 (1/i) is also an unbiased estimator

for θ, so if the infinitely-many-sites models applies, θ̂S − θ̂T should be zero up to statistical
fluctuations. Another lengthy coalescent calculation (cf. e.g. [Dur02], Section 4.1) yields

Varθ(θ̂S − θ̂T ) =
(
b1 −

1

a1

)
θ +

(
b2 −

n + 2

a1n
+

a2

a1

)
θ2, where

a1 =

n−1∑

i=1

1

i
, a2 =

n−1∑

i=1

1

i2
, b1 =

n + 1

3(n − 1)
, b2 =

2(n2 + n + 3)

9n(n − 1)
.

Using this one can check that

V̂ :=
( b1

a1
−

1

(a1)2

)

Sn +
b2 −

n+2
a1n + a2

a1

(a1)2 + a2
Sn(Sn − 1)

is an unbiased estimate of Varθ(θ̂S − θ̂T ). This suggests to use

D :=
θ̂S − θ̂T

√

V̂
, Tajima’s D,

as a test statistic. Note that the distribution does depend on θ and is not explicitly known.
Based on simulation results, Tajima suggested to approximate the distribution of D by a scaled
and translated beta distribution and based a test on this. Cf. e.g. [Ewe04], Section 11.3.3 for
details.

1.4 Selection, the modified look down construction, and

some of that

1.4.1 Preliminaries

Moran model

A popular time continuous variant of the Wright-Fisher model is Moran’s model (we introduce
this model here, because e.g. the ‘look down’ construction considered below is easier to work
with in a time-continuous setting): N (haploid) individuals, each with an independent, Exp(1)-
distributed lifetime. Upon her death, a particle is immediately replaced by the offspring of an
individual sampled randomly from the current population. Assume that individuals have types

in E (and for the moment, that types are neutral and there is no mutation). Let X
(N)
i (t) be the

type of individual i at time t, then X (N) is an EN -valued continuous time Markov chain with
generator

Gf(x1, . . . , xN ) =
∑

1≤i,j≤N
i6=j

1

N − 1

(

f(ηi(x; xj)) − f(x1, . . . , xN )
)

,

where ηi(x; xj) is x with the value of the i-th coordinate replaced xj .
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If we assume that E = {a, A} and we record only the fraction of type a-individuals, and (as
we have found reasonable for the Wright-Fisher model) speed up time by a factor of N , then

Y (N)(t) := #{i : X
(N)
i (Nt) = a}/N is ‘almost a diffusion’: it is a continuous time Markov chain

on {0, 1/N, 2/N, . . . , 1} (in fact, a scaled birth and death process) with generator

Lφ(x) = N2x(1 − x)
(
φ(x + 1/N) + φ(x − 1/N) − 2φ(x)

)
≈ x(x − 1)φ′′(x).

This makes it at least plausible that Y (N) → Y , where dY (t) =
√

2Y (t)(1 − Y (t))dW (t), which
is a (scaled) Wright-Fisher diffusion.

Why ‘weak’ selection

Assume E = {a, A}, and type a has a selective advantage over type A. To be specific, we will
consider fecundity selection here: type A-individuals produce offspring at rate 1, while type a-
individuals reproduce at rate 1 + s > 1. Then in a population of fixed size N , the number of
type a-individuals is a birth-death chain with jump rates

n 7→

{
n + 1 at rate n(1 + s)(1 − n/N)
n − 1 at rate (N − n) × (n/N)

So, denoting the fraction of a-individuals at time t by Zt, we have (for φ ∈ C2([0, 1]))

E
[
φ(Zt+∆t) − φ(Zt)

∣
∣Zt

]

≈ ∆t ×
(

NZt(1 + s)(1 − Zt)
(
φ(Zt + 1/N) − φ(Zt)

)
+ N(1 − Zt)Zt

(
φ(Zt − 1/N) − φ(Zt)

))

≈ ∆t × Zt(1 − Zt)
(

sφ′(Zt) +
1 + s/2

N
φ′′(Zt)

)

,

which suggests that for fixed s > 0, as N tends to infinity, the process (Zt) — at least as long
as it is inside (ε, 1 − ε), say — should look similar to the solution of the deterministic ODE
(d/dt)z(t) = z(t)(1− z(t)). Note that we have not speeded up time in this argument, whereas in
a population of size N , as we have seen above, we would have to wait time of the order N before
we can observe type frequency changes which are due resampling fluctuations. Thus, selection
with fixed selective advantage in a very large population operates on a different time scale than
random genetic drift, and in such a situation, a stochastic model may not be appropriate (or at
least not necessary). . To sum up, in this scenario, selection is the dominating force determining
the evolution of the type distribution in the population, and random genetic drift is too slow to
compete with it (this is why such a regime is sometimes called ’strong selection’).

Interesting (and stochastic) things happen if N is big and s is small ’in the right way’: Assume
that N � 1 and s = σ/N . This is called a weak selection regime; of course, it will depend on the
particular application if it applies. Denoting again the fraction of type a-individuals at time t
by Zt, we see now that

E
[
φ(Zt+∆t) − φ(Zt)

∣
∣Zt

]

≈ ∆t × Zt(1 − Zt)
( σ

N
φ′(Zt) +

1 + σ/2N

N
φ′′(Zt)

)

≈
∆t

N
Zt(1 − Zt)

(

σφ′(Zt) + φ′′(Zt)
)

.

This suggests that if we now speed up time by N again, (Zt) will converge to the solution of

dZt = σZt(1 − Zt)dt +
√

2Zt(1 − Zt)dWt,

a Wright-Fisher diffusion with (directional) selection. We will see a general version of this fact
below.
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1.4.2 Donnelly & Kurtz’ modified ‘look down’ construction for the

Fleming-Viot process with mutation and selection

We follow [DK99] (in a sometimes overview-like manner). The key point will be to construct
versions of the Moran model in such a way that in the limit of infinite particle number, there are
still individual particles to talk about.

Moran model with mutation and selection

The N -particle model, where we have already implicitly speeded up time by N , looks as follows:
Individuals have a type in E (where E ⊂ R, say). Mutation is governed by a Markov process

in E with bounded generator B, we assume that it can be written in the form

Bf(x) = α

∫ 1

0

(
f(h(x, u)) − f(x)

)
du (1.46)

for some α ≥ 0 and h : E × [0, 1] → E. Any pure jump Markov process with globally bounded
jump rates can written in this form, which will be convenient for us later on.

Let X̃
(N)
i (t) be the type of the i-th individual, and Z̃

(N)
t := N−1

∑N
i=1 δ

X̃
(N)
i

(t)
the empirical

type distribution at time t.
There are two types of reproductive or resampling events: 1) Any individual reproduces at

rate N/2, in which case it replaces an individual chosen at random by a copy of its present
type. These are the so-called neutral resamplings. Note that a ’silent’ event where an individual
replaces itself is also allowed. 2) Let σ : E ×M1(E) → R+ be a bounded measurable function.
σ(x, µ) models the the fitness advantage of a type x-individual if the present type composition is
given by µ. In addition to 1), each individual i produces additional offspring at instantaneous rate

σ(X̃
(N)
i (t−), Z̃

(N)
t− ), which replaces another individual chosen at random. We will call these events

‘selective resamplings’. We are considering ‘fecundity selection’ here: the number of offspring
depends on the type. Note that another popular type of selection is ‘viability selection’, where
a particle’s death rate is a function of the type.

Remark 4. There are two important special cases of this type of selection:
1.) σ(x, µ) = σ̃(x) independent of µ: genic selection (sometimes also: directional selection).

2.) The ’usual diploid model’: σ(x, µ) =
∫

σ̃(x, y)µ(dy) for some σ̃ : E × E → R+. Rationale is
as follows: fitness depends on a diploid type, but we are following gametes in a Hardy-Weinberg
situation. The probability that a gametes of type x produces an individual of type (x, y) if the
present type configuration in the (gamete pool of the) population is µ is given by µ(dy).

Note: a certain form of balancing selection (i.e. selection which favors a less frequent type)
can be fits into this framework: E = {0, 1}, σ̃(x, y) = 1− δxy, so if the present frequency of type
0 is a, the fitness of type 0 is 1 − a.

For fixed N , the vector of types
(
X̃

(N)
1 (t), . . . , X̃

(N)
N (t)

)
evolves according to a Markov process

on EN , which we can for example describe as the solution to the martingale problem with
generator (x = (x1, . . . , xN ), µ = N−1

∑N
i=1 δxi

)

AN
0 f(x) =

N∑

i=1

Bif(x) +
1

2

∑

1≤i,j≤N

(

1 +
2

N
σ(xi, µ)

)(

f(ηj(x; xi)) − f(x)
)

, (1.47)

where Bif(x) denotes B acting on the i-th coordinate of f , and ηj(x; xi) is x with the value of
the j-th coordinate replaced by xi. Existence and uniqueness of the martingale problem with
generator (1.47), and domain {f : EN → R cont., bounded}, say, are standard: AN

0 is a bounded
operator.
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Figure 1.3: The particle at level 1 produces an offspring at level 3, the other types are shifted
accordingly.

