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Abstract One of the central problems in mathematical genetics is the inference
of evolutionary parameters of a population (such as the mutation rate) based on the
observed genetic types in a finite DNA sample. If the population model under consid-
eration is in the domain of attraction of the classical Fleming–Viot process, such as the
Wright–Fisher- or the Moran model, then the standard means to describe its geneal-
ogy is Kingman’s coalescent. For this coalescent process, powerful inference methods
are well-established. An important feature of the above class of models is, roughly
speaking, that the number of offspring of each individual is small when compared to
the total population size, and hence all ancestral collisions are binary only. Recently,
more general population models have been studied, in particular in the domain of
attraction of so-called generalised Λ-Fleming–Viot processes, as well as their (dual)
genealogies, given by the so-called Λ-coalescents, which allow multiple collisions.
Moreover, Eldon and Wakeley (Genetics 172:2621–2633, 2006) provide evidence
that such more general coalescents might actually be more adequate to describe real
populations with extreme reproductive behaviour, in particular many marine species.
In this paper, we extend methods of Ethier and Griffiths (Ann Probab 15(2):515–
545, 1987) and Griffiths and Tavaré (Theor Pop Biol 46:131–159, 1994a, Stat Sci
9:307–319, 1994b, Philos Trans Roy Soc Lond Ser B 344:403–410, 1994c, Math
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Biosci 12:77–98, 1995) to obtain a likelihood based inference method for general
Λ-coalescents. In particular, we obtain a method to compute (approximate) likelihood
surfaces for the observed type probabilities of a given sample. We argue that within
the (vast) family of Λ-coalescents, the parametrisable sub-family of Beta(2 − α, α)-
coalescents, where α ∈ (1, 2], are of particular relevance. We illustrate our method
using simulated datasets, thus obtaining maximum-likelihood estimators of mutation
and demographic parameters.

Keywords Λ-coalescent · Likelihood-based inference · Infinitely-many-sitesmodel ·
Population genetics · Fleming–Viot process · Multiple collisions · Monte-Carlo
method

Mathematics Subject Classification (2000) 92D15 ·60G09 ·60G52 ·60J75 ·60J85

1 Introduction

Even though coalescents with multiple collisions have been studied quite extensively
in the mathematical literature over the last decade [2,3,36,38,40,42], and have been
explicitly proposed as a model for genealogies in various biological scenarios, their
use in biological studies has been rather limited up to now (see, however, [15]).

We suspect that this is at least in part due to a lack of statistical tools, which would
allow to decide which among various multiple merger coalescents is most suitable
for a given population, and which would furthermore allow to draw inference about
parameters of interest, e.g. mutation rates, in such scenarios. Our aim is to contribute
to remedying this lack by describing and implementing methods to compute likeli-
hoods of observed sequence data in scenarios with multiple collisions. These in turn
can form the basis of tests and estimation procedures.

In the present paper, we give particular attention to the so-called Beta-coalescents,
which are a one-parameter subfamily of Λ-coalescents including Kingman’s coales-
cent (see (4)), and which exhibit interesting theoretical properties as well as practical
advantages (see Sect. 8).

1.1 Coalescent processes

A popular population genetic approach is to consider genealogies of a sample drawn
from a current population and to model the coalescence time, the time until two (or
more) lineages find their most recent common ancestor, as a random process. For
neutral population models of fixed population size in the domain of attraction of the
classical Fleming–Viot process, such as the Wright–Fisher- and the Moran model,
the genealogy of a finite sample, viewed on an appropriate time-scale depending on
the total population size, can be described by the now classical Kingman-coalescent,
which we introduce briefly, followed by the more recently discovered and much more
general Λ-coalescents. For background on (classical and generalised) Fleming–Viot
processes and variations of Kingman’s coalescent, see e.g. [11,13,18,19] as well as
[31,32,37,46].
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Likelihoods for Λ-coalescents

Kingman’s coalescent. Let Pn be the set of partitions of {1, . . . , n} and let P denote
the set of partitions of N. For each n ∈ N, Kingman [34] introduced the so-called
n-coalescent, which is a Pn-valued continuous time Markov process {Πn(t), t ≥ 0},
such that Πn(0) is the partition of {1, . . . , n} into singleton blocks, and then each pair
of blocks merges at rate one. Given that there are b blocks at present, this means that

the overall rate to see a merger between blocks is (
b
2 ). Note that only binary mergers

are allowed. Kingman [34] also showed that there exists a P-valued Markov process
{Π(t), t ≥ 0}, which is now called the (standard) Kingman-coalescent, and whose
restriction to the first n positive integers is the n-coalescent. To see this, note that the
restriction of any n-coalescent to {1, . . . , m}, where 1 ≤ m ≤ n, is an m-coalescent.
Hence the process can be constructed by an application of the standard extension
theorem.

Λ-coalescents. Pitman [38] and Sagitov [40] introduced and discussed coales-
cents which allow multiple collisions, i.e. more than just two blocks may merge at a
time. Again, such a coalescent with multiple collisions (which will be later called a
Λ-coalescent) is a P-valued Markov-process {Π(t), t ≥ 0}, such that for each n,
its restriction to the first n positive integers is a Pn-valued Markov process (the
“n-Λ-coalescent”) with the following transition rates. Whenever there are b blocks in
the partition at present, each k-tuple of blocks (where 2 ≤ k ≤ b ≤ n) is merging to
form a single block at rate λb,k , and no other transitions are possible. The rates λb,k do
not depend on either n or on the structure of the blocks. Pitman showed that in order
to be consistent, which means that for all 2 ≤ k ≤ b,

λb,k = λb+1,k + λb+1,k+1,

such transition rates must necessarily satisfy

λb,k =
1∫

0

xk(1 − x)b−k 1

x2 Λ(dx), (1)

for some finite measure Λ on the unit interval. Note that (1) sets up a one-to-one
correspondence between coalescents with multiple collisions and finite measures Λ.
Indeed, it is easy to see that the λb,k determine Λ by an application of Hausdorff’s
moment problem, which has a unique solution in this case.

Due to the restriction property, the Λ-coalescent on P (with rates obtained from
the measure Λ as described above) can be constructed from the corresponding
n-Λ-coalescents via extension.

Note that the family of Λ-coalescents is rather large, and in particular it cannot be
parametrised by a few real variables. Important examples include Λ = δ0 (Kingman’s
coalescent) and Λ = δ1 (leading to star-shaped genealogies, i.e. one huge merger
into one single block). Later, we will be concerned with two important parametric
subclasses of Λ-coalescents, namely the so-called Beta-coalescents, where Λ has a
Beta(2 −α, α)-density for some α ∈ (1, 2], and simple linear combinations of atomic
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measures of the type Λ = c1δ0 + c2δy for some constants c1, c2 > 0 and y ∈ (0, 1].
To avoid trivialities, we will henceforth assume that Λ �= 0.

Remarks (Multiple collisions and reproduction events).

1. An important difference between the classical Kingman-coalescent and coales-
cents which allow multiple collisions should be pointed out here. Roughly speak-
ing, a Kingman coalescent arises as the limiting genealogy of a so-called Cannings
population model [9,10], if the individuals produce a number of offspring that is
negligible when compared to the total population size (in particular, this requires
that the variance of the number of offspring per individual converges to a finite
limit). More general coalescents with multiple mergers arise, once the offspring
distribution is such that a non-negligible proportion, say x ∈ (0, 1], of the popu-
lation alive in the next generation goes back to a single reproduction event from
a single ancestor in the present generation. In this case, x−2Λ(dx) can be inter-
preted as the intensity at which we see such proportions x . Precise conditions
on the underlying Cannings-models and the classification of the corresponding
limiting genealogies can be found in [36].

