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Summary. Branching processes exhibit a particularly rich longtime behaviour
when evolving in a random environment. Then the transition from subcriticality
to supercriticality proceeds in several steps, and there occurs a second ‘transition’
in the subcritical phase (besides the phase-transition from (sub)criticality to su-
percriticality). Here we present and discuss limit laws for branching processes in
critical and subcritical i.i.d. environment. The results rely on a stimulating inter-
play between branching process theory and random walk theory. We also consider
a spatial version of branching processes in random environment for which we derive
extinction and ultimate survival criteria.
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1 Introduction

Branching processes in random environment is one of the topics, which
we have studied in the project “Verzweigende Populationen: Genealogische
Bäume und räumliches Langzeitverhalten” (Grant Ke 376/6) within the DFG-
Schwerpunkt “Interagierende stochastische Systeme von hoher Komplexität”.
It is representative in that a central aspect of the whole project were proba-
bilistic constructions of genealogical trees and the interplay between branch-
ing processes and random walks. These concepts turn out to be significant for
branching processes in random environment in a rather specific way. This is
due to the fact that from a methodical point of view the subject of branching
processes in random environment is substantially influenced by the theory of
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random walks. Many of the results rely on a stimulating interplay between
branching process theory on the one hand and fluctuation theory of random
walks on the other hand. Here we present limit theorems for critical and sub-
critical branching processes in i.i.d. random environment and give a detailed
explanation of this relationship.

For classical Galton-Watson branching processes it is assumed that in-
dividuals reproduce independently of each other according to some given
offspring distribution. In the setting of this paper the offspring distribution
varies in a random fashion, independently from one generation to the other.
A mathematical formulation of the model is as follows. Let ∆ be the space of
probability measures on N0 which equipped with the metric of total variation
becomes a Polish space. Let Q be a random variable with values in ∆. Then
an infinite sequence Π = (Q1, Q2, . . .) of i.i.d. copies of Q is said to form a
random environment. A sequence of N0-valued random variables Z0, Z1, . . . is
called a branching process in the random environment Π , if Z0 is independent
of Π and if given Π the process Z = (Z0, Z1, . . . ) is a Markov chain with

L
(
Zn | Zn−1 = z, Π = (q1, q2, . . .)

)
= L

(
ξ1 + · · ·+ ξz

)
(1)

for every n ≥ 1, z ∈ N0 and q1, q2, . . . ∈ ∆, where ξ1, ξ2, . . . are i.i.d. random
variables with distribution qn. In the language of branching processes Zn is
the nth generation size of the population and Qn is the distribution of the
number of children of an individual at generation n − 1. For convenience, we
will assume throughout that Z0 = 1 a.s.

As it turns out the asymptotic properties of Z are first of all determined
by its associated random walk S = (S0, S1, . . .). This random walk has initial
state S0 = 0 and increments Xn = Sn − Sn−1, n ≥ 1 defined as

Xn := log
∞∑

y=0

y Qn({y}) ,

which are i.i.d. copies of the logarithmic mean offspring number

X := log

∞∑

y=0

y Q({y}) .

We will assume that X is a.s. finite. Due to (1) and our assumption Z0 = 1
a.s. the conditional expectation of Zn given the environment Π ,

µn := E[Zn | Π ] ,

can expressed by means of S as

µn = eSn P–a.s.

According to fluctuation theory of random walks (compare Chapter XII
in [Fe71]) one may distinguish three types of branching processes in ran-
dom environment. First, S can be a random walk with positive drift, which
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means that limn Sn = ∞ a.s. In this case µn → ∞ a.s. and Z is called
a supercritical branching process. Second, S can have negative drift, i.e.,
limn Sn = −∞ a.s. Then µn → 0 a.s. and Z is called subcritical. Finally,
S may be an oscillating random walk meaning that lim supn Sn = ∞ a.s. and
at the same time lim infn Sn = −∞ a.s., which implies lim supn µn = ∞ a.s.
and lim infn µn = 0 a.s. Then we call Z a critical branching process. Our
classification extends the classical distinction of branching processes in ran-
dom environment introduced in [AK71, SW69]. There it is assumed that the
random walk has finite mean. Then Z is supercritical, subcritical or critical
according as EX > 0, EX < 0 or EX = 0. Only recently the requirement that
the expectation of X exists could be dropped (see [AGKV04, DGV03, VD03]).

The distinction plays a similar role as for ordinary branching processes: If
Z is a (non-degenerate) critical or subcritical branching process in random en-
vironment, then the population eventually becomes extinct with probability 1.
This fact is an immediate consequence of the first moment estimate

P{Zn > 0 | Π} ≤ P{Zm > 0 | Π} ≤ µm for all m ≤ n,

which implies

P{Zn > 0 | Π} ≤ min
m≤n

µm = exp
(

min
m≤n

Sm

)
. (2)

Thus in critical and subcritical cases P{Zn > 0 | Π} → 0 a.s. and conse-
quently, P{Zn → 0} = 1. Other than for classical Galton-Watson branching
processes the converse is not always true. Also for supercritical branching
processes the random fluctuations of the environment can have the effect that
the entire population dies out within only a few generations. A criterion that
excludes such catastrophes is the following integrability condition on the con-
ditional probability of having no children (see Theorem 3.1 in [SW69])

E log
(
1 − Q({0})

)
> −∞.

Finding criteria for ultimate survival becomes a challenging problem for
branching processes in random environment with a spatial component. In a
branching random walk in space-time i.i.d. random environment individuals
have a spatial position (in a countable Abelian group) and move as inde-
pendent random walkers. Each individual at generation n − 1 located at x
uses offspring law Qn,x, where the Qn,x form an i.i.d. random field. The fact
that individuals living at different locations use independent offspring distri-
butions leads to a smoothing in comparison to the non-spatial case, and thus
one might expect that ultimate survival is easier.