An ordered version

N , B, σ as above. Let (X
(N)
i (t), i = 1, . . . , N)t≥0 be the solution of the martingale problem with

generator

ANf(x) =

N∑

i=1

Bif(x) +
∑

1≤i<j≤N

(

f(θj(x; xi)) − f(x)
)

+

n∑

i=1

σ(xi, µ)
1

N

n∑

j=1

(

f(ηj(x; xi)) − f(x)
)

,

(1.48)

where θj(x; z) ∈ EN is defined as follows:

(
θj(x; z)

)

k
=







xk k < j
z k = j
xk−1 k > j.

(1.49)

See Figure 1.4.2. The labelling is such that always the individual with the highest index dies next.
This may seem strange (or perfectly adequate for Western civilisation with its broken relation
to death ;-), the rationale behind this numbering is as follows: 1) the empirical distribution of
X(N) and X̃(N) is the same (see Proposition 1below), and 2) as N → ∞, X (N) converges to an
E∞-valued limit process, whereas the process X̃(N) has no limit (only its empirical process Z̃

converges). Let Z
(N)
t := (1/N)

∑N
i=1 δ

X
(N)
i

(t)
.

Proposition 1. Assume that X (N)(0) and X̃(N)(0) have the same, exchangeable distribution.
Then (Zt)t≥0 and (Z̃t)t≥0 have the same distribution. Furthermore, for each t ≥ 0, X (N)(t) and

X̃(N)(t) have the same exchangeable distribution.

Remark 5. In general, X(N) and X̃(N) as processes have different distributions.

Proof. We fix N and drop the superscript N throughout the proof. We will define a permutation-
valued process (θ(t))t≥0 such that θ(t) is uniform on SN for each t,

(
Y1(t), . . . , YN (t)

)
:=

(
Xθ1(t), . . . , XθN (t)

)
(1.50)

is a version of X̃, and for each t ≥ 0, θ(t) is independent from σ(Y (s) : s ≤ t).
Let (Im, Jm)m=1,2,... be i.i.d., uniform on {(i, j) : 1 ≤ i < j ≤ N}, A1, A2, . . . an independent

sequence of fair coin tosses, and π0 independent, uniform on SN . (Interpretation: (Im, Jm)
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governs the indices involved in the m-th look-down event.) Define inductively

Ĩm := π−1
m−1(Im), J̃m := π−1

m−1(N) (1.51)

and set

πm(Ĩm) := 1Am=1Im + 1Am=0Jm, πm(J̃m) := 1Am=1Jm + 1Am=0Im, for k 6= Ĩm, J̃m

πm(k) :=

{
πm−1(k) if πm−1(k) < Jm,
πm−1(k) + 1 if πm−1(k) ≥ Jm.

(1.52)
In words, πm maps {Ĩm, J̃m} to {Im, Jm} in randomised order, and on {1, 2, . . . , N} \ {Ĩm, J̃m},
it retains the ordering of πm−1. We claim that for each m

(Ĩ1, J̃1), . . . , (Ĩm, J̃m), πm are independent and uniform on their corresponding set of values.
(1.53)

As πm depends only on πm−1 and (Im, Jm, Am), it suffices to prove (1.53) for m = 1. Let ρ ∈ SN ,
i, j ∈ {1, . . . , N}, i 6= j. If ρ(i) < ρ(j), we have

P(Ĩ1 = i, J̃1 = j, π1 = ρ) =
1

2
P
(

I1 = ρ(i), J1 = ρ(j), π0(j) = n, for k 6= j:
π0(k) = ρ(k) if ρ(k) < ρ(j), π0(k) = ρ(k) − 1 if ρ(k) > ρ(j)

)

=
1

2

2

N(N − 1)

1

N !
=

1

N(N − 1)

1

N !
.

Similarly, if ρ(i) > ρ(j)

P(Ĩ1 = i, J̃1 = j, π1 = ρ) =
1

2
P
(

I1 = ρ(j), J1 = ρ(j), π0(j) = n, for k 6= j:
π0(k) = ρ(k) if ρ(k) < ρ(i), π0(k) = ρ(k) − 1 if ρ(k) > ρ(i)

)

=
1

2

2

N(N − 1)

1

N !
=

1

N(N − 1)

1

N !
.

Independent ingredients for coupling: T1 < T2 < · · · jump times of a rate N(N − 1) +
Nσ̄ Poisson process on R+. U1, U2, . . . , V1, V2, . . . , i.i.d. uniform([0, 1]). (I1, J1), (I2, J2), . . .
independent, uniform on {(i, j) : 1 ≤ i < j ≤ N}. (I ′

1, J
′
1), (I

′
2, J

′
2), . . . independent, uniform

on {(i, j) : 1 ≤ i 6= j ≤ N}. M1, . . . , MN independent Poisson processes on [0, 1] × R+. with
intensity measure α×Lebesgue measure. π0 uniform on SN . (X1(0), . . . , XN (0)) exchangeably
distributed.

We put Z(t) := N−1
∑N

i=1 δXi(t). Set θ(t) := π0 for t ∈ [0, T1). Between the jump times Ti,
each coordinate evolves according to the mutation process, i.e. for t ∈ [Tm−1, Tm)

Xi(t) = Xi(Tm) +

∫

(Tm,t]×[0,1]

h(Xi(s−), u) − Xi(s−) Mi(du ds).

The jump times Tm correspond to (potential) resampling events. If Um ≤ N(N −1)/(N(N −1+
σ̄)), the m-th event is a neutral resampling event, otherwise it is a selective resampling event.

Assume that at time Tm, a neutral resampling event takes place. Then in the ordered model,
individual Im has an offspring which is placed at position Jm, and the individual with label N
dies, i.e.

Xi(Tm) :=







Xi(Tm−) if i < Jm,
XIm

(Tm−) if i = Jm,
Xi−1(Tm−) if i < Jm.

In order to keep track of the unordered model too, define Ĩm, J̃m, πm using (πm−1, Im, Jm) as
in (1.51), (1.52), and put θ(t) := πm for t ∈ [Tm, Tm+1).
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Note that by definition, this resampling event looks as follows for the process Y (t): individual
J̃m dies and is replaced by an offspring of individual Ĩm. Also note that by (1.53), (Ĩm, J̃m) is
uniform on {(i, j) : 1 ≤ i 6= j ≤ N}.

If the m-th event is a selective resampling, we put θ(t) := πm for t ∈ [Tm, Tm+1) (the
selective mechanism is the same in the ordered and in the unordered model). If Vm ≤
σ(XI′

m
(Tm−), Z(Tm−))/σ̄, the potential resampling is successful, and an offspring of individ-

ual I ′m is placed at level J ′
m:

Xi(Tm) :=

{
Xi(Tm−) if i 6= J ′

m,
XI′

m
(Tm) if i = J ′

m.

Otherwise, we leave X unchanged: Xi(Tm) = Xi(Tm−).

By construction, (Y (t))t≥0 evolves according to the unordered model. As Y (t) is a (random)
permutation of X(t), the empirical distribution processes agree. Furthermore, the evolution of
Y can be simulated if one knows Y (0), the (Ĩm, J̃m)m and the driving Poisson processes and the
auxiliary coin tosses, in particular without knowing π0 and the (Im, Jm)m. Thus for a given t,
by considering m such that t ∈ [Tm, Tm+1), we see from (1.53) that θ(t) is independent from
σ(Y (s), s ≤ t). As Y (t) is exchangeable because of the symmetries of the unordered model and
θ−1(t) is also independent of Y (t), we see that

(
Xi(t), i = 1, . . . , N

)
=

(
Yθ−1

i
(t)(t), i = 1, . . . , N

) d
=

(
Yi(t), i = 1, . . . , N

)
,

in particular X(t) is exchangeable.

In the following, we assume that the selection function σ(x, µ) is given by

σ(x, µ) =

∫

E

σ(x, y) µ(dy) (1.54)

for some bounded, measurable function σ : E × E → R+ (with a small abuse of notation). This

allows to rewrite σ(XN
i (t), ZN (t)) = N−1

∑N
k=1 σ(XN

i (t), XN
k (t)).

