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Abstract: We review recent progress in the understanding of the interplay

between population models, measure-valued diffusions, general coalescent processes

and inference methods for evolutionary parameters in population genetics. Along the

way, we will discuss the powerful and intuitive (modified) lookdown construction of

Donnelly and Kurtz, Pitman’s and Sagitov’s Λ-coalescents as well as recursions and

Monte Carlo schemes for likelihood-based inference of evolutionary parameters based

on observed genetic types.

1.1 Introduction

We discuss mathematical models for an effect which in population genetics
jargon, somewhat orthogonal to diffusion process nomenclature, is called
“genetic drift”, namely the phenomenon that the distribution of genetic types
in a population changes in the course of time simply due to stochasticity in the
individuals’ reproductive success and the finiteness of all real populations. We
will only consider “neutral” genetic types. This contrasts and complements
the notion of selection, which refers to scenarios in which one or some of the
types confer a direct or indirect reproductive advantage to their bearers. Thus,
in the absence of demographic stochasticity, the proportion of a selectively
advantageous type would increase in the population, whereas that of neutral
types would remain constant. The interplay between small fitness differences
among types and the stochasticity due to finiteness of populations leads to
many interesting and challenging problems, see e.g. the article by A. Etheridge,
P. Pfaffelhuber and A. Wakolbinger in this volume.

Genetic drift can be studied using two complementary approaches, which
are dual to each other, and will be discussed below. Looking “forwards” in
time, the evolution of the type distribution can be approximately described
by Markov processes taking values in the probability measures on the space
of possible types. Looking “backwards”, one describes the random genealogy
of a sample from the population. Given the genealogical tree, one can then
superimpose the mutation process in a second step. The article by P. Mörters
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in this volume studies asymptotic properties of these genealogical trees in
the limit of a large sample sizes as an example of the use of the multifractal
spectrum.

The classical model for genetic drift is the so-called Wright-Fisher diffusion,
which is appropriate when the variability of the reproductive success among
individuals is small. Recently, there has been mathematical and biological
interest in situations where the variance of the number of offspring per
individual is (asymptotically) infinite, and detailed descriptions of the possible
limiting objects have been obtained. We review these developments, giving
particular emphasis to the interplay between the forwards models, generalised
Fleming-Viot processes, and their dual backwards models, Λ-coalescents. We
use this opportunity to advertise the lookdown construction of Donnelly and
Kurtz (in its [DK99] “flavour”), which provides a realisation-wise coupling for
this duality. Furthermore, we show how these approaches can be used to derive
recursions for the probabilities of observed types in a sample from a stationary
population. These recursions can usually not be solved in closed form and can
be difficult to implement exactly, in particular if the space of possible types or
the sample size is large. We describe a Monte-Carlo method which allows an
approximate solution.

Many important and interesting aspects of mathematical population genetic
models are omitted in our review, in particular the possibilities of varying pop-
ulation sizes, selective effects, spatial or other population substructure, multi-
locus dynamics and recombination. We also focus on haploid models, meaning
that our individuals have only one parent. For an introduction to coalescents
with emphasis on biology, see e.g. [H90], [N01], [HSW05], [W06], for back-
ground on (classical and generalised) Fleming-Viot processes and variations of
Kingman’s coalescent, see e.g. [EK86], [D93], [EK93] and [DK99].

1.2 Population genetic models with neutral types

Cannings-models. In neutral population models, the main (and only) sources
of stochasticity are due to random genetic drift and mutation. The first feature
is captured in a basic class of population models, namely the so-called Cannings-

models ([C74, C75]). We will subsequently extend these by adding mutations.
Consider a (haploid) population of constant size (e.g. due to a fixed amount

of resources) consisting of, say, N individuals. Suppose the population is un-
dergoing “random mating” with fixed non-overlapping generations and ideally
has evolved for a long time, so that it can be considered “in equilibrium”. In
each generation t ∈ Z, the distribution of the offspring numbers is given by a
non-trivial random vector

(ν
(t)
1 , . . . , ν

(t)
N ) with

N∑

i=1

ν
(t)
i = N, (1.1)

where ν
(t)
k is the number of children of individual k. The vectors ν(t), t ∈ Z are



1.2. POPULATION GENETIC MODELS WITH NEUTRAL TYPES 3

assumed i.d.d.

Neutrality means that we additionally suppose that the distribution of each
such random vector is exchangeable, i.e. for each permutation σ ∈ SN , we have
that

(νσ(1), . . . , νσ(N)) = (ν1, . . . , νN ) in law.

If these conditions are met, we speak of a Cannings-model.

To explain the notion of random genetic drift, imagine that each individual
has a certain genetic type. For example, at the genetic locus under consider-
ation, each individual is of one of the types (or alleles) {a,A}. Each type is
passed on unchanged from parent to offspring (we will introduce mutation to
this model later).

For each generation t, let Xt denote the number of individuals which carry
the “a”-allele. By the symmetries of the model, {Xt} is a finite Markov-chain on
{0, . . . N} as well as a martingale. In particular, we may represent its dynamics
as

Xt+1 =

Xt∑

i=1

ν
(t)
i . (1.2)

Note that although E[Xt] = X0 for all t (due to the martingale property), the
chain will almost surely be absorbed in either 0 or N in finite time. In fact, the
probability that type a will be fixed in the population equals its initial frequency
X0/N . This is a simple example of the power of genetic drift: although in this
model there is no evolutionary advantage of one of the types over the other,
one type will eventually get fixed (this force will later be balanced by mutation,
which introduces new genetic variation).

1.2.1 “Classical” limit results in the finite variance regime

Two-type neutral Wright-Fisher model. The classical example from this
class is the famous Wright-Fisher model ([F22], [W31]). Informally, one can
think of the following reproduction mechanism. At generation t, each individual
picks one parent uniformly at random from the population alive at time t − 1
and copies its genetic type (i.e. either a or A). Denoting by pt−1 = Xt−1/N the
proportion of alleles of type a in generation t− 1, the number Xt of a-alleles in
generation t is binomial, that is,

P{Xt = k|Xt−1} =

(
N

k

)
pkt−1(1 − pt−1)

N−k.

Compliant with (1.1), the offspring vector (ν1, . . . , νN ) would be multinomial
with N trials and success probabilities 1/N, . . . , 1/N .

The Wright-Fisher diffusion as a limit of “many” Cannings-
models. For large populations, it is often useful to pass to a diffusion limit.
To this end, denote by

Y N (t) :=
1

N
X⌊t/cN⌋, t ≥ 0,
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where ⌊t/cN⌋ is the integer part of t/cN , and the time scaling factor is

cN :=
E[ν1(ν1 − 1)]

N − 1
=

V[ν1]

N − 1
, (1.3)

the (scaled) “offspring variance”. Note that cN can also be interpreted as the
probability that two randomly sampled individuals from the population have
the same ancestor one generation ago (this will be important in Section 1.3).
The following exact conditions for convergence follow from the conditions given
by [MS01] and a straightforward application of duality, which we will discuss
below [see (1.42)]: If

cN → 0 and
E[ν1(ν1 − 1)(ν1 − 2)]

N2cN
→ 0 as N → ∞, (1.4)

{Y N
t } converges weakly to a diffusion process {Yt} in [0, 1], which is the unique

strong solution of

dYt =
√
Yt(1 − Yt) dBt, Y0 := x ∈ [0, 1],

where {Bt} is a standard Brownian motion. Equivalently, {Yt} is characterised
as a (strong) Markov process with generator

Lf(y) =
1

2
y(1 − y)

d2

dy2
f(y), y ∈ [0, 1], f ∈ C2([0, 1]). (1.5)

To this continuous model, the machinery of one-dimensional diffusion theory
may be applied, see, e.g., [E04] for an introduction. For example, it is easy to
compute the mean time to fixation, if Y0 = x, which is

m(x) = −2(x log x+ (1 − x) log(1 − x)).