2. In [15], Eldon and Wakeley assume that there are extreme reproductive events,
which account for non-negligible proportions of the population in a single repro-
duction event, in the population dynamics of the Pacific Oyster. In fact, many
marine species seem to exhibit behaviour which does not fit well to a neutral
Kingman coalescent [1,7]. However, a careful analysis of these datasets, includ-
ing a thorough discussion of possible causes of this observation, in particular
whether high demographic stochasticity is “dominant”, is beyond the scope of
the present paper, and will be treated in future work. ��

Remarks (Coming down from infinity).

1. Not all Λ-coalescents seem to be reasonable as models for biological populations,
since some do not allow for a finite “time to the most recent common ancestor” of
the entire population (TMRCA). This is equivalent to “coming down from infinity
in finite time”: it means that, given any initial partition in P , and for all ε > 0,
the partition Π(ε) a.s. consists of finitely many blocks only. Letting

λb =
b∑

k=2

(k − 1)

(
b

k

)
λb,k,

Schweinsberg [41] proves that if either Λ has an atom at 0 or Λ has no atom at
zero and

λ∗ :=
∞∑

b=2

λ−1
b < ∞, (2)

then the corresponding coalescent does come down from infinity (and if so, the
time to come down to only one block has finite expectation).

2. An important example for a coalescent, which (only just) does not come down
from infinity is the Bolthausen–Sznitman coalescent, where Λ(dx) = dx is the
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uniform distribution on [0, 1]. This is the Beta(2 − α, α)-coalescent with α = 1,
and it plays an important role in statistical mechanics models for disordered sys-
tems (see e.g. [8] for an introduction).

3. However, it should be observed that all n-Λ-coalescents (for finite n) do have an
a.s. finite TMRCA. ��

Examples for coalescents which satisfy (2) are the process considered in [15], cor-
responding to

Λ = c1δ0 + c2δy, c1 > 0, c2 ≥ 0 (3)

for y ∈ (0, 1) (in particular Kingman’s coalescent if c1 = 1, c2 = 0; but note that [15]
also consider a scenario where c1 = 0), the so-called Beta(2 −α, α)-coalescents with
α ∈ (1, 2), where

Λ(dx) = Γ (2)

Γ (2 − α)Γ (α)
x1−α(1 − x)α−1 dx, (4)

(even though the right-hand side of (4) makes no sense for α = 2, Kingman’s coa-
lescent can be included as the weak limit Beta(2 − α, α) → δ0 as α → 2), and a
coalescent discussed in Durrett and Schweinsberg [14],

Λ(dx) = c1δ0 + c2x dx, c1, c2 ≥ 0, c1 + c2 > 0, (5)

which they propose to describe the genealogy at a neutral locus which is suitably
linked to selected loci undergoing recurrent selective sweeps.

It is easy to interpret the behaviour of the population corresponding to the coalescent
associated with (3). The first atom stands for a Kingman-component, i.e. essentially
reproduction with finite variance. The second atom means that with rate c2, a single
individual can produce 100 × y% of the population currently alive in a single repro-
duction event.

Populations with extreme reproductive behaviour. Recently, biologists have stud-
ied the genetic variation of certain marine species with rather extreme reproductive
behaviour, see, e.g. Árnason [1] (Atlantic Cod) and [7] (Pacific Oyster). Eldon and
Wakeley [15] analysed the sample described in [7] and proposed a one-parameter
family of Λ-coalescents, which comprises Kingman’s coalescent as a boundary case,
namely those described by (3), as models for their genealogy. Inference is then based
on a simple summary statistic, the number of segregating sites and singleton polymor-
phisms. They conclude that [15, p. 2622]:

For many species, the coalescent with multiple mergers might be a better null model
than Kingman’s coalescent.

In this paper, we obtain a method to compute the full likelihood of sequence obser-
vations under the infinitely-many sites model for general Λ-coalescents. This method
can then be used to obtain maximum-likelihood estimators for demographic and muta-
tional parameters.

We apply our method to the special case of the one-parameter family of Beta(2 −
α, α)-coalescents from (4), where α ∈ (1, 2], and illustrate its use on simulated data-
sets. These coalescents arise as limits of genealogies of a class of neutral models, where
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the probability that the individual litter size exceeds k ∈ N decreases like C × k−α

for some C > 0 [4,42]. See Sect. 8 for further details.
Still, it appears an open problem to determine which Λ-coalescent is most suitable

in which biological scenario.
For an application of our method to real sequence data and a more thorough dis-

cussion of underlying biological assumptions, we refer to a forthcoming article.

Inference for Kingman’s coalescent. Efficient likelihood-based inference methods
for Kingman’s coalescent, some solving recursion (18) approximately via Monte Carlo
methods, others using MCMC, have been developed since the beginning of the 1990s,
see [12,17,20,22–24,26–28,43]. In [43], Stephens and Donnelly provide proposal
distributions for importance sampling, which are optimal in some sense, and compare
them to various other methods. Their importance sampling scheme seems, at present,
to be the most efficient tool for inference for relatively large datasets.

1.2 Outline of the paper

In Sect. 2, we discuss some combinatorial properties of observations complying with
the infinitely-many-sites model which we will require subsequently.

In Sect. 3, we present the probabilistic neutral coalescent model that gives rise to
our data.

Section 4 contains recursions for the type probabilities assuming a given underlying
Λ-coalescent.

In Sect. 5, we briefly state recursions of the above kind in the finite- and infi-
nite-alleles cases. A detailed derivation of the finite-alleles recursions can be found
in [6]. For completeness, we recall the recursion obtained by Möhle in [35] for the
infinite-alleles model.

In Sect. 6, we derive proposal transitions for a Markov chain that we then use to
obtain a Monte Carlo scheme for the type probabilities resp. likelihoods obtained in
Sect. 4 under the Λ-coalescent in the infinite-sites model.

Section 7 contains an urn-like algorithm for convenient generation of datasets under
the general coalescent model.

In Sect. 8, we discuss population models whose genealogies are naturally approxi-
mated by beta-coalescents, and present some likelihood-surfaces, obtained by applying
our Monte Carlo method to several simulated datasets.

Finally, in Appendix, we include the original genetrees corresponding to our sam-
ples that lead to the likelihood-surfaces in Sect. 8.

2 Combinatorics of the infinitely-many-sites model

The infinitely-many-sites (IMS) model [33,48] is a popular model in population genet-
ics to describe the variability in DNA samples. It assumes that the locus under con-
sideration consists of an in theory infinitely long sequence of completely linked sites
and that each site is hit at most once by a mutation in the entire history of the sam-
ple. It may e.g. be justified by considering a suitable limit of diverging sequence
lengths and small mutation rates. In this section, we discuss some combinatorial
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Fig. 1 Forbidden sub-patterns
in the IMS 0 1

1 0
1 1
(a)

0 0
0 1
1 0
1 1
(b)

(a) Known ancestral types, (b) Unknown ancestral types

properties of observations complying with the IMS model which we require later.
See e.g. [17,25,31] or [45] for an overview.

Observations consist of n aligned sequences, where at most two different bases
are visible at each site, and say s sites are segregating. To fix notation, we think of
numbering the samples and the segregating sites in some (arbitrary) fashion.

2.1 Known ancestral types and rooted genealogical trees

Assuming that ancestral types are known, e.g. by comparing with a sequence from a
suitable outgroup, the data is represented by an n × s matrix S = (si j ), where si j = 0
if sample i has the ancestral type at segregating site j , and si j = 1 if it has the mutant
type. It is natural to condense this matrix by removing identical rows (corresponding to
types which were observed more than once in the sample). Enumerate the, say d ≤ n,
different types in some (arbitrary) way. Then the data can be equivalently described
by a d × s-matrix S together with an ordered partition a = (a1, . . . , ad) of {1, . . . , n},
where ai are the (numbers of the) samples of type i . The data are compatible with the
IMS model if no sub-pattern as in Fig. 1a or any of its row permutations appears in
S; equivalently, if O j denotes the set of types which carry mutation j , we must have
for any pair k, j that O j ∩ Ok �= ∅ ⇒ O j ⊂ Ok or Ok ⊂ O j . Violations of the IMS
assumption can be caused by parallel or back mutations or by recombination.