Let us consider an infinite system of Poisson-process driven SDEs which corresponds to the
limit N → ∞ of the ordered model (the gist of the ordering is that such a limit system exists):
Let ρ̃ : M1(E) × [0, 1] → E be such that L (ρ̃(µ, U)) = µ if U ∼ unif([0, 1]). Let 0 ≤ σ(·, ·) ≤ σ̄.
Lij(t), 1 ≤ i < j independent rate 1 Poisson processes on R+, Mi, i = 1, 2, . . . independent
rate α Poisson processes on [0, 1] × R+, Kj independent Poisson processes on [0, 1]3 × R+ with
intensity σ̄ × (Lebesgue measure)4.

Xj(t) = Xj(0) +

∫

[0,1]×(0,t]

h(Xj(s−), u) − X(s−) Mj(du, ds) (1.55)

+
∑

i<j

∫

(0,t]

Xi(s−) − Xj(s−) Lij(ds) +
∑

1≤i<k<j

∫

(0,t]

Xj−1(s−) − Xj(s−) Lij(ds)

+

∫

[0,1]3×(0,t]

(
ρ̃(Zs−, u1) − Xj(s−)

)
1
(
σ(ρ̃(Zs−, u1), ρ̃(Zs−, u2)) ≥ σ̄u3

)
Kj(du1, du2, du3, ds).

Interpretation of terms: initial value, individual mutation, birth of an offspring of i at level j,
birth at k < j effecting a shift of one level of the type at j, selective birth event replacing the
type at level j.

Note: in the neutral case (σ(·) ≡ 0), if X is a solution of (1.55), then for any N ∈ N, the
EN -valued process (X1(t), . . . , XN(t))t≥0) is a version of the ordered model with N particles.
In particular, by Proposition 1, X(t) is exchangeable for each t ≥ 0.

An immediate consequence of exchangeability of an E∞-valued random vector X is that by
de Finetti’s Theorem (cf. e.g. [Kal02], Thm. 11.10), the empirical distribution Z := limm→∞(1/m)

∑m
i+1 δXi

exists almost surely. The following will make heavy use of this fact.

27



The infinite system of SDEs

In the selective resamplings, we need to be able to generate a sample of a type according to
the current population. While we can do this for a finite population by simply picking a label
uniformly between 1 and N and looking at the type there, we need something else in the situation
N = ∞. Furthermore, we would like to be able make sense out of the ancestry of the specimen
sampled ‘uniformly from 1, 2, . . . ’. For this, we introduce the neutral marker process.

Let E0 := [0, 1]∞. The (individual) neutral marker process evolves as follows: each coordinate
is, independently of the others, after Exp(1)-distributed waiting times, replaced by a uniform
draw from [0, 1], so the generator is given by

BMf(x) =

∞∑

k=1

∫ 1

0

f(ηk(x; u)) − f(x) du

for f : E0 → R (say, bounded, depending on finitely many coordinates). E0 is a totally ordered
set via lexicographical ordering: for x, y ∈ E0 write x ≤ y if there is a k ∈ N such that
x1 = y1, . . . , xk−1 = yk−1, xk ≤ yk.

Write ξj(t) = (ξj1(t), ξj2(t), . . . ) for the neutral marker at level j at time t. For definiteness,
assume that ξj(0), j = 1, 2, . . . are independent i.i.d. uniform([0, 1]) sequences. Let Ξjl be
independent Poisson processes on [0, 1] × R+ (with Lebesgue intensity), and let ξ(t), t ≥ 0 be
the unique solution of

ξj(t) = ξj(0) +
∑

l

∫

[0,1]×(0,t]

(u − ξjl(s−))el Ξjl(du ds)

+

j−1
∑

i=1

∫

(0,t]

(
ξi(s−) − ξj(s−)

)
Lij(ds)

+
∑

i<k<j

∫

(0,t]

(
ξj−1(s−) − ξj(s−)

)
Lik(ds)

(1.56)

(el ∈ E∞ has 1 at the l-th coordinate, and 0 elsewhere). Note: system for ξj , j ≤ N , observed
at finitely many coordinates of the marker process is trivially uniquely solvable. Then extend to
j ∈ N and full marker process.

Observe that the Poisson point processes Lij determine a ‘neutral genealogy’: For t ≥ 0, let
N t

k(s), k ∈ N, 0 ≤ s ≤ t be the level of the (neutral) ancestor at time s of the individual at level
k at time t. N t

k is the (unique) solution of

N t
k(s) = k −

∑

1≤i<j<k

∫

(s,t]

1(N t
k(u) > j) Lij(du)

−
∑

1≤i<j≤k

∫

(s,t]

(j − i)1(N t
k(u) = j) Lij(du).

(1.57)

Inspection of the transition rates shows that for any N and t, the equivalence relation valued
process RN(v) := {(k, l) : 1 ≤ k, l ≤ N, N t

k(t − v) = N t
l (t − v)}, 0 ≤ v ≤ t is a (left continuous)

version of Kingman’s N -coalescent. In fact, the same can be defined for N = ∞. In particular,
because Kingman’s coalescent comes down from infinity, the set of all neutral ancestors at time
s of the particles alive at time t > s,

Γ(s, t) = {N t
k(s) : k ∈ N} is finite a.s. (1.58)
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The total order on E0 and the fact that (almost surely) ξi(t) 6= ξj(t) for all i 6= j allows to
uniquely define the (N -th approximate) p-quantiles (p ∈ (0, 1)): kN (p, t) ∈ {1, . . . , N} with the
property

#
{
1 ≤ k ≤ N : ξk(t) ≤ ξkN (p,t)(t)

}
≥ [Np] + 1 and

#
{
1 ≤ k ≤ N : ξk(t) ≥ ξkN (p,t)(t)

}
≥ N − [Np].

The following lemma shows how to use this to generate a uniform sample from the infinite
population at time t in such a way that the ancestry of the sampled individual is identifiable for
any s < t:

Lemma 4. Let V be uniform([0, 1])-distributed, independent of ξ. Then

ξ∞(V, t) := lim
N→∞

ξkN (V,t)(t) exists a.s.

(in the sense that for any l there exists nl < ∞ such that ξkN (V,t),l(t) = ξkN′ (V,t),l(t) for all
N, N ′ > nl). Furthermore, for s < t,

N t(V, s) := lim
N→∞

N t
kN (V,t)(s) exists a.s.

(and defines a path through the neutral genealogy, ending at N t(V, t−) = ∞).

Proof. Note that Zξ(t) := limN→∞(1/N)
∑N

i=1 δξi(t) exists almost surely by exchangeability.
Because |Γ(0, t)| < ∞ by (1.58) and the set of atoms of ∪jlΞjl in [0, t] is countable, the empirical
measure of the first m coordinates of the marker process,

Zm
ξ (t) := lim

N→∞
(1/N)

N∑

i=1

δ(ξi1(t),...,ξim(t))

is almost surely purely atomic. As the lexicographic order on E0 induces the lexicographic order
on [0, 1]m, for N sufficiently large,

(
ξkN (V,t),1(t), . . . , ξkN (V,t),m(t)

)
will fix on one of the atoms of

Zm
ξ (t). As m is arbitrary, this proves that ξ∞(V, t) exists.

In order to identify the genealogy of the sampled ‘individual’, consider a marker coordinate
l and let sl(V ) be the time when the value ξ∞,l(V ) appeared first: sl(V ) = 0 if this value was
already present in the population at time zero, if sl(V ) > 0, this value was created in a mutation
(of the marker process) which took place at time sl(V ) at some level kl(V ). Note that if sl(V ) > 0
and N is so large that ξkN (V,t),l(t) = ξ∞,l(V, t), then necessarily N t

kN (V,t)(sl(V )) = kl(V ) and

hence N t
kN (V,t)(s) = N

sl(V )
kl(V ) (s) for all s ∈ [0, sl(V )). In words, if the value of ξ∞,l(V, t) was

created at time sl(V ) > 0, we can identify the genealogy up to that time. So to prove the second
claim, we wish to show that

sup
l∈N

sl(V ) = t a.s. (1.59)

Let sN
l (V ) be the time when the value ξkN (V,t),l(t) was created. kN (V, t) is uniform on {1, . . . , N},

independent of Lij and Ξjl, so the random variables t − sN
1 (V ), t − sN

2 (V ), . . . are i.i.d. with
distribution e−r1(0 < r < t)dr + e−tδt. As limN sN

l (V ) = sl(V ) a.s. the same is true for
t − s1(V ), t − s2(V ), . . . , proving (1.59).