In terms of the original discrete model, if X0/N = 1/2, one obtains

(2 log 2)
N

σ2
≈ 1.39

N

σ2
generations

(assuming that asymptotically, V[ν1] ≈ σ2).

Moran’s model. An equally famous model for a discrete population, living
in continuous time, due to P. A. P. Moran, works as follows: Each of the N
individuals carries an independent exponential clock (with rate 1). If a bell
rings, the corresponding individual (dies and) copies the type of a uniformly
at random chosen individual from the current population (including itself).
Another way to think about this is to pick the jumps times according to a
Poisson-process with rate N and then independently choose a particle which
dies and another particle which gives birth.

Note that even though this model does not literally fit into the Cannings
class, its “skeleton chain” is a Cannings model with ν uniformly distributed on
all the permutations of

(2, 0, 1, 1, . . . , 1).
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The fraction of type a-individuals in both models, suitably rescaled, converge
to the Wright-Fisher diffusion: the continuous-time variant has to be sped up
by a factor of N , the skeleton chain by a factor of N2, as N skeleton steps
roughly correspond to one “generation”.

Remark (several types and higher-dimensional Wright-Fisher dif-
fusions). It is straightforward to extend the discussion above to a situation
with finitely-many (say k) genetic types, and obtain analogous limit theorems.
Under the same assumptions, the fraction of type i in generation ⌊t/cN⌋ is
approximately described by Y i

t , where

Yt = (Y 1
t , . . . , Y

k
t ) ∈ {(y1, . . . , yk) : yi ≥ 0,

∑
i yi = 1}

is a diffusion with generator L(k), acting on f ∈ C2(Rk) as

L(k)f(y) =
1

2

k∑

i,j=1

yi(δij − yj)
∂2

∂yi∂yj
f(y). (1.6)

2

Fleming-Viot processes and infinitely many types. To incorporate
scenarios with infinitely many possible types, it is most convenient to work
with measure-valued processes. For simplicity and definiteness, we choose here
E = [0, 1] as the space of possible types, and consider random processes on
M1([0, 1]). For example, let X̃(t, i) (with values in E) be the type of individual
i in generation t in a Cannings model, and let

ZNt :=
1

N

N∑

i=1

δX̃(t,i) (1.7)

be the empirical type distribution in generation t. Then, under Assump-
tions (1.4), if ZN0 ⇒ µ ∈ M1([0, 1]), the rescaled processes {ZN⌊t/cN⌋} con-

verge weakly towards a measure-valued diffusion {Zt}, which uniquely solves
the (well-posed) martingale problem with respect to the generator

LΦ(µ) =
∑

J⊆{1,...,p},|J |=2

∫
µ(da1) · · ·µ(dap)

(
φ(aJ1 , . . . , a

J
p ) − φ(a1, . . . , ap)

)

(1.8)
for µ ∈ M1([0, 1]) and test functions

Φ(µ) =

∫
φ(a1, . . . , ap)µ(da1) · · ·µ(dap), (1.9)

where p ∈ N and φ : [0, 1]p → R is measurable and bounded, and for a =
(a1, . . . , ap) ∈ [0, 1]p and J ⊆ {1, . . . , p}, we put

aJi = amin J if i ∈ J, and aJi = ai if i /∈ J, i = 1, . . . , p, (1.10)

see e.g. [EK86], Ch. 10, Thm 4.1. Thinking of a as the types of a sample of size
p drawn from µ, passage from a to aJ means a coalescence of ai, i ∈ J .
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In particular, if µ =
∑k

i=1 yiδai
for k different points ai ∈ [0, 1], then

Zt =
k∑

i=1

Y i
t δai

,

where {Y i
t : i = 1, . . . , k, t ≥ 0} is the k-dimensional Wright-Fisher diffusion

with generator (1.6).

1.2.2 Beyond finite variance: occasional extreme reproduction

events

Since the end of the 1990ies, more general reproduction mechanisms and their
infinite population limits have been studied in the mathematical community
([S99], [P99], [DK99], [MS01], [S00]).

Although the motivation for this came from considerations about the ge-
nealogy of population resp. coalescent processes, we describe the corresponding
population models forward in time first. Many of the technical assumptions
here will become clearer with a reading of the next section.

Implicit in (1.4) is the assumption that each family size νi is small com-
pared to the total population size N . A natural generalisation, motivated by
considering species with potentially very many offspring, is to consider scenar-
ios where occasionally, a single family is of appreciable size when compared to
N . In this spirit, Eldon and Wakeley ([EW06]) proposed a family of Cannings
models, where in a population of size N , ν is a (uniform) permutation of

(
2, 0, 1, . . . , 1

)
or of

(
⌊ψN⌋, 0, 0, . . . , 0︸ ︷︷ ︸

⌊ψN⌋ times

, 1, . . . , 1
)

(1.11)

with probability 1 − N−γ resp. N−γ for some fixed parameter ψ ∈ (0, 1] and
γ > 0. The idea is of course that from time to time, an exceptionally large
family is produced, which recruits a (non-negligible) fraction ψ of the next
generation.

This is appealing as being presumably the conceptually simplest model of
this phenomenon. On the other hand, while one may be willing to accept the
assumption that in a species with high reproductive potential and variability,
such extreme reproductive events can occur, the stipulation that these generate
always the same fraction ψ is certainly an over-simplification.

A more realistic model would allow “random” ψ, where the parameter ψ is
chosen according to some (probability) measure F . So far, the question which
F are “natural” for which biological applications is largely open.

A plausible class of Cannings models for scenarios with (asymptoti-
cally) heavy-tailed offspring distributions has been introduced and studied by
Schweinsberg ([S03]): In each generation, individuals generate potential off-
spring as in a supercritical Galton-Watson process, where the tail of the off-
spring distribution varies regularly with index α, more precisely the probability
to have more than k children decays like Const. × k−α. Among these, N are
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sampled without replacement to survive and form the next generation. The pa-
rameter α ∈ (1, 2] governing the tail of individual litter sizes characterises the
limit process, and intuitively smaller α corresponds to more extreme variability
among offspring numbers.

Mathematically, the situation is well understood (see [S99], [MS01]): For
the discussion of limit processes, we first specialise to the situation of two types
only. Consider the Markov chain (1.2) on the time scale 1/cN , where cN is
defined in (1.3). If cN → 0, for some probability measure F on [0, 1]

N

cN
P{ν1 > Nx} −→

∫

(x,1]

1

y2
F (dy) (1.12)

for all x ∈ (0, 1) with F ({x}) = 0 and

E[ν1(ν1 − 1) ν2(ν2 − 1)]

N2
· 1

cN
−→ 0 , as N → ∞, (1.13)

then the processes {XN
⌊t/cN⌋/N} converge weakly to a Markov process {Yt} in

[0, 1] with generator

Lf(y) =
F ({0})

2
y(1 − y)

d2

dy2
f(y)

+

∫

(0,1]

(
yf
(
(1 − r)y + r

)
+ (1 − y)f

(
(1 − r)y

)
− f(y)

) 1

r2
F (dr) (1.14)

for f ∈ C2([0, 1]). The moment condition (1.13) has a natural interpretation in
terms of the underlying genealogy, see the remark about simultaneous multiple
collisions on page 17. Alternatively, {Yt} can be described as the solution of

dYt =
√
F ({0})Yt−(1 − Yt−) dBt

+

∫

(0,t]×(0,1]×[0,1]

(
1{u≤Y (t−)}r(1 − Yt−) − 1{u>Y (t−)}rYt−

)
N
(
ds dr du

)
,

(1.15)

where {Bt} is a standard Brownian motion and N is an independent Poisson
process on [0,∞)×(0, 1]× [0, 1] with intensity measure dt⊗r−2F0(dr)⊗du with
F0 = F − F ({0})δ0. Here, r−2F0(dr) is the intensity with which exceptional
reproductive events replacing a fraction r of the total population occur in the
limiting process.