A data matrix S compatible with IMS can be equivalently described by (the par-
tition a and) a rooted genealogical tree t, where the leaves correspond to observed
sequences and internal nodes to mutations. A possible way to encode such trees is via

t = (x1, . . . , xd), (6)

where xi = (xi0, xi1, . . . , xi j (i)) is the sequence of mutations observed when tracing
from type i backwards to the root. The fact that t is a rooted tree is equivalent to the
following conditions:

(1) Coordinates within each sequence xi are distinct.
(2) If for some i, i ′ ∈ {1, . . . , d} and j, j ′ we have xi j = xi ′ j ′ , then

xi, j+k = xi ′, j ′+k, for all k.

(3) There is at least one coordinate common to all sequences.

It is customary to number mutations by {1, . . . , s} and take xi j (i) = 0 for the “root
mutation”. In order to recover S from t, simply put 1s in row i at all columns xik ,
0 ≤ k < j (i). A constructive way of obtaining t from the matrix S is Gusfield’s
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algorithm [29]: interpret the columns of S as binary numbers (with the first row as the
most significant bit) and re-order them according to decreasing size (with the largest
in the leftmost column, and ties resolved arbitrarily). The entries of xi are found by
“reading off” from right to left the columns j with si j = 1. Note that this implicitly
puts a temporal order on the observed mutations, and orders mutations according to
this “age”, which is not necessarily completely determined by the actual sequence data.
This is harmless because we will later “factor out” the mutation labels by considering
appropriate equivalence classes:

Introduce equivalence relations on the set of types by writing

(x1, . . . , xd) ∼ (y1, . . . , yd), (7)

if there is a bijection ξ : N0 → N0 with yi j = ξ(xi j ), i ∈ 1, . . . , d; j = 0, 1, . . . .
Furthermore, write

(x1, . . . , xd) ≈ (y1, . . . , yd), (8)

if there is a bijection ζ : N0 → N0 and a permutation σ on {1, . . . , d}, such that
yσ(i), j = ζ(xi j ), i = 1, . . . , d; j = 0, 1, . . .

Under “∼”, the concrete labels of mutations are irrelevant. Note that in what fol-
lows, we suppress the distinction between such an equivalence class, denoted by [t],
and a representative, denoted by t. Under “≈”, tags of types become irrelevant, too.

Example A dataset of eight alleles, which is consistent with the above rules. See Figs. 2
and 3 for various trees related to this example.

1 : (6, 1, 0) 5 : (7, 1, 0)

2 : (6, 1, 0) 6 : (8, 5, 1, 0)

3 : (10, 1, 0) 7 : (4, 3, 2, 0)

4 : (7, 1, 0) 8 : (9, 4, 3, 2, 0)

Note that the allelic types (6, 1, 0) and (7, 1, 0) appear twice in the example, i.e. have
multiplicity two. For notational convenience, our sequences all end in 0, this reflects
the existence of a common “root”.

The labels of the mutations and the root are by no means required to be decreasing,
this is just suitable convention.

Given a sample of size n, we will now write (t, n) for the pair consisting of the set
of different types t = (x1, . . . , xd), d ≤ n, and the multiplicity vector n. In the above
example, we have d = 6 and

(t, n) = (
((6, 1, 0), (10, 1, 0), (7, 1, 0), (8, 5, 1, 0),

(4, 3, 2, 0), (9, 4, 3, 2, 0)), (2, 1, 2, 1, 1, 1)
)
.

If we take numbered samples into account, i.e. if we let ai ⊂ {1, . . . , n}, i ∈ {1, . . . , d}
denote the set of the numbers of the sequences with type xi , then one can also consider
the set of types and ordered partitions (t, a), where a = (a1, . . . , ad), in the above
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1 2 3 4 5 6 7 8
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(a) Genetree

1, 23
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8

 6 10

 1
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 8
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 2  3  4

 9

4, 5

(b) Unrooted tree

Fig. 2 Rooted and unrooted tree corresponding to the example

example given by

(t, a) = (
((6, 1, 0), (10, 1, 0), (7, 1, 0), (8, 5, 1, 0), (4, 3, 2, 0), (9, 4, 3, 2, 0)),

({1, 2}, {3}, {4, 5}, {6}, {7}, {8})).

The probabilistic mechanism behind these data and the necessary equivalence relation
will be discussed in detail in Sect. 3.

2.2 Unknown ancestral types and unrooted genealogical trees

If ancestral types are not known, the data matrix S is only specified up to flips of its
columns. As above, it suffices to consider the condensed data matrix, which we again
denote by S with d (pairwise different) rows together with the partition a. The data
are compatible with the IMS model in this case if and only if no sub-pattern as in
Fig. 1b or any of its row permutations appears in S (the so-called “four gamete rule”).
If they are compatible in this sense, they correspond to an unrooted genealogical tree,
and a valid “polarised” data matrix (or equivalently, a rooted tree t) can be obtained
by flipping in such a way that in each column, 0 is the more frequent type. All other
possible polarisations (resp. compatible rooted trees) can be obtained by passing to an
unrooted tree, and subsequent re-rooting.

To build an unrooted tree Q from a(n equivalence class of) rooted tree(s) t as
encoded in (6), proceed as follows: Vertices correspond to observed and inferred
sequences (types), where an inferred type represents an internal node of degree ≥ 3 in
t; edges of t are merged at internal nodes of degree 2 (which were “internal” mutations
in t), and the resulting edges of Q are marked by the number of mutations they carry.
Thus, Q is described by
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– its set of vertices V (together with an ordered “meta-partition” a describing which
samples correspond to which vertex, where possibly some vertices, namely the
inferred types, are marked by ∅), and

– a matrix (mi j ), where mi j is the number of mutations between vertices i and j
(with the stipulation that mi j = 0 if there is no edge between i and j in Q).

Note that this tree need not be binary. Two (equivalence classes under ∼ of) rooted
genealogical trees t, t′ (with the same enumerated types and the same set of mutation
labels) are equivalent as unrooted trees, in symbols t ∼u t′, if they lead to the same
unrooted tree in the construction above.

Alternatively, given an unpolarised d × s observation matrix S one can compute
the pairwise difference matrix with entries

Di j := #
{
1 ≤ k ≤ s : Sik = 0, S jk = 1 or Sik = 1, S jk = 0

}
. (9)

It is easy to see that the four-gamete rule for S implies that this metric D on the set of
types satisfies the “four-point condition”:

any four elements can be named x, y, u, v such that

Dxy + Duv ≤ Dxu + Dyv = Dxv + Dyu . (10)

Thus, the pairwise distance (Hamming) metric D is additive, and corresponds to a
unique unrooted tree Q with integer branch lengths (see e.g. [47], or use neighbour-
joining [44]).

These two methods of obtaining an unrooted tree from an unpolarised observation
matrix S are equivalent. Since a rooted tree t = (x1, . . . , xd) compatible with a polar-
isation of S also gives rise to (the same) pairwise distance matrix C(t) on the d types
with entries

ci j (t) := #{k : xik �∈ x j } + #{k : x jk �∈ xi }, 1 ≤ i, j ≤ d

(with an obvious abuse of the “ �∈”-notation), this follows from the uniqueness of the
tree defining an additive metric. Thus we have

t ∼u t′ ⇐⇒ C(t) = C(t′). (11)

For a given unrooted tree Q with γ sequences (including inferred sequences) with m j

mutations occurring on edge j ( j = 1, . . . , |E |) and s segregating sites altogether (i.e.
s = ∑

j m j ), there are

γ +
∑

j

(
m j − 1

) = s + 1 (12)

possible positions of the root (and thus this many different rooted trees corresponding
to Q): the root could be at any of the γ sequences or between any two mutations on
any edge.
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3 Infinite sites data and Λ-coalescent trees

To obtain an n-sample under the infinite-sites model from a coalescent tree, we
perform the following probabilistic experiment. Note that by duality, this describes the
distribution of a sample of size n from the stationary distribution of a Λ-generalised
Fleming–Viot process [3,13] with mutation process as in [17].