For an E∞-valued (càdlàg) process Y , v ∈ (0, 1) put

ρ(Y, t, v) :=

{
lims↗t YNt(v,s)(s) if the limit exists

x0 otherwise
(1.60)

(where x0 ∈ E is some arbitrary value).
Let 0 ≤ σ(·, ·) ≤ σ̄. Lij(t), 1 ≤ i < j independent rate 1 Poisson processes on R+, Mi,

i = 1, 2, . . . independent rate α Poisson processes on [0, 1]×R+, Kj independent Poisson processes
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on [0, 1]3 ×R+ with intensity σ̄ × (Lebesgue measure)4 (all of them adapted to a given filtration
F = (Ft)). We will sometimes write F X for the filtration generated by a process X .

The following infinite system of Poisson-process driven SDEs is our ‘target object’ in this
section, it is a way to describe the infinite population size limit of the Moran models from the
previous subsection which retains individual particles:

Xj(t) = Xj(0) +

∫

[0,1]×(0,t]

h(Xj(s−), u) − X(s−) Mj(du, ds) (1.61)

+
∑

i<j

∫

(0,t]

Xi(s−) − Xj(s−) Lij(ds) +
∑

1≤i<k<j

∫

(0,t]

Xj−1(s−) − Xj(s−) Lij(ds)

+

∫

[0,1]3×(0,t]

(
ρ(X, s, u1) − Xj(s−)

)
1
(
σ̄u3 ≤ σ(ρ(X, s, u1), ρ(X, s, u2))

)
Kj(du1, du2, du3, ds).

The terms appearing on the right-hand side can be interpreted as follows: initial value, individual
mutation, birth of an offspring of i at level j, birth at k < j effecting a shift of one level of the
type at j, selective birth event replacing the type at level j.

Theorem 5. Assume that X(0) is exchangeable, and independent of the driving Poisson pro-
cesses in (1.61). There is a unique solution X of (1.61). For each t ≥ 0, X(t) is exchangeable,
thus Z(t) = limm→∞(1/m)

∑m
i=1 δXi(t) exists a.s., and for bounded, measurable f : Em → R we

have
E
[
f(X1(t), . . . , Xm(t))

∣
∣F

Z
t

]
= 〈f, Z(t)⊗m〉 a.s.

Remark 6. Note that we have not claimed (and will not prove) path properties of Z(t). It is
known that there is a continuous version of (Z(t))t≥0.

For the proof of Thm. 5, we will need the following lemma.

Lemma 5. Let a (measurable) function ρ̃ : M1(E) × [0, 1] → E be given with the property that
L (ρ̃(µ, V )) = µ for any µ ∈ M1(E) if V ∼ uniform([0, 1]). Let V (t) be an (adapted, càdlàg)
E∞-valued process such that γ(V (t−)) := limm(1/m)

∑m
i=1 δVi(t−) exists a.s. for any t ≥ 0. Let

Y (0) be exchangeable, and Y (the unique) solution of

Yj(t) = Yj(0) +

∫

[0,1]×(0,t]

h(Yj(s−), u) − Y (s−) Mj(du, ds) (1.62)

+
∑

i<j

∫

(0,t]

Yi(s−) − Yj(s−) Lij(ds) +
∑

1≤i<k<j

∫

(0,t]

Yj−1(s−) − Yj(s−) Lij(ds)

+

∫

[0,1]3×(0,t]

(
ρ̃(γ(V (s−)), u1) − Yj(s−)

)

× 1
(
σ̄u3 ≤ σ(ρ̃(γ(V (s−)), u1), ρ̃(γ(V (s−))u2))

)
Kj(du1, du2, du3, ds).

Then for t ≥ 0, Y (t) is exchangeable, and for bounded, measurable f : Em → R,

E
[
f(Y1(t), . . . , Ym(t))

∣
∣F

γ(Y ),γ(V )
t

]
= γ(Y (t))m. (1.63)

Furthermore, for any t > 0, the limit in (1.60) defining ρ(Y, t, v) exists for almost all v ∈ [0, 1].
If U ∼ unif([0, 1]), independent of the other ingredients, then

L (ρ(Y, t, U)|Ft) = lim
m→∞

1

m

m∑

i=1

δYi(t−) a.s.

(in particular, the limit on the right-hand side exists a.s.)
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Proof. If Kj ≡ 0, this is the exchangeability of the neutral model, which follows e.g. from
Proposition 1, because then (Y1(t), . . . , YN (t)) has the same distribution as the corresponding
unordered system of size N . Consider ε > 0. Kε

j is ‘discretised Kj ’:

Kε
j (du1 du2 du3 × {kε}) = Kj(du1 du2 du3 × (kε, (k + 1)ε])1(Kj([0, 1]3 × (kε, (k + 1)ε]) ≤ 1).

Y ε solution of (1.62) with K replaced by Kε. Y ε(t) is exchangeable for t ∈ [0, ε), the equiv-
alent of (1.63) holds for such t. At time t = ε: Each level j throws an independent coin
with success probability P(Kj([0, 1]3 × (kε, (k + 1)ε] = 1). Each ‘successful’ level j draws
Uj1, Uj2, Uj3 (indep., uniform([0, 1])). If σ(ρ(V (ε−), U1, ε), ρ(V (ε−), U1, ε)) ≥ σ̄U3, we (have to)
set Yj(ε) := ρ(V (ε−), U1, ε), otherwise Yj(ε) = Yj(ε−). This mechanism preserves exchangeabil-
ity and shows that Y ε(ε) again satisfies (1.63). Repeat at t = 2ε, etc. Furthermore Y ε → Y (at
least in the sense that (Y ε

1 (t), . . . , Y ε
m(t))→ε↘0(Y1(t), . . . , Ym(t))), so Y (t) is also exchangeable.

It remains to prove that the limit in (1.60) defining ρ(Y, t, U) exists and has the correct
conditional distribution. Fix t > 0 for the moment. Let

Ỹ t
v (s) := YNt(v,s)(s), 0 ≤ s < t

be the (neutral) ancestral type process of the ‘individual’ corresponding to the v-quantile of the
neutral markers at time t (which is well defined for almost all v ∈ (0, 1) by Lemma 4). For
C, Ci ⊂ [0, 1], r < t put

M̃ t
v(C × (0, r]) :=

∞∑

j=1

∫

[0,1]×(0,r]

1C(u)1(N t(v, s) = j)Mj(du ds),

K̃t
v(C1 × C2 × C3 × (0, r]) :=

∞∑

j=1

∫

[0,1]3×(0,r]

1C1(u1)1C2(u2)1C3(u3)1(N t(v, s) = j)Kj(du1 du2 du3 ds).

Then M̃ t
v is a Poisson process on [0, 1] × [0, t] with the same distribution as the Mjs (but of

course not independent), and similarly K̃t
v is a Poisson process on [0, 1]3 × [0, t] with the same

characteristics as Kj : We are ‘piecing’ together the Mj resp. Kj according to N t(v, ·), which was
read off from the Lij (and (L··) is independent from M·, K·). Furthermore we have for r < t by
construction

Ỹ t
v (r) = Ỹ t

v (0) +

∫

[0,1]×(0,r]

h
(
Ỹ t

v (s−), u
)
− Ỹ t

v (s−) M̃ t
v(du ds)

+

∫

[0,1]3×(0,r]

(
ρ̃(γ(V (s−)), u1) − Ỹ t

v (s−)
)

× 1
(
σ̄u3 ≤ σ(ρ̃(γ(V (s−)), u1), ρ̃(γ(V (s−))u2))

)
Kj(du1, du2, du3, ds).

(1.64)
Let

τ̃ t
v := sup{0 ≤ s < t : M̃ t

v([0, 1] × {s}) > 0 or K̃t
v([0, 1]3 × {s}) > 0}

be the time of the last jump of M̃ t
v or K̃t

v before t, then τ̃ t
v < t a.s. We see from (1.64) that Ỹ t

v (r)
is constant for r ∈ [τ̃ t

v , t), so that limr↗t Ỹ t
v (r) exists.

Let V be uniform([0, 1])-distributed, independent of everything else. To check the claim about
the distribution of ρ(Y, t, V ) put

γt,N
V := sup{s ≥ 0 : N t

kN (V,t)(s) = N t(V, s)}.

Note that γt,N
v → t as N → ∞ by Lemma 4. Furthermore,

P
(
YNt

kN (V,t)
(t)(t) 6= lim

r↗t
Ỹ t

V (r)
)

≤ P(γt,N
v < τ̃ t

v)

+ P

( there is a mutation or selective resampling on
the ancestral line of YNt

kN (V,t)
(·)(·) in (γt,N

v , t]

)

→ 0 as N → ∞.

31



As N t
kN (V,t)(t) = kN (V, t) is uniform({1, 2, . . . , N}) by construction, we obtain

P(lim
r↗t

Ỹ t
V (r) = a|Ft) = lim

N→∞

1

N

N∑

i=1

1(Yi(t) = a) a.s.

as required.