The class considered by Eldon and Wakeley ([EW06]) leads to F = δ0 for
γ > 2,

F =
2

2 + ψ2
δ0 +

ψ2

2 + ψ2
δψ for γ = 2 (1.16)

and δψ for 1 < γ < 2. The models considered by Schweinsberg in [S03] yield
Beta measures, namely

F (dr) =
Γ(2)

Γ(2 − α)Γ(α)
r1−α(1 − r)α−1 dr. (1.17)
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In [BBC05], these processes have been characterised as time-changes of α-stable
continuous-mass branching processes renormalised to have total mass 1 at any
time.

For the situation with infinitely many possible types, the corresponding
limiting generalised Fleming-Viot process can be considered as a measure-valued
diffusion with càdlàg paths whose generator, on test functions of the form (1.9)
with φ two times continuously differentiable, is

F ({0})LΦ(µ) +

∫

E

∫

(0,1]

(
Φ
(
(1 − r)µ+ rδa

)
− Φ(µ)

) F0(dr)

r2
µ(da), (1.18)

where L is defined in (1.8).

1.2.3 Introducing mutation.

We now introduce another major evolutionary “player”, which counteracts the
levelling force of random genetic drift. Indeed, when on the right scale, see
(1.22) below, mutation continuously introduces new types to a population,
leading to reasonable levels of genetic variability.

Example: The two alleles case. For our pre-limiting Cannings-models,
imagine the following simple mechanism. At each reproduction event, particles
retain the type of their parents with high probability. However, with a small
probability, the type can change according to some mutation mechanism. In
the situation of the two-allele model given by the types {a,A}, suppose that
independently for each child, a mutation from parental type a to A happens

with probability p
(N)
a→A, and denote by p

(N)
A→a the corresponding probability for

a mutation from A to a.
Let cN , as defined in (1.3), tend to zero. If we assume, in addition to (1.12),

(1.13), that

p
(N)
a→A

cN
→ µa→A and

p
(N)
A→a

cN
→ µA→a, (1.19)

then, the process describing the fraction of the a-population, converges to a
limit which has generator, for a suitable test-function f ∈ C2, given by

Lf(y) +
(
− yµa→A + (1 − y)µA→a

) d
dy
f(y), (1.20)

where L is given by (1.14).

General mutation mechanisms. Here, we come back to consider
measure-valued diffusions on some type space E. Let E be a compact met-
ric space (we will later usually assume E = [0, 1]N or [0, 1]). To describe a
mutation mechanism, let q(x, dy) be a Feller transition function on E × B(E),
and define the bounded linear operator B on the set of bounded function on E
by

Bf(x) =

∫

E

(
f(y) − f(x)

)
q(x, dy). (1.21)
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Denote the individual mutation probability per individual in the N -th stage of
the population approximation by rN and assume that

rN
cN

→ r ∈ [0,∞), (1.22)

where cN is defined in (1.3). Note that the scaling depends on the class of
Cannings models considered. For example, for the models in the domain of
attraction of a Beta-coalescent [see the considerations leading to (1.17)], the
choice of α fixes the scaling of the individual mutation probability µ per gen-
eration: in a population of (large) size N , this translates to a rate

r = CαN
α−1µ (1.23)

with which mutations appear. In the case α = 2, this is the familiar formula
r (= θ/2) = 2Nµ.

Then, the empirical process {ZNt }, describing the distribution of types on
E and defined in analogy to (1.7), converges to a limiting Markov process Z,
whose evolution is described by the generator [using the notation from (1.9)]

LB,FΦ(µ) = r

p∑

i=1

∫

Ep

Bi(φ(a1, . . . , ap))µ
⊗p(da1 . . . dap) + LFΦ(µ), (1.24)

where LF is defined by (1.18), and Biφ is the operator B, defined in (1.21),
acting on the i-th coordinate of φ. This process is called the F -generalised
Fleming-Viot process with individual mutation process B. Note that in the
nomenclature of [BLG03], this would be a ν-generalised FV process with
ν(dr) = F (dr)/r2.

General Moran model with mutation. While the Cannings class uses
discrete generations, the phenomena discussed above can also be expressed in
terms of a continuous time model, which is a natural generalisation of the
classical Moran model. For a given (fixed) total population size N let BN be
a Poisson process on [0,∞)× {1, 2 . . . , N − 1} with intensity measure dt⊗ µN ,
where µN is some finite measure. If (t, k) is an atom of BN , then at time
t, a “k-birth event” takes place: k uniformly chosen individuals die and are
immediately replaced by the offspring of another individual, which is picked
uniformly among the remaining N − k. “Extreme” reproductive events can
thus be included by allowing µN to have suitable mass on ks comparable to N .
The classical Moran model, in which only single birth events occur, corresponds
to µN = Nδ1.

Additionally, assume that individuals have a type in E, and each particle
mutates during its lifetime independently at rate rN ≥ 0 according to the

jump process with generator B given by (1.21). Write X
(N)
i (t) for the type of

individual i at time t.
Let us denote the empirical process for the N -particle system by

ZN (t) :=
1

N

N∑

i=1

δ
X

(N)
i (t)

. (1.25)
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We will further on assume that X
(N)
i (0) = Xi, i = 1, . . . , N , where the Xi are

exchangeable and independent of BN , so in particular limN→∞ ZN (0) exists a.s.
by de Finetti’s Theorem.

For a reasonable large population limit, one obviously has to impose as-
sumptions on µN and rN . To connect to the formulation in [DK99], note that
BN can be equivalently described by the “accumulated births” process

AN (t) :=
∑

(s,k)∈supp(BN ), s≤t

k, t ≥ 0, (1.26)

which is a compound Poisson process. We write [AN ](t) =
∑

s≤t

(
∆AN (s)

)2
for the quadratic variation of AN . Assume

NrN → r (1.27)

and
[AN ](Nt) +AN (Nt)

N2
=: UN (t) ⇒ U(t). (1.28)

Note that the limit process U must necessarily be a subordinator with generator

GUf(x) =

∫

[0,1]

(
f(x+ u) − f(x)

)
ν̃(du) + af ′(x). (1.29)

If (1.27) and (1.28) hold, the time-rescaled empirical processes converge:

{
ZN (Nt), t ≥ 0} ⇒ Z, as N → ∞,

where {Z(t)} is the solution of the well-posed martingale problem corresponding
to (1.24), see [DK99], Theorems 3.2 and 1.1. The relation between GU and F
appearing in (1.24) is as follows:

a = 2F ({0}), ν̃ is the image measure of
1

r2
F (dr) under r 7→ √

r. (1.30)

The latter is owed to the fact that “substantial” birth events, where k is of
order N , appear with their squared relative size as jumps of UN .

While the Assumption (1.28) is quite general, it is instructive (and will be
useful later) to specialise to a particular class of approximating birth event rates
µN ({k}) which is closely related to the limiting operators (1.18): For a given
F ∈ M1([0, 1]), put

µN ({k}) =NF ({0})1{k=1}

+
1

N

∫

(0,1]

(
N

k + 1

)
rk+1(1 − r)N−k−1 1

r2
F (dr), k = 1, . . . , N − 1.

(1.31)

Then, (1.28) is fulfilled and the limiting U is described by (1.29) and (1.30).
This is the (randomised) “Moran equivalent” of the “random ψ” discussed in
Subsection 1.2.2, and will turn out to be the natural mechanism of the first
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N levels of the lookdown construction, see below. A way to think about the
second term in (1.31) is that particles participate in an “r-extreme birth event”
independently with probability r. Note that (1.31) implies, for any x ∈ (0, 1)
with F ({x}) = 0,

N

N−1∑

k≥⌊xN⌋

µN ({k}) −→
N→∞

∫ 1

x

1

r2
F (dr), (1.32)

so in the limiting process, “x-reproductive events” occur at rate dt⊗x−2F (dx).
As in a k-birth event, the probability for a given particle to die is k/N , (1.31)
implicitly defines the average lifetime of an individual in the N -th approximat-
ing model. The individual death rate of a “typical” particle in the N -particle
model is

dN =

N−1∑

k=1

k

N
µN ({k}) = F ({0}) +

∫

(0,1]

1 − (1 − r)N−1

r
F (dr). (1.33)

If 1/r is not in L1(F ), this will diverge as N → ∞. In the last paragraph of the
remark about “coming down from infinity” on page 18, we will see a relation
to structural properties of the corresponding coalescents. Also note that (1.27)
and (1.33) implicitly determine the mutation rate per “lifetime unit” in the
N -th model, similarly as in (1.23).