(i) Run an n-Λ-coalescent. Obtain a rooted coalescent tree.
(ii) On this rooted tree with n leaves (numbered from 1 to n), place mutations

along the branches at rate r (note that in the “Kingman world”, this parameter
is customarily called θ/2).

(iii) Label these mutations randomly: Given there are s mutations in total, attach
randomly (i.e. according to the uniform distribution) the labels from 1, . . . , s
to these mutations.

(iv) Turn this coalescent tree with labelled mutations and numbered leaves into
a “genetree” by breaking edges at mutations, resulting in vertices of degree
2, and then moving the branching points inwards until they reach the nearest
mutation. Ignore the lengths of the edges.

(v) A type is the sequence of labels of mutations observed following the path back-
wards from a leaf to the root. Enumerate the different types randomly to obtain
a set of sequences {x1, . . . , xd}, where d ≤ n is the number of different types.
In the following, we suppress the distinction between t and its equivalence
class [t] under “∼” defined in (7).

(vi) Let Ai ⊂ {1, . . . , n} be the random set of the numbers (being attached to leaves
in Step ii) which have type i ∈ {1, . . . , d}. We obtain a random pair (T, A),
where A = (A1, . . . , Ad) is an ordered random partition.

(vii) Finally, let

p(t, a) := P{(T, A) = (t, a)}.
Note that, by the symmetry of the coalescent,

p (t, (a1, . . . , ad)) = p (t, (π(a1), . . . , π(ad))) for any permutation π ∈ Sn .

(13)

We call such pairs (t, a) a numbered sample configuration with ordered types. Later,
it will be useful to consider only the frequencies of the ordered types, i.e. define a map

φ : (t, a) �→ (t, n),

where n = (n1, . . . , nd) := (#a1, . . . , #ad), i.e.
∑d

i=1 ni = n. We denote its proba-
bility distribution by

p0 ((t, n)) := p
(
φ−1(t, n)

)

= n!
n1! · · · nd ! p ((t, a)) (14)

for any (t, a) ∈ φ−1(t, n) by the observation in (13).
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(a) Binary coalescent tree
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(b) Coalescent tree with multiple collisions

Fig. 3 Two coalescent trees consistent with the example from Subsect. 2.1

Remark Given sequence observations, a natural scheme would be to, say, number the
mutations according to their order on the sequence. Note that the symmetries of the
infinitely-many-sites model make this in fact a random enumeration as in Step (v).

For notational simplicity, we introduce the following slightly ambiguous opera-
tions: By a − ei , we mean a partition obtained from a by removing one element from
the set ai (with implicit renumbering of the samples so that the result is a partition of
{1, . . . , n − 1}). Note that we will not be concerned with the fact which element we
actually remove, since, by (13), the type probability p will not depend on the actual
choice. Similarly, by a− (k −1)ei we mean the partition obtained from a by removing
k − 1 elements from ai (certainly, this only makes sense if #ai ≥ k). Finally, a + ei

will be the partition obtained from a by adding an arbitrary element of N to the set ai

that is not yet contained in any other set al , l = 1 . . . d.

4 Genealogical tree probabilities for Λ-coalescents in the infinite-sites model

In this section, we obtain recursions for the probability of given type configuration of
a sample based on the probabilistic model discussed above. These recursions then lead
to a Monte-Carlo method to (approximately) compute the probability of configurations
under various Λ-coalescents.

We will distinguish two cases. In the first case, we will consider ordered labelled
samples of type (t, a), which take the full information contained in the partition a into
account. In the second case, we restrict to numbered ordered configurations of the type
(t, n), which only count the multiplicities n.

4.1 Ordered labelled samples

It is in principle possible to compute the exact probabilities of a given type configura-
tion (t, a) via a recursive formula.
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Theorem 1 We have, for given (t, a),

p(t, a) = 1

nr +∑n
k=2

(n
k

)
λn,k

∑
i : ni ≥2

ni∑
k=2

(
ni

k

)
λn,k p(t, a − (k − 1)ei )

+ r

nr +∑n
k=2

(n
k

)
λn,k

∑
k: nk=1, xk0 distinct

s(xk ) �=x j ∀ j

p(sk(t), a)

+ r

nr +∑n
k=2

(n
k

)
λn,k

∑
k: nk=1,

xk0 distinct

∑
j :s(xk )=x j

p(rk(t), rk(a + e j )), (15)

where e j denotes j-th unit vector, sk(t) deletes first coordinate of the k-th sequence in
t, s(xk) removes the first coordinate from the sequence xk , rk(t) removes k-th sequence
from t, and xk0 ‘distinct’ means that xk0 �= xi j for all (i, j) �= (k, 0). The boundary
condition for the root is p({0}, (1)) = 1.

Proof Similar to the Kingman-case by conditioning on the most recent event in the
coalescent history, taking multiple mergers into account. The first term on the right-
hand side corresponds to a (multiple) collision of lineages of the same type, hence
requiring multiplicity at least two, the second term refers to the event that a mutation
is removed from a type (necessarily a singleton), whose ancestral type is not visible
in the sample at present. Finally, the third term corresponds to removing a mutation
from a type whose ancestor is already present in the sample. ��

4.2 Numbered ordered samples

Recall from (14), using the notation of Theorem 1, that

p0(t, n) = n!
n1! · · · nd ! p(t, a). (16)

Thus, for the types and multiplicities (t, n), we obtain

p0(t, n) = 1

nr +∑n
k=2

(n
k

)
λn,k

∑
i : ni ≥2

ni∑
k=2

(
ni

k

)

× λn,k
n!

n1! · · · nd !
n1! · · · (ni − k + 1)! · · · nd !

(n − k + 1)! p0(t, n − (k − 1)ei )

+ r

nr +∑n
k=2

(n
k

)
λn,k

∑
k: nk=1, xk0 distinct

s(xk ) �=x j ∀ j

p0(sk(t), n)
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+ r

nr +∑n
k=2

(n
k

)
λn,k

∑
k: nk=1,

xk0 distinct

∑
j :s(xk )=x j

n!
n1! · · · nd !

× n1! · · · (n j + 1)! · · · nd !
n! p0(rk(t), rk(n + e j )).

Since

(
ni

k

)
n!

n1! · · · nd !
n1! · · · (ni − k + 1)! · · · nd !

(n − k + 1)! = ni !
k!(ni − k)!

n!(ni − k + 1)!
ni !(n − k + 1)!

=
(

n

k

)
ni − k + 1

n − k + 1
,

rearrangement leads to

Corollary 1 For given (t, n), we have

p0(t, n) = 1

nr +∑n
k=2

(n
k

)
λn,k

∑
i : ni ≥2

ni∑
k=2

(
n

k

)
λn,k

ni − k + 1

n − k + 1
p0(t, n − (k − 1)ei )

+ r

nr +∑n
k=2

(n
k

)
λn,k

∑
k: nk=1, xk0 distinct

s(xk ) �=x j ∀ j

p0(sk(t), n)

+ r

nr +∑n
k=2

(n
k

)
λn,k

∑
k: nk=1,

xk0 distinct

∑
j :s(xk )=x j

(n j + 1)p0(rk(t), rk(n + e j )),

(17)

with the usual boundary condition for the root, i.e. p0({0}, (1)) = 1.