Remark 7. Note that both mutations and (potential) selective resamplings are ‘perturbations’
of the ‘pure look-down process’ in that each level is hit only by finitely many such events in any
finite time interval. Furthermore, these events have the potential to create a ‘new’ type which
differs from the one we would see of only the look down-dynamics were acting. Let

Λ :=
{
(j, s) : j ∈ N, s is the ‘time’ coordinate of an atom of Mj or Kj

}

(note: these are the points of a Poisson process on N × R+ with intensity ασ̄ Lebesgue ⊗
counting measure). Fix t > 0 for the moment. Put

τ t
k = sup{s < t : (N t

k(s), s) ∈ Λ} ∨ 0,

this is the time point u ∈ [0, t) when the type which is at level k at time t was (potentially)
created, either by a mutation or by a selective resampling event. Note that Xk(t) = XNt

k
(τ t

k
)

(= XNt
k
(u) for u ∈ [τ t

k, t]) if X is a solution of (1.61). Analogously, Yk(t) = YNt
k
(τ t

k
) for the

solution Y of (1.62).
We may view the points on Λ as the mutation events in (the lookdown construction of) an

infinitely-many-alleles model, thus for any (j, s) ∈ Λ,

a(j, s, t) = lim
m→∞

1

m

m∑

i=1

1
(
(N t

i (τ
t
i ), τ

t
i ) = (j, s)

)
(1.65)

exists almost surely. a(j, s, t) is the fraction of that type in population at time t which was
founded at time s (if there exists a j such that (j, s) ∈ Λ. Note that this allows to express the
empirical measure at time t as

Z(t) =
∑

(j,s)∈Λ
s<t

a(j, s, t)δXj (s).

Proof of Thm. 5. We use Picard iteration to show existence. Let X (0) be the neutral model, i.e.
the solution of (1.61) with Kj ≡ 0. For n ∈ Z+, let X(n+1) be the solution of

X
(n+1)
j (t) = Xj(0) +

∫

[0,1]×(0,t]

h(X
(n+1)
j (s−), u) − X(n+1)(s−) Mj(du, ds) (1.66)

+
∑

i<j

∫

(0,t]

X
(n+1)
i (s−) − X

(n+1)
j (s−) Lij(ds)

+
∑

1≤i<k<j

∫

(0,t]

X
(n+1)
j−1 (s−) − X

(n+1)
j (s−) Lij(ds)

+

∫

[0,1]3×(0,t]

(
ρ(X(n), s, u1) − X

(n+1)
j (s−)

)

× 1
(
σ̄u3 ≤ σ(ρ(X(n), s, u1), ρ(X(n), s, u2))

)
Kj(du1, du2, du3, ds).

Existence and uniqueness of X (n+1), given X(n) is standard: we can solve ‘level by level’. Note
that ρ(X(n), s, u) exists almost surely by Lemma 5.
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Ancestral type process: Fix T > 0 for the moment. Let X̃T,n
j (t) := X

(n)

NT
j

(t)
(t) be the type of

the neutral ancestor at time t of the particle at level j at time T (≥ t). Define

M̃T
j (C × [0, t]) :=

j
∑

i=1

∫

C×[0,t]

1(NT
j (s) = i)Mi(du ds) (1.67)

K̃T
j (C1 × C2 × C3 × [0, t]) :=

j
∑

i=1

∫

C1×C2×C3×[0,t]

1(NT
j (s) = i)Ki(du1 du2 du3 ds).(1.68)

These are the driving mutation resp. selective resampling process observed ‘along’ the neutral
ancestral line of the particle at level j at time T . By construction, M̃T

j and K̃T
j are Poisson

processes (with the same characteristics as Mj resp. Kj , but not independent for different j).

Then (1.66) and the definition of NT
j (s) imply that for 0 ≤ t ≤ T , X̃T,n+1

j (t) is the solution of

X̃T,n+1
j (t) = X̃T,n+1

j (0) +

∫

[0,1]×(0,t]

h(X̃T,n+1
j (s−), u) − X̃T,n+1

j (s−) M̃j(du, ds) (1.69)

+

∫

[0,1]3×(0,t]

(
ρ(X(n), s, u1) − X̃T,n+1

j (s−)
)

× 1
(
σ̄u3 ≤ σ(ρ(X(n), s, u1), ρ(X(n), s, u2))

)
K̃j(du1, du2, du3, ds).

Put V T,n+1
j (t) := 1

(
X̃T,n+1

j (t) 6= X̃T,n
j (t)

)
. Note: M̃, K̃ do not depend on n, so X̃T,n+1

j (t) =

X̃T,n
j (t) as long as ρ(X(n), s, u1) = ρ(X(n−1), s, u2) for all (u1, u2, u3, s) in the support of K̃j

with s ≤ t. Hence

V T,n+1
j (t) ≤

∫

[0,1]3×(0,t]

(
1 − V T,n+1

j (s−)
)
1
(
ρ(X(n), s, u1) 6= ρ(X(n−1), s, u1)

or ρ(X(n), s, u2) 6= ρ(X(n−1), s, u2)
)
K̃j(du1, du2, du3, ds)

=

∫

[0,1]3×(0,t]

(. . . )
(
K̃j(du1, du2, du3, ds) − σ̄du1 du2 du3 ds

)

+ σ̄

∫

[0,1]3×(0,t]

(. . . ) du1 du2 du3 ds

≤ martingale(t) + 2σ̄

∫ t

0

∫

[0,1]

1(ρ(X(n), s, u) 6= ρ(X(n−1), s, u)) du ds,

where the term ‘martingale(t)’ denotes an integral with respect to the compensated process,
which is by well-known properties of Poisson processes in fact a bounded martingale. Noting
that

R(n)(s) :=

∫

[0,1]

1(ρ(X(n), s, u) 6= ρ(X(n−1), s, u)) du

=
∑

(j,r)∈Λ
r<s

a(j, r, s)1(X
(n)
j (r) 6= X

(n−1)
j (r)) = lim

m→∞

1

m

m∑

i=1

1(X
(n)
i (s) 6= X

(n−1)
i (s))

(cf Remark 7) we see that

E1(ρ(X(n), s, U) 6= ρ(X(n−1), s, U)) = E lim
m→∞

1

m

m∑

i=1

1(X
(n+1)
i (s) 6= X

(n)
i (s)) = E R(n)(s)

So t = T and taking expectations above yields P(X
(n+1)
i (T ) 6= X

(n)
i (T )) ≤ 2σ̄

∫ T

0
E R(n)(s) ds,

hence

E R(n+1)(T ) = lim
m→∞

1

m

m∑

i=1

P(X
(n+1)
i (T ) 6= X

(n)
i (T )) ≤ 2σ̄

∫ T

0

E R(n+1)(s) ds,
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which proves that E R(n+1)(T ) → 0 as n → ∞.

This shows that for any T > 0 and j ∈ N, P(X
(n+1)
j (T ) = X

(n)
j (T )) → 1 as n → ∞. As

for any n, the value of the process X
(n)
j can only change at the jump times of Mj , Kj or Lik

(i < k ≤ j) and there are only finitely many such jumps in any interval [0, t], we obtain for any
t > 0, m ∈ N

P

(

X
(n+1)
j (s) = X

(n)
j (s) for 0 ≤ s ≤ t, j = 1, 2, . . . , m

)

−→
N→∞

1.

This proves that X(n) converges. Furthermore, for fixed t, the limit X(t) is exchangeably dis-
tributed, because this is true for any X (n) by Lemma 5.

In order to convince ourselves that the limit process X is in fact a solution of (1.61) it
suffices to consider the jump events of the selective resampling process: assume that T is a
jump time of Kj , let V ∼ unif([0, 1]) and τT

V := sup{s < T : (NT (V, s), s) ∈ Λ} be the time
when the type ρ(X, T, V ) was (potentially) created. As NT (V, τT

V ) is a finite level, we have

ρ(X, T, V ) = XNT (V,τT
V

)(τ
T
V ) = X

(n)

NT (V,τT
V

)
(τT

V ) = ρ(X(n), T, V ) for n sufficiently large.

Finally, we check uniqueness. Assume that X , X ′ are two solutions of (1.61) with X(0) =
X ′(0) exchangeable. For T > 0, j ∈ N, define corresponding ancestral type processes XT

j (t),

X ′T
j (t), 0 ≤ t ≤ T as above These will at least agree up to the first time point when a K̃-

jump produces a difference. Denoting R̃(T ) := limm m−1
∑m

i=1 1(Xi(T ) 6= X ′
i(T )) we can argue

as above the estimate E R̃(T ) ≤ 2σ̄
∫ T

0 E R̃(t) dt, which proves E R̃(T ) ≡ 0, e.g. by Gronwall’s
Lemma.

The empirical process

Let X be the solution of (1.61). By exchangeability, the empirical process

Z(t) := lim
m→∞

1

m

m∑

i=1

δXi(t)

(with values in M1(E)) exists a.s. ) and satisfies (f ∈ Bb(E
m))

E
[
〈f, Z(t)m〉

]
= E

[
f(X1(t), . . . , Xm(t))

]
.