Popular mutation models. Having the full generator (1.24) at hand, it
is now easy to specialise to the following classical mutation models.

1) Finitely-many alleles. In this model, we assume a general finite type
space, say, E = {1, . . . , d}. Then, the mutation mechanism can always be
written as a stochastic transition matrix P = (Pij) times the overall mutation
rate r ∈ (0,∞). That is,

Bf(i) = r
d∑

j=1

Pij
(
f(j) − f(i)

)
.

2) Infinitely-many alleles. Here, one assumes that each mutation leads to
an entirely new type. Technically, one simply assumes that E = [0, 1] and that
each mutation, occuring at rate r > 0, independently picks a new type x ∈ [0, 1],
according to the uniform distribution on [0, 1], i.e.

Bf(y) = r

∫

[0,1]

(
f(x) − f(y)

)
dx.

Note that this the paradigm example of a parent-independent mutation model.
After one mutation step, all information about the ancestral type is lost.

3) Infinitely-many sites model. One thinks of a long part of a DNA sequence,
so that each new mutation occurs at a different site. Hence in principle, the
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information about the ancestral type is retained. Moreover, it is possible to
speak about the “distance” between two types (e.g. by counting the pairwise
differences).

As a rule of thumb, if the number of mutations observed is small compared to
the square-root of the length of the sequence, this assumption is reasonable. For
a mathematical formulation, one may set E = [0, 1]N and define the mutation
operator by

Bf(x1, x2, . . . ) =

∫

[0,1]
f(u, x1, x2, . . . ) − f(x1, x2, x3, . . . ) du.

For a type vector x̄ = (x1, x2, . . . ), one can interpret x1 as the most recently
mutated site, x2 as the second most recently mutated site and so on. This
additional information about the temporal order of mutations, which is usually
not present in real sequence data, is “factored out” afterwards by considering
appropriate equivalence classes.

For a sufficiently “old” population, which can be assumed to be in equilib-
rium, it is an interesting question whether for each pair of types x̄, ȳ visible in
the population,

there exist indices i, j, such that xi+k = yj+k for each k ∈ N. (1.34)

The condition means that there is a most recent common ancestor for all the
types. This question is a prototype of a question for which the evolution of a
population should be studied backwards in time. We will come back to this in
the Section 1.3, see page 19.

The infinitely-many sites model has an interesting combinatorial structure,
see, e.g. [GT95] or [BB07], Section 2. For example, in practice, one frequently
does not know which of the bases visible at a segregating site is the mutant.
This can be handled by considering appropriate equivalence classes.

1.2.4 Lookdown

The lookdown construction of Donnelly and Kurtz (see [DK99]) provides a uni-
fied approach to all the limiting population models which we have discussed
so far, providing a clever nested coupling of approximating generalised Moran
models in such a way that the measure-valued limit process is recovered as the
empirical distribution process of an exchangeable system of countably many
particles. However, its full power will become clearer when we consider genealo-
gies of samples and follow history backwards in time in the next section. We
present here a version suitable for populations of fixed total size. The construc-
tion is very flexible and works for many scenarios, including (continuous-mass)
branching processes.

Note that [DK99] call what follows the ‘modified’ lookdown construction,
in order to distinguish it from the construction of the classical Fleming-Viot
superprocess introduced by the same authors in [DK96]. Here we drop the
prefix ‘modified’.

Let F ∈ M1([0, 1]). The lookdown-construction leading to an empirical
process with generator (1.24) works as follows:
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We consider a countably infinite system of particles, each of them being
identified by a level j ∈ N. We equip the levels with types ξjt , j ∈ N in some
type space E (and we think of E as being either {1, . . . , d} or [0, 1] or [0, 1]N,
depending on our choice of mutation model). Initially, we require the types
ξ0 = (ξj0)j∈N to be an exchangeable random vector, so that

lim
N→∞

1

N

N∑

j=1

δ
ξj
0

= µ,

for some finite measure µ on E. The point is that the construction will preserve
exchangeability.

There are two sets of ingredients for the reproduction mechanism of these
particles, one corresponding to the “finite variance” part F ({0}), and the other
to the “extreme reproductive events” described by F0 = F − F ({0})δ0. Re-
stricted to the first N levels, the dynamics is that of a very particular permu-
tation of the generalised Moran model described by (1.31), with the property
that always that particle with the highest level is the next to die.

For the first part, let {Lij(t)}, 1 ≤ i < j < ∞ be independent Poisson
processes with rate F ({0}). Intuitively, at jump times t of Lij , the particle at
level j “looks down” at level i and copies the type there, corresponding to a
single birth event in a(n approximating) Moran model. Types on levels above
j are shifted accordingly, in formulas

ξk(t) =





ξk(t−), if k < j,
ξi(t−), if k = j,
ξk−1(t−), if k > j,

(1.35)

if ∆Lij(t) = 1. This mechanism is well defined because for each k, there are
only finitely many processes Lij , i < j ≤ k at whose jump times ξk has to be
modified.

For the second part, which corresponds to multiple birth events, let B be
Poisson point process on R

+ × (0, 1] with intensity measure dt ⊗ r−2F0(dr).
Note that for almost all realisations {(ti, yi)} of B, we have

∑

i : ti≤t

y2
i <∞ for all t ≥ 0. (1.36)

The jump times ti in our point configuration B correspond to reproduction
events. Let Uij , i, j ∈ N, be i.i.d. uniform([0, 1]). Define for J ⊂ {1, . . . , l} with
|J | ≥ 2,

LlJ(t) :=
∑

i : ti≤t

∏

j∈J

1Uij≤yi

∏

j∈{1,...,l}−J

1Uij>yi
. (1.37)

LlJ(t) counts how many times, among the levels in {1, . . . , l}, exactly those in
J were involved in a birth event up to time t. Note that for any configuration
B satisfying (1.36), since |J | ≥ 2, we have

E
[
LlJ(t)

∣∣B
]

=
∑

i : ti≤t

y
|J |
i (1 − yi)

l−|J | ≤
∑

i : ti≤t

y2
i <∞,
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Figure 1.1: Relabelling after a birth event involving levels 2, 3 and 6.

so that LlJ(t) is a.s. finite.

Intuitively, at a jump ti, each level tosses a uniform coin, and all the levels
j with Uij ≤ yi participate in this birth event. Each participating level adopts
the type of the smallest level involved. All the other individuals are shifted
upwards accordingly, keeping their original order with respect to their levels
(see Figure 1). More formally, if t = ti is a jump time and j is the smallest level
involved, i.e. Uij ≤ yi and Uik > yi for k < j, we put

ξkt =





ξkt−, for k ≤ j,

ξjt−, for k > j with Uik ≤ yi,

ξ
k−Jk

t
t− , otherwise,

(1.38)

where Jkti = #{m < k : Uim ≤ yi} − 1.

So far, we have treated the reproductive mechanism of the particle system.
We now turn our attention to the third ingredient, the mutation steps.

For a given mutation rate r and mutation operator B, as defined in (1.21),
define for each level ∈ N an independent Poisson processes Mi with rate r,
so that if process Mi jumps, and the current type at level i is x, then a new
type is being chosen according to the kernel q(x, ·). For a rigorous formulation,
all three mechanisms together can be cast into a countable system of Poisson
process-driven stochastic differential equations, see [DK99], Section 6.