Remark Regarding our second equivalence relation “≈”, defined in (8), the probabil-
ity p∗([t]≈, n) of observing a particular unordered and unlabelled tree is related to
p0(t, n) via a combinatorial factor

p∗([t]≈, n) = 1

a(t, n)
p0(t, n),

where, with tσ := (xσ(1), . . . , xσ(d)), nσ = (nσ(1), . . . , nσ(d)),

a(t, n) = # {σ ∈ Sd : tσ ∼ t, n = nσ }

is the number of permutations of the types which leave the combinatorial structure
unchanged [25]. ��
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Remark In the case of Kingman’s coalescent, we recover from (17) the following
recursion, which is due to Ethier and Griffiths, see [17,21] (and replace r by θ/2):

p0(t, n) = 1

nr + (n
2

) ∑
k: nk≥2

(
n

2

)
nk − 1

n − 1
p0(t, n − ek)

+ r

nr + (n
2

) ∑
k: nk=1, xk0 distinct

s(xk ) �=x j ∀ j

p0(sk(t), n)

+ r

nr + (n
2

) ∑
k: nk=1,

xk0 distinct

∑
j :s(xk )=x j

(n j + 1)p0(rk(t), rk(n + e j )) (18)

with the same boundary condition as above. ��

Remark For samples of size n = 2, the recursion (17) can easily be solved explicitly
(and of course independently of Λ, as long as Λ([0, 1]) = 1): We have

p0 ((0), (2)) = 1

1 + 2r
and (19)

p0 ((x1, x2), (1, 1)) = 2

(
j (1) + j (2)

j (1)

)(
r

1 + 2r

) j (1)+ j (2) 1

1 + 2r
(20)

for x1 = (x10, . . . , x1 j (1)), x2 = (x20, . . . , x2 j (2)) (and all entries distinct except
x1 j (1) = x2 j (2) = 0). ��

4.3 Unrooted genealogical trees

If the ancestral types at segregating sites are not known, the data only determine an
unrooted tree Q, as discussed in Subsection 2.2. The probability of an observation
(Q, a) is then given by

p(Q, a) =
∑

T :C(T )=C(T0)

p(T, a), (21)

where T0 is any rooted tree compatible with Q (and the sum has number of segregating
sites + 1 summands), or with unlabelled samples

p0(Q, n) =
∑

T :C(T )=C(T0)

p0(T, n). (22)
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By combining (22) and (17) and re-arranging as in [25], Sect. 2.2, we obtain

p0(Q, n) = 1

nr +∑n
�=2

(n
�

)
λn,�

∑
i : ni ≥2

ni∑
k=2

(
n

k

)
λn,k

ni − k + 1

n − k + 1
p0(Q, n − (k−1)ei )

+ r

nr +∑n
�=2

(n
�

)
λn,�

∑
k: nk=1, |k|=1
k→ j, mkj >1

p0(Q − ek j , n)

+ r

nr +∑n
�=2

(n
�

)
λn,�

∑
k: nk=1, |k|=1
k→ j, mkj =1

×
∑

j :s(xk )=x j

(n j + 1)p0(Q − ek j , rk(n + e j )), (23)

where |k| = 1 means that the degree of vertex k is 1, k → j means that vertex k
is joined to vertex j , and finally, in the last term on the right-hand side, vertex k is
removed from Q. The boundary condition is p0(Q, (1)) = 1 for the tree consisting
of one vertex only.

Remarks (1) Note that it may be possible to draw inference about ancestral states
at some or all segregating sites by comparing likelihoods for various positions
of the root.

(2) As above, recursion (23) can be solved explicitly for samples of size n = 2. In
fact, the only information about the two sequences in the infinitely-many-sites
model is then captured by the number of segregating sites (i.e. the number of
mutations), say, s. Hence, by a slight abuse of notation, we have

p0((0), (2)) = 1

1 + 2r
,

and

p0((s)), (1, 1)) = 2

(
2r

1 + 2r

)s 1

1 + 2r
, s = 1, 2, . . . (24)

in keeping with the idea that two samples are separated by a geometric number
of mutations. ��

5 Finite- and infinite alleles recursions

In this section, we provide similar recursions for the finite- and infinite alleles models of
mathematical genetics. The finitely-many-alleles recursions can either be derived using
Donnelly and Kurtz’ [13] modified lookdown construction, assuming a given underly-
ing generalised Λ-Fleming–Viot process, or via calculations based on the generator of
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the population model, as in described [12] for the Kingman-case. A detailed derivation
of the recursions, using both approaches, can be found in [6].

Here, we consider type changes, or mutations, occurring at rate r > 0, and let
P = (Pi j ) denote a stochastic transition matrix on the corresponding finite type
space E with #E =: d ≥ 1, and with equilibrium µ. This means that if a mutation
occurs, type i mutates to type j with probability Pi j . Silent mutations are allowed (i.e.
Pj j ≥ 0). Due to exchangeability, we will merely be interested in the type frequency
probability p0(n). So, the only relevant information is (of course) how many samples
were of which type. For n = (n1, . . . , nd) ∈ Z

d+, denote #n := n1 + · · · + nd .
Let p0(n) be the probability that in a sample of size #n, there are exactly n j of type

j , j = 1, . . . , d.

Theorem 2 Abbreviate n := #n, and write ek for the k-th canonical unit vector of
Z

d . Then, the recursion for p0 is

p0(n) = r∑n
k=2

(n
k

)
λn,k + nr

d∑
j=1

d∑
i=1

(ni + 1 − δi j )Pi j p0(n − e j + ei )

+ 1∑n
k=2

(n
k

)
λn,k + nr

d∑
j=1

n j ≥2

n j∑
k=2

(
n

k

)
λn,k

n j − k + 1

n − k + 1
p0(n − (k − 1)e j )

(25)

with boundary conditions p0(e j ) = µ j . In the Kingman case, this agrees with (3) in
[12].

In the infinitely-many alleles case, one assumes that every mutation, which occurs
along the coalescent tree with rate r > 0, leads to an entirely new type, no other
information is being retained. If we take a sample of n ∈ N genes, it is natural to
ask for the probability p0(n) to sample a specific, non-ordered allele configuration
n = (n1, . . . , n�), where � ≤ n is the number of different types observed in the sam-
ple, and ni , for i ∈ {1, . . . , �} is the number of times that type i is being observed. Let
ñ j = (n1, . . . , n j−1, n j+1, . . . , n�). Using coalescent arguments, it is possible obtain
the following recursion, see [35], Theorem 3.1.

Theorem 3 (Möhle) The probability of a non-ordered allele configuration n =
(n1, . . . , n�) satisfies the recursion given by p0(1) = 1 and

p0(n) = nr∑n
k=2

(n
k

)
λn,k + nr

�∑
j=1

n j =1

1

�
p0(ñ j ) + 1∑n

k=2

(n
k

)
λn,k + nr

×
n∑

k=2

�∑
j=1

n j ≥k

(
n

k

)
λn,k

n j − k + 1

n − k + 1
p0(n − (k − 1)e j ). (26)
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In the Kingman-case, this recursion can be solved explicitly and leads to an
alternative formulation of the famous Ewens sampling formula, see [16]. It seems
that the only other case in which an explicit solution is known is the case Λ = δ1, in
which the genealogy is star-shaped.

6 A Monte Carlo method for the computation of the likelihoods in the
infinite-sites model

We first derive a simple Monte-Carlo approximation of the exact sampling probabil-
ities in the infinite-sites model by simulating a Markov chain backwards along the
sample paths of the coalescent (essentially based on [23], see also [45]). Note that
this can be viewed as an integration over all paths of Algorithm 1 (see Sect. 7.2)
which lead to the observed configuration—these correspond to “coalescent histories”
as considered in [12,43].

6.1 An unbiased estimator for p0(t, n)

Given ordered types and frequencies (t, n), we define the tree complexity of (t, n) as

c[(t, n)] =
d∑

i=1

ni + #

(
d⋃

i=1

xi

)
− 1 ∈ N, (27)

where the union refers to entries of the sequences xi , and we subtract one to exclude
the root.