We also obtain from (1.61) that

f
(
X1(t), . . . , Xm(t)

)
−

∫ t

0

Af
(
X(s), Z(s)

)
ds is an FX -martingale, (1.70)

where for x = (x1, . . . , xm) ∈ Em, µ ∈ M1(E)

Af(x, µ) =

m∑

i=1

Bif(x) +
∑

1≤i<j≤m

f
(
θj(x; xi)

)
− f(x)

+

m∑

j=1

∫

E×E

σ(y1, y2)
(

f
(
ηj(x; xi)

)
− f(x)

)

µ(dy1)µ(dy2).

(Recall that if L is a Poisson process on R+×A with intensity measure dt⊗ζ(da), Z is a previsible process
with values in E and f : E × R+ × A → R is a bounded, measurable function, then the compensated
process

Z

(0,t]×A

f(Zs, s, a)L(ds da) −

Z

(0,t]×A

f(Zs, s, a) ds ζ(da)

is a martingale. Compensate the Poisson processes in (1.61) to obtain (1.70).)

34



For f : Em → R+ bd., meas. define Ff : M1(E) → R+ via Ff (µ) = 〈f, µ⊗m〉. Define A on
functions of the type Ff as

AFf (µ) := 〈Af(·, µ), µ⊗m〉. (1.71)

A straightforward computation shows that

AFf (µ) =

m∑

i=1

〈Bif, µ⊗m〉 +

m∑

i<j

〈Φijf, µ⊗m〉 +

m∑

j=1

(

〈σjf, µ⊗(m+1)〉 − 〈σ ⊗ f, µ⊗(m+2)〉
)

,

where Bi is B acting on the i-th coordinate of f , Φijf is f with the j-th input set equal to the i-th,
σjf(y1, . . . , ym+1) = σ(yj , ym+1)f(y1, . . . , ym) and σ⊗f(y1, . . . , ym+2) = σ(ym+1, ym+2)f(y1, . . . , ym).

Proposition 2. The empirical process (Z(t)) corresponding to X solves the martingale problem
for A.

Z is called a Fleming-Viot process with mutation and selection. It is known that the mar-
tingale problem with generator (1.71) is uniquely solvable, cf e.g. [EK93], Thm. 3.2. Uniqueness
is usually proved through a duality argument. Let us remark that we have – in principle – the
ingredients for this before our eyes, cf the paragraph on the ancestral selection graph below for
an embryonic version.

Proof. We obtain from the above and the fact that F Z
t ⊂ FX

t that

E
[
f(X1(t), . . . , Xm(t))

∣
∣F

Z
t

]
−

∫ t

0

E
[
Af(X1(t), . . . , Xm(t), Z(s))

∣
∣F

Z
s

]
ds

= 〈f, Z(t)⊗m〉 −

∫ t

0

〈Af(·, Z(s)), Z(t)⊗m〉 ds = Ff (Z(t)) −

∫ t

0

AFf (Z(s)) ds

is an FZ -martingale.

Remark 8. In the situation |E| < ∞, say E = {1, 2, . . . , d}, the process (Z(T )) = (Z1(t), . . . , Zd(t))
is a diffusion on the (d − 1)-dimensional simplex {(z1, . . . , zd) : zi ≥ 0, z1 + · · · + zd = 1}. Its
generator acts on ϕ ∈ C2(Rd) as

1

2

d∑

i,j=1

zi(δij − zj)
∂2

∂zi∂zj
ϕ +

d∑

j=1

( d∑

i=1

qijzi

) ∂

∂zj
ϕ +

d∑

j=1

zj

( d∑

i,k=1

(
σ(j, i) − σ(k, i)

)
zizk

) ∂

∂zj
ϕ,

(1.72)
where (qij) is the q-matrix of the mutation process. Note that the last term describes selection:
the fraction zj of type j-individuals experiences a drift which is the difference between the fitness
of type j in the present population and the present total fitness.

In order to check this claim: a straightforward calculation shows that it holds true for monomi-
als ϕ(z1, . . . , zd) = zn1

1 · · · znd

d (which have an obvious sampling interpretation: pick n1 + · · ·+nd

individuals, require the first n1 to be of type 1, the next n2 to be of type 2, etc.). Approximate
more general ϕ uniformly by polynomials.

Remark 9. The simplest non-trivial case involving selection is a two-type scenario with di-
rectional selection, e.g. E = {1, 2}, σ(i, j) = s1i=1 for some s > 0 (i.e. type 1 has an abso-
lute fitness advantage over type 2). Assume that the mutation process has generator Bf(i) =
θ11i=2(f(1) − f(2)) + θ21i=1(f(2) − f(1)) (i.e. type 1 mutates into type 2 at rate θ2, the other
direction a rate θ1). It suffices to consider, say the evolution of Z̃t, the fraction of type 2 currently
in the population. We see from Remark 8 that Z̃ is a diffusion with generator

1

2
z(1 − z)ϕ′′ +

(
− θ1z + θ2(1 − z) − sz(1 − z)

)
ϕ′,

a Wright-Fisher diffusion with mutation and selection.
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The ancestral influence graph

Imagine we sample n individuals from the (infinite) population at time T . Recall that a very
convenient property of the coalescent with neutral mutations is that one can first generate the
genealogy and then simply superimpose the mutation process on it. While this is no longer
the case in a selective scenario, the modified look down construction allows one to construct
rigorously a ‘supragenealogy’ which does not only keep track of the actual ancestors of the
sampled individuals, but also of those who could potentially be ancestors if they carry the
right type in a selective reampling event. Once we have constructed the supragenealogy, we
can superimpose the types at time 0 and the mutation process and decide for each selective
resampling event who among the two potential ancestors actually is a real ancestor. Thus the
supragenealogy will be a super-set of the real genealogical tree(s) connecting the sample.

We restrict ourselves to an intuitive discussion and refer to [DK99], Section 8 for details
(and the notational overhead): Start with n lineages. Each pair of lineages coalesces at rate
1. Additionally, each lineage branches at rate σ̄. In such a ‘branch event’, two new lineages
are created, and we think of the then three lineages as labelled with o (‘original’), 1 and 2.
Additionally, we label each such branch event with a uniform([0, 1])-distributed random value.
See the example below.

o

1 2

past

present

Once we arrive at time T backwards (which corresponds to time 0 in the population model, i.e.
the founding population), each of the lineages is coloured according to an independent pick from
Z(0). Then we run forwards in time independent copies of the mutation process on each line.
Assume that we come to a branch point which is labelled with u ∈ [0, 1] and that the types at the
three incoming edges labelled o, 1, 2 are eo, e1, e2 respectively. Then the ‘outcoming’ type (in
the forwards time direction) will be e1 if σ̄u ≤ σ(e1, e2), corresponding to a successful selective
resampling event. Otherwise it will be (remain) type eo.

Note that if we go back far enough into the past, the number of lineages will eventually
become 1 because the coalescence rate is quadratic and the branching rate is only linear in the
number of active lineages. Then we have found the ultimate ancestor of the sample. Note that
it need not necessarily be the actual most recent common ancestor of the sampled individual
because the latter is only specified once we have assigned the types and sorted out the selective
resamplings.

Krone & Neuhauser’s ancestral selection graph

The ancestral influence graph (which in its fully-fledged form also includes recombination, an
issue that we have not discussed at all) generalises the so-called ‘ancestral selection graph’ from
[KN97]. Let us briefly consider this. Krone & Neuhauser work in the two-type scenario as
described in Remark 9. As the selection function σ(i, j) = s1i=1 does not depend on the second
input, it suffices to consider double branching instead of triple branching as above (i.e. we can
ignore the branches labelled with “2” in the above construction. We will also need no uniform
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marks on the branching events.) Furthermore, as a two-type mutation can always be realised in a
parent-independent way, we can construct the supragenealogy in this special case as follows: Start
with n lineages. Each pair of lineages coalesces at rate 1, each lineage branches in two at rate
s. Once we arrive at ‘backwards’ time T , assign founding types (independent coin tosses, type 2
with probability Z̃0). Proceed forwards in time in the following way: Throw down independent
Poisson processes P (1) with rate θ1 and P (2) with rate θ2 on each line. We prescribe that the
type carried by a line changes to i (irrespective of its present type) whenever it ‘hits’ a point of
P (i). If we come to a branching event, the ‘outcoming’ type will be 1 if either one of the incoming
branches carries type 1, otherwise it will be type 2.