Then ([DK99]), for each t > 0, (ξ1t , ξ
2
t , . . .) is an exchangeable random vector,

so that

Zt = lim
N→∞

1

N

N∑

j=1

δ
ξj
t

(1.39)

exists almost surely by de Finetti’s Theorem, and is the Markov process with
generator (1.24) and initial condition Z0 = µ.

Remark. An alternative and very elegant way to encode the genealogy of a
Fleming-Viot process with generator (1.18) is via a flow of bridges, as described
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in [BLG03]. However, unlike the situation for the lookdown construction, it
seems unclear how to incorporate mutation in this approach. 2

1.3 Neutral genealogies: beyond Kingman’s coales-

cent

After having spent a considerable amount of pages on models for the evolution
of the type distribution of a population forwards in time, we now turn to the
fruitful approach of looking backwards in time by analysing the genealogies
of samples drawn at present. An important advantage of this approach is
that in a neutral situation, this allows one to think of a stochastic two-step
procedure, first simulating a genealogy, and then independently superimposing
the mutation events on the given genealogical tree. This point of view has
many computational and conceptual advantages. We will see below how
the lookdown construction, introduced in Section 1.2.4, provides a unified
framework by simultaneously describing the forwards evolution and all the
genealogical trees of the approximating particle systems.

1.3.1 Genealogies and coalescent processes

A way to describe the genealogy of a sample of size n from a (haploid) popula-
tion is to introduce a family of partitions of {1, . . . , n} as follows:

i ∼t j iff i and j have the same ancestor time t before present. (1.40)

Obviously, if t ≥ t′, then i ∼t′ j implies i ∼t j, i.e. the ancestral partition
becomes coarser as t increases.

For neutral population models of fixed population size in the domain of
attraction of the classical Fleming-Viot process, such as the Wright-Fisher-
and the Moran model, the (random) genealogy of a finite sample can be
(approximately) described by the now classical Kingman-coalescent, which we
introduce briefly, followed by the more recently discovered and much more
general Λ-coalescents.

Kingman’s coalescent. Let Pn be the set of partitions of {1, . . . , n} and
let P denote the set of partitions of N. For each n ∈ N, Kingman [K82] intro-
duced the so-called n-coalescent, which is a Pn-valued continuous time Markov

process {Π(n)
t , t ≥ 0}, such that Π

(n)
0 is the partition of {1, . . . , n} into singleton

blocks, and then each pair of blocks merges at rate one. Given that there are
b blocks at present, this means that the overall rate to see a merger between
blocks is ( b2). Note that only binary mergers are allowed. Kingman [K82] also
showed that there exists a P-valued Markov process {Πt, t ≥ 0}, which is now
called the (standard) Kingman-coalescent, and whose restriction to the first n
positive integers is the n-coalescent. To see this, note that the restriction of any
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n-coalescent to {1, . . . ,m}, where 1 ≤ m ≤ n, is an m-coalescent. Hence the
process can be constructed by an application of the standard extension theorem.

Λ-coalescents. Pitman [P99] and Sagitov [S99] introduced and discussed
coalescents which allow multiple collisions, i.e. more than just two blocks may
merge at a time. Again, such a coalescent with multiple collisions (called a
Λ-coalescent in Pitman’s terminology) is a P-valued Markov-process {Πt, t ≥
0}, such that for each n, its restriction to the first n positive integers is a
Pn-valued Markov process (the “n-Λ-coalescent”) with the following transition
rates. Whenever there are b blocks in the partition at present, each k-tuple of
blocks (where 2 ≤ k ≤ b ≤ n) is merging to form a single block at rate λb,k, and
no other transitions are possible. The rates λb,k do not depend on either n or
on the structure of the blocks. Pitman showed that in order to be consistent,
which means that for all 2 ≤ k ≤ b,

λb,k = λb+1,k + λb+1,k+1,

such transition rates must necessarily satisfy

λb,k =

∫ 1

0
xk(1 − x)b−k

1

x2
Λ(dx), (1.41)

for some finite measure Λ on the unit interval. We exclude the (trivial) case
Λ = 0. By a trivial time transformation, one can always assume that Λ is
a probability measure. In [S99], the corresponding measure is termed F (=
Λ/Λ([0, 1]), and this is the F appearing throughout Section 1.2.2.

Note that (1.41) sets up a one-to-one correspondence between coalescents
with multiple collisions and finite measures Λ. Indeed, it is easy to see that the
λb,k determine Λ by an application of Hausdorff’s moment problem, which has
a unique solution in this case.

Due to the restriction property, the Λ-coalescent on P (with rates obtained
from the measure Λ as described above) can be constructed from the corre-
sponding n-Λ-coalescents via extension.

Approximation of genealogies in finite population models. Consider
a sample of size n from a (stationary) Cannings model of size N ≫ n, without

mutation, and define an ancestral relation process {R(N,n)
k : k = 0, 1, . . . } via

(1.40). Recalling that cN , as defined in (1.3), is the probability for a randomly
picked pair of individuals to have the same ancestor one generation ago, it seems
reasonable to rescale time and define

Π
(N,n)
t := R

(N,n)
⌊t/cN⌋

, t ≥ 0, (1.42)

as then (if cN → 0) for a sample of size two, the time to the most recent common
ancestor is approximately exponentially distributed with rate 1.

Indeed, [S99] and [MS01] have shown that if cN → 0 and (1.4) holds true,

then {Π(N,n)
t : t ≥ 0} converges weakly to Kingman’s n-coalescent, while (1.12)

and (1.13) imply that the limit is a Λ-coalescent with transition rates given by
(1.41), where Λ = F , with F from the right-hand side of (1.12).
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Obviously, there is a close relation between multiple merger events in the
genealogy of the sample and “extreme” reproductive events in the population,
in which a non-negligible proportion, say x ∈ (0, 1], of the population alive in
the next generation goes back to a single ancestor in the current generation.
In fact, the integrand in (1.41) can be interpreted as follows: When following
b lineages backwards, in such an event, each of them flips a coin with success
probability x and all the successful lineages subsequently merge.

On the other hand, although individuals can have more than two offspring,
the moment condition (1.4) ensures that families are typically small compared
to the total population size and thus implies that in the limit, only binary
mergers are visible in the genealogy.

Remark (Simultaneous multiple collisions). It should be pointed out
that Möhle and Sagitov [MS01] provide a complete classification of possible
limits of genealogies in Cannings-models, in particular if the condition (1.13) is
violated. In this case, the resulting genealogies contain simultaneous multiple
collisions, which have been studied independently and termed “Ξ-coalescents”
by Schweinsberg in [S00], in which several groups of lineages can merge at
exactly the same time. Note that the first factor in (1.13) is the probability to
observe two simultaneous mergers in one generation in a sample of size four,
whereas the second factor is the inverse of the pair coalescence probability.