Note that the tree complexity is the sum of the sample size and the number of seg-
regating sites. This definition transfers in the obvious way also to the pair of ordered
types and partitions (t, a). It is clear that the tree complexity is independent of the
choice of a representative t from the equivalence class [t] and hence well-defined. If
c[(t, n)] = 1, the minimum for a non-vanishing tree, then the tree consists only of its
root with multiplicity one, i.e. (t, n) = ({0}, (1)) =: t0. We write

(t′, n′) ≺ (t, n)

if (t′, n′) can be reached from (t, n) by either removing one mutation or a coalescence
event, see below. In this case, c[(t′, n′)] < c[(t, n)]. Hence observe that the recur-
sions (18) and (17) are proper recursions in the sense that they strictly decrease the
tree complexity in each step.

The following lemma is an appropriate version of the corresponding Lemma 6.1 in
[45].

Lemma 1 Let {Xk, k ∈ N0} be a Markov chain on the space of ordered types with cor-
responding frequencies, denoted by (T ,N ), and with transitions Q = (q(t,n),(t′,n′))
such that the hitting time

τ = inf {k ≥ 0 : Xk = ({0}, (1))}
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for any given initial state (t, n) in (T ,N ) is bounded by some constant 0 ≤ K1(t, n) <

∞. Let f : (T ,N ) → [0,∞) be a measurable function and define

u(t,n)( f ) = E(t,n)

τ∏
k=0

f (Xk) (28)

for all X0 = (t, n) ∈ (T ,N ), so that

u({0},(1))( f ) = f ({0}, (1)) .

Then
u(t,n)( f ) = f ((t, n))

∑
(t,n)∈(T ,N )

(t′,n′)≺(t,n)

q(t,n),(t′,n′)u(t′,n′)( f ) (29)

for all (t, n) ∈ (T ,N )\({0}, (1)). Conversely, the unique solution of (29) is given
by (28).

Remark If the transitions Q = (q(t′,n′),(t,n)) are only positive if c[(t′, n′)] < c[(t, n)],
then

τ = inf {k ≥ 0 : Xk = ({0}, (1))}

is always bounded from above by the tree complexity of the initial state.

Proof Since τ ≤ K1(t, n), the expected value remains finite for each initial condition.
Now, compute

u(t,n)( f ) = E(t,n)

τ∏
k=0

f (Xk)

= f (t, n) E(t,n)

[
E(t,n)

[
τ∏

k=1

f (Xk)

∣∣∣ X1

]]

= f (t, n) E
[
u X1( f )

]
= f (t, n)

∑
(t′,n′)∈(T ,N )

(t′,n′)≺(t,n)

q(t,n),(t′,n′)u(t′,n′)( f ),

as required. ��
The result provides a simulation method for solving recursions of type (29): sim-

ulate a trajectory of the chain X starting at (t, n) until it hits the root ({0}, (1)) at
time τ , compute the value of the product

∏τ
k=0 f (Xk) and repeat this many times.

Averaging these values provides an unbiased and consistent estimate of u(t,n)( f ) in
terms of an approximation of the expected value E(t,n)

∏τ
k=0 f (Xk) by the strong law

of large numbers. Lemma 1 states that this expectation is a solution to the recursion
in question.
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Corollary 2 For ordered types and frequencies (t, n) with c[(t, n)] > 1, put

f (t, n) = 1

rn

⎛
⎜⎜⎜⎜⎜⎝

∑
k: nk=1, xk0 distinct

s(xk ) �=x j ∀ j

r +
∑

k: nk=1,

xk0 distinct

∑
j :sk (xk)=x j

r(n j + 1)

+
∑

1≤i≤d: ni ≥2

ni∑
k=2

(
n

k

)
λn,k

ni − k + 1

n − k + 1

⎞
⎟⎟⎟⎟⎟⎠

, (30)

where

rn = nr +
n∑

k=2

(
n

k

)
λn,k . (31)

Furthermore, let
f ({0}, (1)) = 1. (32)

Consider a Markov-Chain {Xl = (t(l), n(l))} on (T ,N ) with transitions

(t, n) →

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(sk(t), n) w. p. r
rn f (t,n)

if nk =1, xk0 dist., s(xk) �= x j ∀ j,

(rk(t), rk(n + e j )) w. p.
r(n j +1)

rn f (t,n)
if nk = 1, xk0 dist., s(xk) = x j ,

(t, n − (k − 1)ei ) w. p. 1
rn f (t,n)

(n
k

)
λn,k

ni −k+1
n−k+1 if 2 ≤ k ≤ ni .

Then,

p0(t, n) = E(t,n)

τ∏
l=0

f (t(l), n(l)). (33)

Proof This is the immediate application of Corollary 1 and Lemma 1, noting that, as in
the last remark, starting from (t, n), the stopping time τ is bounded by c[(t, n)] < ∞.
Note that one might prefer to stop at n = 2 in view of (19–20). ��

Simulating independent copies and taking the average now yields an unbiased
estimator of p0(t, n). Note that a similar result holds for the recursion w.r.t. (t, a).

To compute p0(Q, n) in the unrooted case, one can either estimate each term in
(22) using the method above, or implement an analogous Monte-Carlo scheme based
on (23) and a Markov-Chain {Y (l), l = 0, 1, 2, . . . } on the space (Q,N ) of unrooted
trees with node multiplicities as below. Note that the complexity of a tree as defined in
(27) does not depend on the position of the root, and is thus well-defined for unrooted
trees.
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Corollary 3 With the notation of Subsect. 4.3, put f ((0), (1)) = 1, and for (Q, n) ∈
(Q,N ) with c[(Q, n)] > 1, set

f (Q, n) = 1

rn

⎛
⎜⎜⎜⎜⎜⎝
∑

i : ni ≥2

ni∑
k=2

(
n

k

)
λn,k

ni − k + 1

n − k + 1

+
∑

k: nk=1, |k|=1
k→ j, mkj >1

r +
∑

k: nk=1, |k|=1
k→ j, mkj =1

∑
j :s(xk )=x j

r (n j + 1)

⎞
⎟⎟⎟⎟⎟⎠

where rn is defined in (31). Consider a Markov-Chain {Yl = (Q(l), n(l))} on (Q,N )
with transitions

(Q, n) →

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Q − ek j , n) w. p. r
rn f (t,n)

if nk = 1, |k| = 1, k → j, mkj > 1

(Q − ek j , rk(n + e j )) w. p.
r(n j +1)

rn f (t,n)
if nk = 1, |k| = 1, k → j, mkj = 1

(Q, n − (k − 1)ei ) w. p. 1
rn f (t,n)

(n
k
)
λn,k

ni −k+1
n−k+1 if 2 ≤ k ≤ ni .

Then, with τ := min{l : (Q(l), n(l)) = ((0), (1))},

p0(Q, n) = E(Q,n)

τ∏
l=0

f (Q(l), n(l)).

6.2 Simulation of likelihood surfaces with pre-specified driving values.

By a change of measure, it is possible to obtain simultaneous likelihoods for a variety
of values for (r,Λ) using a single realization of the Markov-chain X only.

Lemma 2 Let {Xk, k ≥ 0} be a Markov chain with state space (T ,N ) and with
transitions Q = (q(t,n),(t′,n′)) such that the hitting time

τ = inf {k ≥ 0 : Xk = ({0}, (1))}

for any given initial state (t, n) in (T ,N ) is bounded by some constant 0 ≤ K2(t, n)<

∞. Let g : (T ,N ) × (T ,N ) → [0,∞) be a measurable function and define

u(t,n)(g) = E(t,n)

τ−1∏
k=0

g(Xk, Xk+1), (34)
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for all X0 = (t, n) ∈ (T ,N )), with the convention that the empty product equals one,
i.e., u({0},(1))(g) = 1.