We can make use of this e.g. in order to compute moments of Z̃t: Note that Ez0 (Z̃T )n is
the probability to observe only type 2 in a sample of size n from the population at time T . On
the other hand, we can compute this probability differently. Imagine we are constructing the
ancestral selection graph backwards in time and ‘raining down’ the two types of Poisson points
simultaneously. Note that once a lineage has hit a mutation point, we know its type, and we can
safely discontinue it. The event in question requires that no ‘active’ lineage ever hits a type
1-mutation point, and also all lineages arriving at time 0 must be assigned type 2. Thus

Ez0 (Z̃t)
n = En

[

exp
(
− θ1

∫ t

0

Lu du
)
zLt

0

]

, (1.73)

where (Lt) is a birth and death process with birth rate λ(k) = sk and death rate µ(k) =
(
k
2

)
+θ2k.

Note that by taking t → ∞, this allows to express moments of the equilibrium distribution of Z̃
via the Laplace transform of the time to extinction for (Lt).

As a check, we can derive (1.73) in a completely different way. Put fn,z(t) := Ez0 (Z̃t)
n, gn,z(t) :=

En

h

exp
`

− θ1

R t

0
Lu du

´

zLt
0

i

. Obviously fn,z(0) = gn,z(0). Itô’s Formula yields

dZ̃n = nZ̃n−1
q

Z̃(1 − Z̃)dW +
“

−nθ1Z̃
n+nθ2

`

Z̃n−1−Z̃n
´

+ns
`

Z̃n+1−Z̃n
´

+
n(n − 1)

2

`

Z̃n−1−Z̃n
´

”

dt,

so
∂

∂t
fn,z(t) =

“

θ2n +

 

n

2

!

”

`

fn−1,z(t) − fn,z(t)
´

+ sn
`

fn+1,z(t) − fn,z(t)
´

− θ1nfn,z(t).

On the other hand, Kolmogorov’s backward equation for the continuous-time Markov chain (Lt) shows

that gn,z solves the same equations, hence fn,z(t) = gn,z(t).

Approximating with finite systems

Finally, let us come back to the finite Moran systems we started from. With the machinery
developed above, we can obtain the n-particle system X (n) as the (unique) solution of (1 ≤ j ≤ n)

X
(n)
j (t) = Xj(0) +

∫

[0,1]×(0,t]

h(X
(n)
j (s−), u) − X(n)(s−) Mj(du, ds) (1.74)

+
∑

i<j

∫

(0,t]

X
(n)
i (s−) − X

(n)
j (s−) Lij(ds)

+
∑

1≤i<k<j

∫

(0,t]

X
(n)
j−1(s−) − X

(n)
j (s−) Lij(ds)

+

∫

[0,1]3×(0,t]

(
X

(n)
kn(u1,s)(s−) − X

(n)
j (s−)

)

× 1
(
σ̄u3 ≤ σ(X

(n)
kn(u1,s)(s−), X

(n)
kn(u2,s)(s−))

)
Kj(du1, du2, du3, ds),

constructed from the same driving Poisson processes and using the same neutral marker processes
as the infinite system.
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Proposition 3. For each T > 0, j = 1, 2, . . . , we have

P
(
X

(n)
j (t) = Xj(t) for 0 ≤ t ≤ T

)
−→ as n → ∞. (1.75)

Let Z(n)(t) := 1
n

∑n
j=1 δ

X
(n)
j

(t)
be the empirical distribution process of the n-particle system. For

any m ∈ N and f : Em → R bounded measurable we have

E

∣
∣
∣〈f, Z(t)m〉 − 〈f,

(
Z(n)(t)

)m
〉
∣
∣
∣ −→ as n → ∞. (1.76)

We will not give a proof (which can be found in Section 7 of [DK99]), but note that at least

the author finds (1.75) quite plausible in view of the above considerations: Xj(t) and X
(n)
j (t) will

agree until the first time when X
(n)
kn(u1,s)(s−) 6= ρ(X, s, u1) for some atom (u1, u2, u3, s) of Kj , of

which there are only finitely many in each bounded time interval. As the type of ρ(X, s, u1) is

decided ‘on some finite level’, it is very likely for large n that it is equal to X
(n)
kn(u1,s)(s−).

Note that once we have (1.75), we obtain (1.76) easily because (X1(t), . . . , Xm(t)) is dis-
tributed like m independent picks from Z(t).
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Chapter 2

Branching models

2.1 A crash course on Galton-Watson processes

Galton-Watson processes are a simple model of a stochastically reproducing ‘population’: Let
ξn,i, n, i ∈ N be i.i.d. copies of an N0-valued random variable ξ. For n ∈ N and given Zn−1, the
size of the n-th generation is given by

Zn =

Zn−1∑

i=1

ξn,i.

Note that (Zn)n is a discrete Markov chain and has the branching property: For a, b ∈ N,

L (Zn|Z0 = a + b) = L (Zn|Z0 = a) ∗ L (Zn|Z0 = b).

We assume that µ := E ξ < ∞. We denote pk := P(ξ = k). To avoid trivial cases, we also assume
that p0, p1 < 1. Let φ(s) := E sξ be the generating function of ξ, fn(s) := E

[
sZn

∣
∣Z0 = 1

]
. We

have
E1

[
sZn

]
= E1

[
E[sZn |Z1]

]
= E1

[
fn−1(s)

Z1
]

= φ(fn−1(s)),

hence
fn(s) =

(
φ ◦ · · · ◦ φ
︸ ︷︷ ︸

n times

)
(s).

A Galton-Watson process is called subcritical if µ < 1, critical if µ = 1, and supercritical if µ > 1.

Proposition 4. Let qn := P1(Zn = 0). Then qn ↗ q = P1(limn→∞ Zn = 0), the extinction
probability. q is the smallest fixed point of φ. We have q = 1 if µ ≤ 1, and q < 1 if µ > 1.

Proof. Obviously {Zn = 0} ⊂ {Zn+1 = 0}, hence qn ≤ qn+1. Decomposing according to the size
of the first generation shows that

qn+1 = P1(Zn+1 = 0) = E
[
P1(Zn = 0)Z1

]
= φ(qn),

so taking n → ∞ yields q = φ(q) by continuity of φ. Let [0, 1] 3 q′ = φ(q′) be a fixed point of φ.
By monotonicity of φ,

q1 = φ(0) ≤ φ(q′) = q′.

Apply φ n-times to this inequality to obtain qn ≤ q′, hence also q ≤ q′.

Finally recall that φ is a strictly convex, increasing function on [0, 1] with φ(1) = 1, and that
µ =

∑∞
k=1 kpk = φ′(1−). Hence µ ≤ 1 implies φ(s) > s for all s ∈ [0, 1), so that q = 1 is the only

fixed point of φ in this case. On the other hand, if µ > 1, there must be a second fixed point
q < 1.
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We denote by σ2 := Var(ξ) =
∑

k(k2−µ2)pk the variance of the individual offspring number.

Lemma 6.
E Zn = µn

E Z0,

E Z2
n =







σ2

(1/µ)−1

(
µn − µ2n

)
E Z0 + µ2nE Z2

0 µ 6= 1,

nσ2E Z0 + E Z2
0 µ = 1.

Proof. We have

E Zn = E

[

E
[

Zn−1∑

i=1

ξn,i

∣
∣Zn−1

]]

= µE Zn−1 = · · · = µn
E Z0

and

E (Zn)2 = E

[

E
[(

Zn−1∑

i=1

ξn,i

)2∣
∣Zn−1

]]

= µ2
E
[
Zn−1(Zn−1 − 1)

]
+ E[ξ2]E[Zn−1]

= µ2
E (Zn−1)

2 + σ2
E Zn−1 = µ2

E (Zn−1)
2 + σ2µn−1

E Z0,

so an := (E (Zn)2)/µ2n satisfies

an = an−1 + σ2µ−n−1
E Z0 = a0 + σ2

E Z0

n∑

i=1

µ−i−1 =

{

E Z2
0 + σ2E Z0

µ−n−1
(1/µ)−1 µ 6= 1,

E Z2
0 + nσ2

E Z0 µ = 1.

Note that

Wn :=
Zn

µn

is a nonnegative martingale (with respect to the filtration generated by Z).

In the subcritical case, we obtain P1(Zn > 0) ≤ E1Zn = µn, and it is known that in fact
P1(Zn > 0) ∼ µn if ξ has slightly more than a first moment, namely if E ξ log+ ξ < ∞ (a result
of Heathcote, Seneta and Vere-Jones, cf. Thm. 11.4 in [LP05] and the references given there).