Since a corresponding theory of forward population models in the spirit of
Section 1.2.2 is not yet completely established and our space is limited, we
restrict ourselves here to the “Λ-world”. 2

Analytic Duality. Consider an F -generalised Fleming-Viot process {Zt}
with generator (1.18) starting from Z0 = µ ∈ M1(E). The idea that the type
distribution in an n-sample from the population at time t can be obtained
by “colouring” t-ancestral partitions independently according to Z0 has the
following explicit analytical incarnation: For bounded measurable f : En → R,

E

[ ∫

E
· · ·
∫

E
fΠ0(a1, . . . , a|Π0|)Zt(da1) · · ·Zt(dap)

]

= E

[∫

E
· · ·
∫

E
fΠt(b1, ..., b|Πt|)Z0(db1) · · ·Z0(db|Πt|)

]
, (1.43)

where Π is the n-F -coalescent starting at π0 = {{1}, ..., {n}}, and, for any
partition π = {C1, ..., Cq} of {1, ..., n},

fπ(b1, ..., bq) := f(a1, ..., ap)

with ai := bk if i ∈ Ck. This is classical for the Kingman case, and has first
been explicitly formulated in [BLG03] for the Λ-case. Note that specialising
(1.43) in the case F = δ0 to a two-point space yields the well-known moment
duality between the Wright-Fisher diffusion (1.5) and the block-counting pro-
cess of Kingman’s coalescent, which is a pure death process with death rate

(n
2

)
.
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Remarks (“Coming down from infinity”). 1. Not all Λ-coalescents
seem to be reasonable models for the genealogies of biological populations,
since some do not allow for a finite “time to the most recent common ancestor”
of the entire population (TMRCA) in the sense of “coming down from infinity in
finite time”. The latter means that any initial partition in P, and for all ε > 0,
the partition Πε) a.s. consists of finitely many blocks only. Schweinsberg [S00]
established the following necessary and sufficient condition: If either Λ has an
atom at 0 or Λ has no atom at zero and

λ∗ :=
∞∑

b=2

( b∑

k=2

(k − 1)

(
b

k

)
λb,k

)−1

<∞, (1.44)

where λb,k is given by (1.41), then the corresponding coalescent does come down
from infinity (and if so, the time to come down to only one block has finite
expectation). Otherwise, it stays infinite for all times. For the corresponding
generalised (Λ/Λ([0, 1]))-Fleming-Viot process {Zt} without mutation, (1.44)
means that the size of the support of Zt becomes one in finite time – the
process fixes on the type of the population’s “eve”.

2. An important example for a coalescent, which (only just) does not come
down from infinity is the Bolthausen-Sznitman coalescent, where Λ(dx) = dx is
the uniform distribution on [0, 1]. This is the Beta(2−α, α)-coalescent with α =
1, and it plays an important role in statistical mechanics models for disordered
systems (see e.g. [Bo06] for an introduction).

3. However, it should be observed that all n-Λ-coalescents (for finite n) do
have an a.s. finite TMRCA.

4. Note that by Kingman’s theory of exchangeable partitions, for each
t > 0, asymptotic frequencies of the classes exists. If a Λ-coalescent does not

come down from infinity, it may or may not be the case that these frequencies
sum to one (“proper frequencies”). [P99] showed that the latter holds iff∫
0+ r

−1Λ(dr) = ∞. Note that if
∫
[0,1] r

−1 Λ(dr) < ∞, we see from (1.33) that
limN→∞ dN < ∞. Hence in the lookdown construction, at each time t ≥ 0
there is a positive fraction of levels which have not yet participated in any
lookdown event. These correspond to “dust”. 2

Examples for coalescents which satisfy (1.44) are Kingman’s coalescent,
the process considered in [EW06], corresponding to (1.16), (but note that
[EW06] also considers F = δψ with ψ ∈ (0, 1), for which (1.44) fails), and
the so-called Beta(2 − α, α)-coalescents with α ∈ (1, 2), with Λ = F given by
(1.17). Note that even though (1.17) makes no sense for α = 2, Kingman’s
coalescent can be included in this family as the weak limit Beta(2−α, α) → δ0
as α→ 2).

Coalescents and the modified lookdown construction. We now make
use of the explicit description of the modified construction to determine the
coalescent process embedded in it. Fix a (probability) measure F on [0, 1].
Recall the Poisson processes Lij and LlK from (1.37) in Section 1.2.4 above.
For each t ≥ 0 and k = 1, 2, . . . , let N t

k(s), 0 ≤ s ≤ t, be the level at time s of
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the ancestor of the individual at level k at time t. In terms of the LlK and Lij,
the process N t

k(·) solves, for 0 ≤ s ≤ t,

N t
k(s) = k −

∑

1≤i<j<k

∫ t

s−
1{Nt

k
(u)>j} dLij(u)

−
∑

1≤i<j<k

∫ t

s−
(j − i)1{Nt

k
(u)=j} dLij(u)

−
∑

K⊂{1,...,k}

∫ t

s−
(N t

k(u) − min(K))1{Nt
k
(u)∈K} dL

k
K(u)

−
∑

K⊂{1,...,k}

∫ t

s−
(|K ∩ {1, . . . , N t

k(u)}| − 1)

× 1{Nt
k
(u)>min(K), Nt

k
(u)/∈K} dL

k
K(u), (1.45)

Fix 0 ≤ T and, for t ≤ T , define a partition ΠT (t) of N such that k and l are
in the same block of ΠT (t) if and only if NT

k (T − t) = NT
l (T − t). Thus, k and

l are in the same block if and only if the two levels k and l at time T have the
same ancestor at time T − t. Then ([DK99], Section 5),

the process
{
ΠT
t : 0 ≤ t ≤ T

}
is an F -coalescent run for time T .

Note that by employing a natural generalisation of the lookdown construction
using driving Poisson processes on R and e.g. using T = 0 above, one can use
the same construction to find an F -coalescent with time set R+. We would
like to emphasise that the lookdown construction provides a realisation-wise
coupling of the type distribution process {Zt} and the coalescent describing
the genealogy of a sample, thus extending (1.43), which is merely a statement
about one-dimensional distributions.

Superimposing mutations. Consider now an F -generalised Fleming-
Viot process {Zt} with “individual” mutation operator rB, described by the
generator LB,F given by (1.24), starting from Z0 = µ. The lookdown construc-
tion easily allows to prove that for each t, the distribution of a sample of size
n from Zt can be equivalently described as follows: Run an n-F -coalescent
for time t, interpret this as a forest with labelled leaves. “Colour” each root
independently according to µ, then run the Markov process with generator rB
independently along the branches of each tree, and finally read off the types at
the leaves.

Remark. If (1.44) is fulfilled and the individual mutation process with
generator B has a unique equilibrium, one can let t→ ∞ in the above argument
to see that {Zt} has a unique equilibrium, and the distribution of an n-sample
from this equilibrium can be obtained by running an n-F -coalescent until it hits
the trivial partition. Then colour this most recent common ancestor randomly
according to the stationary distribution of B, and run the mutation process
along the branches as above.
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This approach is very fruitful in population genetics applications. For ex-
ample, under condition (1.44), (1.34) will be satisfied for t large enough, irre-
spective of the initial condition.

1.4 Population genetic inference

Populations with extreme reproductive behaviour. Recently, biologists
have studied the genetic variation of certain marine species with rather extreme
reproductive behaviour, see, e.g., Árnason [A04] (Atlantic Cod) and [BBB94]
(Pacific Oyster). In this situation, one would like to decide which coalescent is
suitable, based upon observed genetic types in a sample from the population.

Eldon and Wakeley [EW06] analysed the sample described in [BBB94] and
proposed a one-parameter family of Λ-coalescents, which comprises Kingman’s
coalescent as a boundary case, namely those described by (1.16), as models
for their genealogy. Inference is then based on a simple summary statistic, the
number of segregating sites and singleton polymorphisms. They conclude that
([EW06], p. 2622):

For many species, the coalescent with multiple mergers might be

a better null model than Kingman’s coalescent.

In this section, we obtain recursions for the type probabilities of an
n-sample from a general Λ-coalescent under a general finite alleles model. We
present two approaches, one based on the lookdown construction, the other on
direct manipulations with the generator LB,F . We discuss how this recursion
can then be used to derive a Monte-Carlo scheme to compute likelihoods of
model parameters in Λ-coalescent scenarios given the observed types, in the
spirit of [GT94b], see also [BB07] for the infinite-sites case. These can be used
e.g. for maximum likelihood estimation.

Remark. Analogous recursions for the probability of configurations in the
infinite-alleles model have been obtained in [M06b]. Exact asymptotic expres-
sions for certain summary statistics for the infinite-alleles and infinite-sites
models under Beta-coalescents [recall (1.17)] have been obtained in [BBS06].
2

1.4.1 Finite-alleles recursion I: Using the lookdown construc-

tion

Recall that in the finite alleles model, type changes, or mutations, occur at rate
r, and P = (Pij) is an irreducible stochastic transition matrix on the finite
type space E. Note that silent mutations are allowed (i.e. Pjj ≥ 0), denote the
unique equilibrium of P by µ. We assume that the reproduction mechanism is
described by some F = Λ ∈ M1([0, 1]).