Then, for all (t, n) ∈ (T ,N )\({0}, (1)),

u(t,n)(g) =
∑

(t,n)∈(T ,N )

(t′,n′)≺(t,n)

g ((t, n) , (t′, n′))q
(
(t, n), (t′, n′)

)
u(t′,n′)(g) (35)

and this set of equations has the unique solution (34).

Proof Similar to the proof of Lemma 1. ��
We follow the spirit of Corollary 2 and suitably rewrite (17). To this end, define
p0
(r,Λ)(t, n) to be the probability of observing the unordered, labelled tree (t, n) if the

underlying mutation rate is r and the genealogy is governed by a Λ-coalescent.

Corollary 4 Let (r,Λ) and (r∗,Λ∗) ∈ R+ × M([0, 1]) be given. For ordered types
and frequencies (t, n), define f(r,Λ)(t, n) through (30)–(32) and similarly
f(r∗,Λ∗)(t, n). Consider a Markov-Chain {Xl = (t(l), n(l))} on (T ,N ) with tran-
sitions q(r∗,Λ∗) given by

(t, n) →

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(sk(t), n) w. p. r∗
r∗

n f(r∗,Λ∗)(t,n)
if nk = 1, xk0 dist., s(xk) �= x j ∀ j,

(rk(t), rk(n + e j )) w. p.
r∗(n j +1)

r∗
n f(r∗,Λ∗)(t,n)

if nk = 1, xk0 dist., s(xk) = x j ,

(t, n − (k − 1)ei ) w. p. 1
r∗

n f(r∗,Λ∗)(t,n)

(n
k
)
λ∗

n,k
ni −k+1
n−k+1 if 2 ≤ k ≤ ni .

Then, defining

g(r,Λ),(r∗,Λ∗)((t, n), (t′, n′)) = f(r,Λ)(t, n)
q(r,Λ)

(
(t, n), (t′, n′)

)
q(r∗,Λ∗) ((t, n), (t′, n′))

,

one has

p0
(r,Λ)(t, n) = E

(r∗,Λ∗)
(t,n)

τ−1∏
k=0

g(r,Λ),(r∗,Λ∗)(Xk, Xk+1), (36)

provided that the parameters (r,Λ), (r∗,Λ∗) fulfil the condition

f(r,Λ)(t, n)q(r,Λ)

(
(t, n), (t′, n′)

)
> 0 ⇒ q(r∗,Λ∗)

(
(t, n), (t′, n′)

)
> 0. (37)

Again, this gives rise to a simulation algorithm, this time based on (r∗,Λ∗) rather than
the “target” (r,Λ).

Proof We may rewrite (17) as

p0
(r,Λ)(t, n) =

∑
(t′,n′) :

(t′,n′)≺(t,n)

f(r,Λ)(t, n)q(r,Λ)

(
(t, n), (t′, n′)

)
p0
(r,Λ)(t

′, n′) (38)
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for the obvious choice for q(r,Λ). Furthermore, using (37), (38) may be recast as

p0
(r,Λ)(t, n) =

∑
(t′,n′) :

(t′,n′)≺(t,n)

f(r,Λ)(t, n)
q(r,Λ)

(
(t, n), (t′, n′)

)
q(r∗,Λ∗) ((t, n), (t′, n′))

× q(r∗,Λ∗)
(
(t, n), (t′, n′)

)
p0
(r,Λ)(t

′, n′), (39)

hence

p0
(r,Λ)(t, n) =

∑
(t′,n′) :

(t′,n′)≺(t,n)

g(r,Λ),(r∗,Λ∗)((t, n), (t′, n′))

× q(r∗,Λ∗)
(
(t, n), (t′, n′)

)
p0
(r,Λ)(t

′, n′), (40)

so that Lemma 2 may directly be applied to Eq. (40) and the Markov chain Xl =
(t(l), n(l)) with driving values r∗ and (λ∗

n,k)2≤k≤n (coming from Λ∗) and transitions
as above. Thus we arrive at the representation

p0
(r,Λ)(t, n) = E

(r∗,Λ∗)
(t,n)

τ−1∏
k=0

g(r,Λ),(r∗,Λ∗)(Xk, Xk+1),

as required. ��
With this result, many estimators for p0

(r,Λ)(t, n) for various values of (r,Λ),
respecting the absolute continuity condition (37), can be obtained by simulating just
one realization of the Markov chain with driving values (r∗,Λ∗). This seems computa-
tionally much more efficient than using different driving values. However, one should
be aware that one obtains correlated estimates and that the variance of the estimator
for p0

(r,Λ)(t, n) depends on (r∗,Λ∗).

Remarks (1) The same approach can be used to extend Corollary 3.
(2) There are obvious improvements of this method. Combining likelihoods in

approximately optimal linear combinations of the (ri ,Λi ) leads to a further
reduction in variance (see [45] for details). More advanced techniques such as
a sophisticated importance sampling in the spirit of [43] or bridge sampling
are currently under investigation by the authors and part of an ongoing research
project.

7 An ‘urn-like’ algorithm for generating samples

7.1 Reversing the block-counting process

In this section, we show how the so-called block counting process, which keeps track
of the number of blocks of a coalescent-process, can be used to derive the site fre-
quency spectrum for an n-sample in the infinite-sites model. The time-reversal of this
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process will later be useful in order to obtain urn-like algorithms to produce samples
under the finite- and infinite-alleles model.

Let {Πt }t≥0 be a Λ-coalescent. We denote by {Yt }t≥0 the corresponding block
counting process, i.e. Yt = # of blocks of Πt is a continuous-time Markov chain on
N with jump rates

qi j =
(

i

i − j + 1

)
λi,i− j+1, i > j ≥ 1.

The total jump rate while in i is of course −qii = ∑i−1
j=1 qi j . We write

pi j := qi j

−qii
(41)

for the jump probabilities of the skeleton chain, noting that (pi j ) is a stochastic matrix.
Note that in order to reduce i classes to j classes, an i − j + 1-merger has to occur.
Let

g(n, m) := En

⎡
⎣

∞∫

0

1{Ys=m} ds

⎤
⎦ for n ≥ m ≥ 2 (42)

be the expected amount of time that Y , starting from n, spends in m.
Decomposing according to the first jump of Y , we find the following set of equations

for g(n, m):

g(n, m) =
n−1∑
k=m

pnk g(k, m), n > m ≥ 2, (43)

g(m, m) = 1

−qmm
, m ≥ 2. (44)

Let us write Y (n) for the process starting from Y (n)
0 = n. Let τ := inf{t : Y (n)

t = 1}
be the time required to come down to only one class, and let

Ỹ (n)
t := Y (n)

(τ−t)−, 0 ≤ t < τ

be the time-reversed path, where we define Ỹ (n)
t = ∂ , some cemetery state, when

t ≥ τ .

Remark In general, we are not aware of a closed-form solution to (43)–(44), but the
recursive form lends itself immediately to a numerical implementation.

Proposition 1 (Time-reversal) With the above definitions, Ỹ (n) is a continuous-time
Markov chain on {2, . . . , n} ∪ {∂} with jump rates

q̃(n)
j i = g(n, i)

g(n, j)
qi j , j < i ≤ n,
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and q̃(n)
n∂ = −qnn, where g(n, m) is as in (42). The starting distribution of Ỹ (n) is given

by

P{Ỹ (n)
0 = k} = g(n, k)qk1,

for each k.

Proof The result follows from Nagasawa’s Formula, see e.g. [39], and the observation

P{Ỹ (n)
0 = k} = Pn

{
Ỹ (n) hits k, jumps to 1 from there

}

= Pn

{
Ỹ (n) hits k

} qk1

−qkk

= g(n, k)qk1.