In the supercritical case, if additionally E ξ2 < ∞, we see from Lemma 6 that

sup
n

E1 W 2
n = 1 +

σ2

1 − (1/µ)
< ∞.

In particular, (Wn) is then a uniformly integrable martingale, so E1

[
limn→∞ Wn

]
= 1. Thus

in the supercritical case, if the population does not die out, it tends to grow geometrically with
rate µ up to a ‘random constant’. The assumption σ2 < ∞ is too strong: A result of Kesten
and Stigum (cf. Chapter 11 in [LP05] and the references given there) tells that a necessary and
sufficient condition for E1

[
limn→∞ Wn

]
= 1 is again E ξ log+ ξ < ∞.

Theorem 6. Assume µ = 1 and σ2 < ∞. Then

P1(Zn > 0) ∼
2

σ2n
. (2.1)

Remark 10. This result is known as Kolmogorov’s estimate, who proved it under an additional
third moment assumption. Kesten, Ney and Spitzer removed the third moment assumption. We
follow the proof of Jochen Geiger, in the version presented in Chapter 11.4 of [LP05].
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Figure 2.1: Here, uN
i+1 is the second child of un

i , and X
(n)
i = 2.
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Proof. Observe that the Galton-Watson process (Zn), started from Z0 = 1, gives rise to an
ordered or planar tree if we think of the offspring of each individual as being ordered and draw
them in order, say from left to right, into the plane.

On the event {Zn > 0}, there must be a left-most living individual in generation n. Let
us denote this individual by un

n, and let un
i , i = 0, 1, . . . , n − 1 be its ancestor in generation i

(un
0=root of the tree). Denote by X

(n)
i the number of children of un

i ‘to the right of un
i+1’ (i.e.

direct descendants which the chosen ordering puts behind un
i+1), and let

X̃
(n)
i = #{individuals in generation n who are descendants of un

i , but not of un
i+1}, i = 0, 1. . . . , n−1

(see Figure 2.1). Note that

Zn = 1 +

n−1∑

i=0

X̃
(n)
i .

Let an = P1(Zn > 0), and Dn−1 ∼ geom(an−1), i.e. P(Dn−1 = j) = an−1(1 − an−1)
j−1,

j = 1, 2, . . . , independent of Z1. Then

L (Z1|Zn > 0) = L (Z1|Z1 ≥ Dn). (2.2)

In order to see this imagine that we produce the Galton-Watson process as follows: First we
take infinitely many ‘potential individuals’ in the first generation, numbered (from ‘left to right’)
with 1, 2, . . . . Each of them founds an independent Galton-Watson process, which survives for
(the remaining) n − 1 generations with probability an−1. Let Dn−1 = (index of the) leftmost
individual whose descendancy survives for at least n−1 generations. In the next step, we choose
Z1, an independent copy of ξ, and declare the first Z1 individuals of the potential first generation
to be the ‘real’ first generation. Thus in this coupling, {Zn > 0} = {Z1 ≥ Dn−1}.

Lemma 7 applied to A = Z1, B = Dn−1, C = Dn then gives

L (Z1|Zn > 0) is stochastically increasing in n. (2.3)

(Note that if B ∼ geom(β), C ∼ geom(γ) with γ ≤ β, then

P(C ≤ x)

P(B ≤ x)
=

1 − (1 − γ)x

1 − (1 − β)x
≤

1 − (1 − γ)x+1

1 − (1 − β)x+1
=

P(C ≤ x + 1)

P(B ≤ x + 1)
.

A way to see this is to observe that for x ∈ N, (0, 1) 3 a 7→ (1 − ax)/(1 − ax+1) is decreasing.)

Note that because an →n→∞ 0, we have

P(Z1 = k|Z1 ≥ Dn−1) =
pk

(
1 − (1 − an−1)

k
)

∑∞
j=1 pj

(
1 − (1 − an−1)j

) ∼
n→∞

kpk
∑∞

j=1 jpj
=: p̂k,

and for ` ≤ k

P(Z1 = k, Dn−1 = `|Z1 ≥ Dn−1) =
pkan−1(1 − an−1)

`−1

∑∞
j=1 pj

(
1 − (1 − an−1)j

) ∼
n→∞

pk
∑∞

j=1 jpj
= p̂k

1

k
.

Thus, L (Z1|Z1 ≥ Dn−1) converges to that of ξ̂, the size-biasing of ξ. Furthermore, on the event
{Z1 ≥ Dn−1}, given Z1 = k, Dn−1 is asymptotically uniformly distributed on {1, 2, . . . , k}. The
above and (2.3) imply that

E
[
Z1

∣
∣{Zn > 0}

]
→ E ξ̂ =

∑

j

j2pj = σ2 + 1 as n → ∞

(note that E
[
Z1

∣
∣{Zn > 0}

]
=

∑∞
k=1 P(Z1 ≥ k|{Zn > 0}), and each summand is increasing in n,

so that in this case convergence in distribution implies convergence of the means).

L (Z1 − Dn−1|{Z1 ≥ Dn−1}) → L ([ξ̂U ]),
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where U ∼ uniform([0, 1]), independent of ξ̂, and [ξ̂U ] denotes the biggest integer ≤ ξ̂U . Hence

E
[
X

(n)
0

∣
∣{Zn > 0}

]
= E

[
Z1 − Dn−1

∣
∣{Z1 ≥ Dn−1}

]
→ E

[
[ξ̂U ]

]
=

1

2
E [ξ̂ − 1] =

σ2

2
as n → ∞.

(In order to verify convergence of the means in this case write

E
ˆ

Z1−Dn−1

˛

˛{Z1 ≥ Dn−1}
˜

= E
ˆ

1{Z1≤K}(Z1−Dn−1)
˛

˛{Z1 ≥ Dn−1}
˜

+E
ˆ

1{Z1>K}(Z1−Dn−1)
˛

˛{Z1 ≥ Dn−1}
˜

.

The first term converges to E
ˆ

1{ξ̂≤K}[ξ̂U ]
˜

as n → ∞, while by (2.3), the second is bounded uniformly

in n by E[1{ξ̂>K}ξ̂]. Take K → ∞ to conclude.)

The same arguments can be applied to any generation i < n, and thus we obtain

E
[
X

(n)
i

∣
∣{Zn > 0}

]
→

σ2

2
whenever n − i → ∞. (2.4)

Furthermore E
[
X̃

(n)
i

∣
∣{Zn > 0}

]
= E

[
X

(n)
i

∣
∣{Zn > 0}

]
, because by definition none of the children

of un
i to the left of un

i+1 have descendants in generation n, and each of the X
(n)
i siblings to the

right of un
i+1 founds an independent, critical (unconditioned) Galton-Watson tree. Thus we find

1

nP1(Zn > 0)
=

1

n

E
[
Zn1{Zn>0}

]

P1(Zn > 0)
=

1

n
E
[
Zn

∣
∣{Zn > 0}

]
=

1

n
+

1

n

n−1∑

i=0

E
[
X̃

(n)
i

∣
∣{Zn > 0}

]
→

σ2

2
,

which yields (2.1)

Lemma 7. Let A, B, C be N0-valued random variables, A independent from (B, C), satisfying
P(A ≥ B), P(A ≥ C) > 0 and

x 7→ P(C ≤ x)/P(B ≤ x) is increasing in x. (2.5)

Then
L (A|A ≥ B) is stochastically smaller than L (A|A ≥ C).

Note that (2.5) implies (but is stronger than) L (B) � L (C).

Proof. Abbreviate ãx := P(A = x), bx := P(B ≤ x), cx := P(B ≤ x). Let y ∈ N be such that
P(B ≤ A ≤ y) > 0 (and then necessarily also P(C ≤ A ≤ y) > 0). (2.5) implies

cy+1

by+1
≥

∑y
x=0 ãxbx

cx

bx
∑y

x=0 ãxbx
=

∑y
x=0 ãxcx

∑y
x=0 ãxbx

,

hence

ãy+1cy+1

y
∑

x=0

ãxbx ≥ ãy+1by+1

y
∑

x=0

ãxcx.

Adding P(B ≤ A ≤ y)P(C ≤ A ≤ y) to both sides we obtain

( y
∑

x=0

ãxbx

)( y+1
∑

x=0

ãxcx

)

≥
( y+1

∑

x=0

ãxbx

)( y
∑

x=0

ãxcx

)

,

which proves that

y 7→
P(B ≤ A ≤ y)

P(C ≤ A ≤ y)

is decreasing in y. In particular,

P(B ≤ A ≤ y)

P(C ≤ A ≤ y)
≥

P(B ≤ A)

P(C ≤ A)
,

which is the claim.
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