Suppose the system, described by the lookdown construction, is in equi-
librium. Consider the first n levels at time 0 and let τ−1 be the last instant
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before 0 when at least one of the types at levels 1, . . . , n changes. Then, −τ−1

is exponentially distributed with rate

rn = nr +
n∑

k=2

(
n

k

)
λn,k. (1.46)

Denote by p the distribution of the types of the first n levels in the stationary
lookdown construction, say, at time 0. Later, due to exchangeability, we will
merely be interested in the type frequency probability p0(n). Decomposing
according to which event occurred at time τ−1, we obtain

p
(
(y1, . . . , yn)

)
=

r

rn

n∑

i=1

∑

z∈E

p
(
(y1, . . . , yi−1, z, yi+1, . . . , yn)

)
Pzyi

+
1

rn

∑

K⊂{1,...,n}
|K|≥2

λn,|K|1{all yj equal for j ∈ K}p
(
γK(y1, . . . , yn)

)
,

(1.47)

where γK(y1, . . . , yn) ∈ En−|K|+1 is that vector of types of length n −
|K| + 1 which

(
ξ1(τ−1−), . . . , ξn−|K|+1(τ−1−)

)
must be in order that a resam-

pling event involving exactly the levels in K among levels 1, . . . , n generates(
ξ1(τ−1), . . . , ξn(τ−1)

)
= (y1, . . . , yn). Formally,

γK(y1, . . . , yn)i = yi+#((K\{minK})∩{1,...,i}), 1 ≤ i ≤ n− |K| + 1.

As the type at level 1 is the stationary Markov process with generator rB,
we have the boundary condition p

(
(y1)

)
= µ(y1), y1 ∈ E. Note that, by

exchangeability,

p
(
(y1, . . . , yn)

)
= p
(
(yπ(1), . . . , yπ(n))

)

for any permutation π of {1, . . . , n}. So, the only relevant information is (of
course) how many samples were of which type. For n = (n1, . . . , nd) ∈ Z

d
+ we

write #n := n1 + · · · + nd for the ‘length’, and

κ(n) =
(
1, 1, . . . , 1︸ ︷︷ ︸

n1

, 2, . . . , 2︸ ︷︷ ︸
n2

, . . . , d, . . . , d︸ ︷︷ ︸
nd

)
∈ E#n

for a ‘canonical representative’ of the (absolute) type frequency vector n. Let

p0(n) :=

(
#n

n1, n2, . . . , nd

)
p
(
κ(n)

)
(1.48)

be the probability that in a sample of size #n, there are exactly nj of type j,
j = 1, . . . , d. We abbreviate n := #n, and write ek for the k-th canonical unit
vector of Z

d. Noting that

nj

(
#n

n1, n2, . . . , nd

)
p(n − ej + ei) =

(
ni + 1 − δij

)
p0(n− ej + ei)
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and that (for nj ≥ k, otherwise the term is 0)

(
nj
k

)(
#n

n1, n2, . . . , nd

)
p(n − (k − 1)ej) =

(
n

k

)
nj − k + 1

n− k + 1
p0(n − (k − 1)ej),

(1.47) translates into the following recursion for p0:

p0(n) =
r

rn

d∑

j=1

d∑

i=1

(ni + 1 − δij)Pijp
0(n − ej + ei)

+
1

rn

d∑

j=1
nj≥2

nj∑

k=2

(
n

k

)
λn,k

nj − k + 1

n− k + 1
p0(n − (k − 1)ej) (1.49)

with boundary conditions p0(ej) = µj.

Remark. In the Kingman-case, we have λn,k = 1(n ≥ 2 = k), rn =
nθ/2+n(n− 1)/2 = n(n− 1+ θ)/2 (and we assume r = θ/2 as “usual”), hence
(1.49) becomes the well-known

p0(n) =
θ

n− 1 + θ

d∑

j=1

d∑

i=1

ni + 1 − δij
n

Pijp
0(n − ej + ei)

+
n− 1

n− 1 + θ

d∑

j=1
nj≥2

nj − 1

n− 1
p0(n− ej). (1.50)

1.4.2 Finite-alleles recursion II: Generator approach

An alternative method to obtain the recursion for the type probabilities in the
finite-alleles case is by using a generator approach, see [DIG04a]. Let f ∈ C2

and ∆d = {(x1, . . . , xd) : xi ≥ 0, x1 + · · · + xd = 1} and consider the mutation
operator

B̃f(x1, . . . , xd) = r

d∑

i=1

( d∑

j=1

xjPji − xiPij

) ∂f
∂xi

(x1, . . . , xd).

For the resampling operator, we distinguish the Kingman- and non-Kingman
components. First, assume Λ({0}) = 0 (non-Kingman). Consider

R1f(x1, . . . , xd) =
d∑

i=1

∫
xi

(
f
(
r̄x1, . . . , r̄xi−1, r̄xi + r, r̄xi+1, . . . , r̄xd

)

− f(x1, . . . , xd)
)
r−2Λ(dr), (1.51)

where r̄ = 1 − r. For the Kingman-part (Λ = δ0) of the resampling operator,
we have

R2f(x1, . . . , xd) =
1

2

d∑

i,j=1

xi(δij − xj)
∂2f

∂xi∂xj
(x1, . . . , xd).
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Finally, for general Λ and a ≥ 0, write R = R1 + aR2, where R1 uses Λ0 =
Λ−Λ({0}δ0. Now, let X(t) = (X1(t), . . . , Xd(t)) be the stationary process with
generator L = B̃ + R [note that Xi(t) = Zt({i}), where {Zt} is the stationary
process with generator (1.24)]. Write X = X(0). Let n = (n1, . . . , nd), n =
n1 + · · · + nd. Then,

E

[ d∏

i=1

Xni

i

]

is the probability of observing in a sample of size n from the equilibrium pop-
ulation type i precisely ni times in a particular order (e.g. first n1 samples of
type 1, next n2 samples of type 2, etc.). Put

fn(x) := xn :=
d∏

i=1

xni

i .

Then,

g(n) :=

(
n

n1 . . . nd

)
E
[
fn(X)

]

is the probability of observing type i exactly ni times, i = 1, . . . , d, without
regard of the order. Note that

B̃fn(x1, . . . , xd) = r
d∑

i=1

( d∑

j=1

xjPji − xiPij

)
nifn−ei

(x1, . . . , xd)

= r
d∑

i,j=1

niPjifn−ei+ej
(x) − rnfn(x)

and

fn((1 − r)x + rei) = (1 − r)n−ni

d∏

j 6=i

x
nj

j ×
(
(1 − r)xi + r

)ni

= (1 − r)n−ni

d∏

j 6=i

x
nj

j ×
ni∑

k=0

(
ni
k

)
rk(1 − r)ni−kxni−k

i

=

ni∑

k=0

(
ni
k

)
rk(1 − r)n−k

(
xni−k
i

d∏

j 6=i

x
nj

j

)
,

so the term inside the integral in the expression (1.51) for R1 can be written as

d∑

i=1

ni∑

k=0

(
ni
k

)
rk(1 − r)n−kxni−k+1

i

d∏

j 6=i

x
nj

j −
n∑

k=0

(
n

k

)
rk(1 − r)n−k

d∏

ℓ=1

xnℓ

ℓ

=
d∑

i:ni≥2

ni∑

k=2

(
ni
k

)
rk(1 − r)n−kxni−k+1

i

d∏

j 6=i

x
nj

j −
n∑

k=2

(
n

k

)
rk(1 − r)n−k

d∏

ℓ=1

xnℓ

ℓ ,
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observing that the terms with k = 0 and k = 1 cancel since x1 + · · · + xd = 1
and n1 + · · · + nd = n. Recalling the definition of λn,k from (1.41), we obtain

R1fn(x) =
d∑

i:ni≥2

ni∑

k=2

(
ni
k

)
λn,kfn−(k−1)ei

(x) −
n∑

k=2

(
n

k

)
λn,kfn(x).(1.52)

Furthermore

R2fn(x) =
1

2

d∑

i,j=1

xi(δij − xj)ni(nj − δij)fn−ei−ej
(x)

=
d∑

i=1

ni(ni − 1)

2
fn−ei

(x) −
d∑

i,j=1

ni(nj − δij)

2
fn(x)

=
d∑

i=1

ni(ni − 1)

2
fn−ei

(x) − n(n− 1)

2
fn(x). (1.53)

Combining the terms from R1 and R2 (using (1.52) and (1.53) above, and
replacing Λ by Λ0 in (1.51)), we have

Rfn(x) =
d∑

i:ni≥2

ni∑

k=2

(
ni
k

)
λn,kfn−(k−1)ei

(x) −
n∑

k=2

(
n

k

)
λn,kfn(x).