Note that unless Λ is concentrated on {0} (Kingman-case), the dynamics of Ỹ (n) does
depend on n. ��

7.2 Generating samples

The stochastic mechanism described in Sect. 3 allows in principle to generate random
samples in a two-step procedure by first simulating a Λ-coalescent tree with real
branch lengths, and then superimposing mutations along the branches at rate r . How-
ever, from a computational point of view, it is more efficient to generate the genealogy
“in one pass” from the root forwards to the leaves of the coalescent tree with the help
of the reversed block counting process. This is achieved by the following algorithm.
We write #n := ∑d

i=1 ni , and denote q̃(n)
k := −q̃(n)

kk .

Algorithm 1 (1) Draw K according to the law of Ỹ (n)
0 , i.e. P{K = k} = g(n, k)qk1.

Begin with the a single “ancestral type” with multiplicity K , i.e. t = (x1), x1 =
0, n = ((K )), and so d = 1. Set s := 1.

(2) Given (t, n), let k := #n, and draw a uniform random variable U on [0, 1].
◦ If U ≤ kr

kr+q̃(n)
k

, then draw one type, say I , according to the present frequen-

cies.
– If nI = 1, replace xI by (s, xI 0, . . . , xI j (I )), increase s by 1.
– If nI > 1, create new type xd+1 = (s, xI 0, . . . , xI j (I )), set nd+1 := 1,

increase s and d each by one, decrease nI by one.
◦ If U > kr

kr+q̃(n)
k

, then:

– If #n = n, go to 4).
– Otherwise, pick J ∈ {k + 1, . . . , n} with P{J = j} = q̃(n)

#n, j/q̃(n)
#n .

Choose one of the present types i (according to their present frequency),
and add J − #n copies of this type, i.e. replace ni := ni + J − #n.

(3) Repeat (2).
(4) Finally, in order to create a numbered sample configuration with ordered types

(t, a) from (t, n), pick uniformly an ordered partition a with #ai = ni , i =
1, . . . , d.
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Proposition 2 The law of the output generated by Algorithm 1 is that of the samples
described in Sect. 3.

Proof This follows from Proposition 1 and the observation that the number of muta-
tions while there are k lineages in a Λ-coalescent is geometrically distributed with
success parameter q̃(n)

k /(kr + q̃(n)
k ). ��

Remark It is easy to adapt this algorithm to work in the finite- and infinitely-many
alleles cases. In the case of parent-independent mutation, one can also use an algo-
rithm which runs “backwards in time”. Indeed, in order to simulate such a sample one
follows lineages backwards. “Active” ancestral lineages are lost either by (possibly
multiple) coalescence or when hitting their “defining” mutation. Details can be found
in [6].

Note that in the case Λ = δ0, this algorithm is identical with that on p. 541 of [17],
which was motivated by Hoppe’s urn [30]. ��

8 Illustration and discussion

8.1 Beta-coalescents

Recall that the genealogy of a sample from a large but finite population model of size
N in the domain of attraction of the classical Fleming–Viot process is asymptotically
described by Kingman’s coalescent, if time is measured (backwards) in units of N/σ 2

generations, where σ 2 is the variance of the number of offspring per individual. Thus,
if the variability of individual offspring numbers is very high, this limit may be inap-
propriate, and a multiple merger coalescent could be a more reasonable model for the
genealogy of the sample under consideration.

The one-parameter family of multiple-merger coalescents described by (4) with
α ∈ (1, 2) can be used to describe the genealogy of a sample at a neutral locus
in a scenario with (asymptotically) infinite variance of offspring distributions, and
the parameter α describes the algebraic decay of the tail of the individual offspring
distribution. This can be justified either by considering the time-changed genealogy
of a (continuous-state) branching process of index α as in [4], or more directly by
a sequence of Cannings-type models as in [42]: In each generation, let individuals
generate potential offspring as in a supercritical Galton–Watson process with indi-
vidual mean m > 1, where the tail of the offspring distribution varies regularly with
index α, i.e. the probability to have more than k children decays like C1k−α for some
C1 ∈ (0,∞). Among these, N are sampled without replacement to survive and form
the next generation. Then, if time is measured in units of C2 × Nα−1 generations,
where

C2 = 1

C1αm−αΓ (α)Γ (2 − α)
,

the genealogy of a random sample is described by a Beta(2 − α, α)-coalescent in the
limit N → ∞ (see [42], Theorem 4 and Lemma 13). In both approaches, the situation
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with finite variance of individual offspring numbers can be included as the bound-
ary case α = 2, which corresponds to Kingman’s coalescent. Intuitively, smaller α

corresponds to more extreme variability among offspring numbers.
Note that implicitly, the choice of α fixes the scaling of the individual mutation

probability µ per generation: In a population of size N , this translates to a rate

r = C2 Nα−1µ

with which mutations appear on the (limiting) Beta(2 − α, α)-coalescent. In the case
when the individual potential offspring numbers Xi have a finite variance (in partic-
ular, α > 2), this becomes the familiar relation r (= θ/2) = C3 Nµ, with a constant
C3 > 0 depending on the distribution of the Xi (see Sect. 2 of [42] for details).

8.2 Likelihood surfaces

The Monte Carlo algorithm described by Corollaries 2 and 4 is implemented in
beta genetree, which is, together with a technical report documenting the pro-
gram, available from [5]. By repeated calls of the program, it can be used to (approxi-
mately) compute likelihood surfaces for parametric families of coalescents. Here, we
illustrate this by an application to four artificial (infinitely many sites) datasets, each
of size n = 100, generated randomly using the algorithm described in Subsect. 7.2
for a Beta(2−α, α)-coalescent, with α = 1.25, 1.5, 1.75, 2.0 and mutation parameter
r = 2.0. The rooted genetrees corresponding to the four datasets, drawn with the
program treepic from Bob Griffith’s genetree software suite, can be found in
the appendix.

Figure 4 shows (approximately) the logarithm of the probability of observing each
of the four datasets under a Beta(2 − α, α)-coalescent, on which mutations appear
with rate r , as a function of (α, r) ∈ (1, 2] × (0, 4]. Computation was based on a grid
of 25 × 25 points in the α-r -plane, the value at each point is calculated by replacing
the expected value on the right-hand side of (33) by an empirical average using 107

independent runs of the Markov chain.
Such likelihood surfaces can be used to find maximum-likelihood estimators for

the parameters (α, r). Positions of maxima are given in the table below.

Dataset (a) (b) (c) (d)

True value of (α, r) (1.25, 2.0) (1.5, 2.0) (1.75, 2.0) (2.0, 2.0)

ML estimator (α̂, r̂) (1.4, 2.67) (1.54, 3.0)∗ (1.63, 1.67) (2.0, 2.17)

∗ there is a comparable value at (1.3, 1.67).

These results appear promising in that it seems possible to (at least on the prin-
cipal level) recover α and r from a sample, and in particular to distinguish between
Kingman and multiple merger coalescents. Note that in the cases (a)–(c), correspond-
ing to multiple merger behaviour, the maximal likelihood is assumed well away from
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Fig. 4 Likelihood-surfaces for α = 1.25, 1.5, 1.75 and 2 (Kingman case)

the “Kingman axis” α = 2, and the maximal value is at least two orders of magnitude
larger than the highest value on the Kingman axis.

Remarks (1) Investigation of statistical properties of these ML-estimators and com-
parison with estimators based on likelihoods of summary statistics (as in [15])
and on moment-estimators based on the frequency spectrum (e.g. a Watterson-
like estimator of r for given Λ) will be treated in future work.

(2) The same method can obviously be applied to other families of Λ-coalescents,
e.g. those described by (3) or (5). However, the choice of a class of coalescents
for a given dataset should be based on biological modelling considerations. Fur-
ther discussion and an application to “real” datasets will be subject of future
work.
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Appendix

Underlying genetrees

Figure 5
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Fig. 5 Genetrees corresponding to the four datasets analysed in Subsect. 8.2 (α = 1.25, 1.5, 1.75 and 2
(Kingman case))
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