Thus we obtain from the stationarity condition ELfn(X) = 0 that

rnEfn(X) = r
d∑

i,j=1

niPjiEfn−ei+ej
(X) +

d∑

i:ni≥2

ni∑

k=2

(
ni
k

)
λn,kEfn−(k−1)ei

(X),

where rn is defined in (1.46). Multiplying with
(

n
n1...nd

)
/rn and some algebra

gives

g(n) =
r

rn

d∑

i,j=1

(nj + 1 − δij)Pjig(n− ei + ej)

+
1

rn

d∑

i:ni≥2

ni∑

k=2

(
n

k

)
λn,k

ni − k + 1

n− k + 1
g(n− (k − 1)ei),

which agrees with (1.49).

1.4.3 A Monte Carlo Scheme for sampling probabilities

Recursion (1.49) can be used to estimate p0(n) for a given n ∈ Z
d
+ using a

Markov chain, in the spirit of [GT94b], as follows:
Let {Xk} be a Markov chain on Z

d
+ with transitions

n →





n − ej + ei w. p. r
rnf(n)(ni + 1 − δij)Pij if nj > 0,

n − (k − 1)ei w. p. 1
rnf(t,n)

(n
k

)
λn,k

ni−k+1
n−k+1 if 2 ≤ k ≤ ni,
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where [with rn defined in (1.46)]

f(n) =
1

rn

(
d∑

i,j=1
nj>0

r(ni + 1 − δij)Pij +
∑

1≤i≤d
ni≥2

ni∑

k=2

(
n

k

)
λn,k

ni − k + 1

n− k + 1

)
. (1.54)

Then,

p0(n) = E(n)

τ∏

l=0

f(t(l),n(l)). (1.55)

Remark (Inference for Kingman’s coalescent). Likelihood-based
inference methods for Kingman’s coalescent, some solving recursion (1.50)
approximately via Monte Carlo methods, others using MCMC, have been
developed since the beginning of the 1990ies, see [EG87], [GT94a], [GT94b],
[GT94c], [GT96a], [GT96b], [GT97], [FKY99], [DIG04a], [SD00]. In [SD00],
Stephens and Donnelly provide proposal distributions for importance sam-
pling, which are optimal in some sense, and compare them to various other
methods. Their importance sampling scheme seems, at present, to be the
most efficient tool for inference for relatively large datasets, but heavily
uses the fact that Kingman’s coalescent allows only binary mergers. It is at
present unclear what an analogous strategy in the general Λ-case ought to be. 2

1.4.4 Simulating samples

Let E, (Pij), µ, r be the parameters of a finite-alleles model. Then, one may
obtain the type configuration in an n-sample as follows:

Let {Y (n)
t }t≥0 be the block counting process corresponding to an n-Λ-

coalescent, i.e. Y
(n)
t = #{blocks of Πt} is a continuous-time Markov chain

on N with jump rates

qij =

(
i

i− j + 1

)
λi,i−j+1, i > j ≥ 1

starting from Y
(n)
0 = n. Its Green function is

g(n,m) := E

[ ∫ ∞

0
1
{Y

(n)
s =m}

ds

]
for n ≥ m ≥ 2, (1.56)

which can easily be computed recursively, see [BB07], Section 7.1. Denoting

by τ := inf{t : Y
(n)
t = 1} be the time required to come down to only one

class and by ∂ a “cemetery state”, it follows from Nagasawa’s Formula [see,
e.g., [RW87], (42.4)] that the time-reversed path

Ỹ
(n)
t :=

{
Y

(n)
(τ−t)−, 0 ≤ t < τ,

∂, τ ≤ t,
(1.57)
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is a continuous-time Markov chain on {2, . . . , n} ∪ {∂} with jump rate matrix

q̃
(n)
ji =

g(n, i)

g(n, j)
qij , j < i ≤ n, −q̃(n)

jj =
∑

i=j+1

q̃
(n)
ji =

j−1∑

ℓ=1

qjℓ, q̃
(n)
n∂ = −qnn

and initial distribution P{Ỹ (n)
0 = k} = g(n, k)qk1, k = 2, 3, . . . , n. Note that

unless Λ is concentrated on {0}, the dynamics does depend on n. We write

p̃
(n)
ji := q̃

(n)
ji /(−q̃

(n)
jj ), j < i ≤ n for the transition matrix of the skeleton chain

of Y (n).

In view of the remark on page 19, it is clear that the following algorithm
generates an n-sample from the stationary distribution of the process with
generator LB,F given by (1.24):

Algorithm (generating samples).

1. Generate K with P{K = k} = g(n, k)qk1, k = 2, . . . , n, begin with
η = KδX , where X ∼ µ.

2. Draw U ∼ Unif([0, 1]).

If U ≤ kr

kr+(−q̃
(n)
kk

)
:

Replace one of the present types by a P -step from it, i.e. replace
η := η − δx + δy with probability ηx

#ηPxy (for x 6= y), where #η is
the total mass of η.

Otherwise:

If #η = n : Output η and stop.

Else, pick J ∈ {#η, . . . , n} with P{J = j} = p̃
(n)
#η,j . Choose one of

the present types (according to their present frequency), and add
J − #η copies of this type, i.e. replace η := η + (J − #η)δx with
probability ηx

#η .

3. Repeat (ii).

Remark. Ordered samples can be obtained from a realization of η by random
reordering. In the case of parent-independent mutation, i.e. if Pij = Pj for all
i, j, it is possible to simplify the procedure by simulating “backwards in time”.
“Active” ancestral lineages are lost either by (possibly multiple) coalescence
or when hitting their “defining” mutation, in which case one simply assigns a
random type drawn according to Pj . 2
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Möhle, M.; Schweinsberg, J.; Wakolbinger, A.: Alpha-
stable branching and Beta-coalescents. Electron. J. Probab. 10, 303–
325, (2005).

[BB07] Birkner, M; Blath, J: Computing likelihoods for coalescents
with multiple collisions in the infinitely-many-sites model, WIAS
preprint 1237 (2007).

[BBB94] Boom, J. D. G.; Boulding, E. G.; Beckenbach, A. T.: Mito-
chondrial DNA variation in introduced populations of Pacific oyster,
Crassostrea gigas, in British Columbia. Can. J. Fish. Aquat. Sci.

51:16081614, (1994).

[Bo06] Bovier, A.: Statistical mechanics of disordered system. A mathe-

matical perspective. Cambridge University Press, (2006).

[C74] Cannings, C.: The latent roots of certain Markov chains arising
in genetics: a new approach, I. Haploid models. Adv. Appl. Prob.

6, 260–290, (1974).

[C75] Cannings, C.: The latent roots of certain Markov chains aris-
ing in genetics: a new approach, II. Further haploid models.
Adv. Appl. Prob. 7, 264–282, (1975).

27



28 BIBLIOGRAPHY

[D93] Dawson, D.: Lecture Notes, Ecole d’Eté de Probabilités de Saint-
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