The topic of branching processes in random environment has gone through
quite a development. For fairly long time research was restricted to the spe-
cial case of offspring distributions with a linear fractional generating function
(which means that given the event {Q ≥ 1} the offspring distribution Q is
geometric with random mean) and to the case where the associated walk has
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zero mean, finite variance increments. Under these restrictions fairly explicit
(albeit tedious) calculations of certain Laplace transforms are feasible. Later
the advantages of methods from the theory of random walks have been recog-
nized. General offspring distributions, however, have become accessible only
recently.

In this paper we focus on the longtime behavior of critical and subcritical
processes (except for the part on spatial branching processes), where differ-
ences to classical branching processes are especially striking. Our discussion is
based on a formula for the probability of non-extinction, which is derived in the
next section. It is this formula that allows to determine the exact asymptotic
magnitude of the probability of non-extinction for general offspring distribu-
tions (see [GK00, GKV03, GL01]). The linear fractional case could be treated
long before (see [Af80, Ko76]).

In Section 3 we discuss the limiting behaviour of branching processes in
critical random environment under a general assumption known as Spitzer’s
condition in the theory of random walks. Section 4 is devoted to the transition
from criticality to subcriticality, which takes place in several steps. If one
considers the conditioned branching process given the event {Zn > 0} rather
than the unconditioned process, then the transition from (super)criticality to
subcriticality occurs within the subcritical phase. This so-called intermediate
subcritical case is especially intriguing since it exhibits subcritical as well as
supercritical behaviour alternating in time. In Section 5 we derive criteria
for the a.s. extinction of a branching random walk in space-time i.i.d. random
environment. It is shown that a transient (symmetrized) individual motion can
be strong enough to completely counteract the correlations between different
individuals introduced by the environment, while a recurrent motion cannot.

Within the DFG-Schwerpunkt “Interagierende stochastische Systeme von
hoher Komplexität” related projects are the study of the longtime behaviour
of population models in a stationary situation by Greven and by Höpfner
and Löcherbach (see their articles in this volume). Also our results display
phenomena known from statistical physics (see the models studied in the
section “Disordered media” of this volume).

Acknowledgement. The presented results were obtained in the course
of the project “Verzweigende Populationen: Genealogische Bäume und
räumliches Langzeitverhalten” and its successor, the Russian-German research
project “Branching processes in random environment”, sponsored by the DFG
and the Russian Foundation of Basic Research (Grant 436 Rus 113/683). The
results on spatial branching processes in random environment were obtained
by the first author who had studied the corresponding infinite system in his
PhD thesis [Bi03]. We thank the DFG and the Russian Foundation of Basic
Research for their lasting support.
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2 A formula for the survival probability

In this section we investigate the relationship between the conditional sur-
vival probabilities P{Zn > 0 | Π}, n ≥ 0 and the associated random walk
(Sn)n≥0. An essential observation will be that the estimate (2) not only gives
an upper bound but also the right impression of the magnitude of the survival
probability,

P{Zn > 0 | Π} ≈ min
m≤n

µm = exp(min
m≤n

Sm). (3)

This relation is plausible, however, trying to elaborate it directly to a precise
mathematical statement is not a great promise. Instead we reformulate (3).
The upper bound (which is estimate (2)) says that P{Zn > 0 | Π} becomes
particularly small, whenever this is true for some µm, m ≤ n. To put it
another way 1/P{Zn > 0 | Π} gets large, whenever one of the quantities
1/µ0, . . . , 1/µn is large. It would be particularly useful, if this dependence
could be expressed in a linear fashion with coefficients which can be controlled
sufficiently well. Thus we are looking for a formula of the form

1

P{Zn > 0 | Π}
=

n∑

k=0

Ak,n

µk

with ‘tractable’ quantities Ak,n ≥ 0, 0 ≤ k ≤ n. In the case of offspring distri-
butions with a linear fractional generating function such a formula had been
known for a long time. For general offspring distributions such a representa-
tion has been obtained only recently in [GK00].

Here we provide two different approaches to the desired formula. Follow-
ing [GK00] we first proceed in a purely analytical manner and obtain analyti-
cal expressions and estimates for the Ak,n. Then we will present an alternative
derivation of the formula which is obtained by means of a probabilistic con-
struction of the conditional family tree produced by the branching process.
This second approach, while leading to the same coefficients Ak,n, allows a
probabilistic interpretation of these terms.

The analytical approach is a straightforward calculation. Consider the
(random) generating functions

fk(s) :=

∞∑

y=0

sy Qk({y}) , 0 ≤ s ≤ 1 ,

k = 1, 2, . . . and their compositions

fk,n(s) := fk+1(fk+2(· · · fn(s) · · ·)) , 0 ≤ k ≤ n,

with the convention fn,n(s) := s. It follows from (1) and our assumption
Z0 = 1 a.s. that f0,n is the conditional generating function of Zn given the
environment Π , i.e.,
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f0,n(s) = E[sZn | Π ] a.s. , 0 ≤ s ≤ 1 . (4)

Using a telescope type of argument we deduce

1

1 − f0,n(s)
=

1

µn(1 − s)
+

n−1∑

k=0

gk+1(fk+1,n(s))
1

µk
, 0 ≤ s < 1 ,

with

gk(s) :=
1

1 − fk(s)
−

1

f ′
k(1)(1 − s)

, 0 ≤ s < 1 .

By (4), we have P{Zn > 0 | Π} = 1 − f0,n(0), so that we end up with the
formula

1

P{Zn > 0 | Π}
=

n∑

k=0

Ak,n

µk
(5)

with random coefficients

Ak,n := gk+1(fk+1,n(0)) , 0 ≤ k < n and An,n := 1 .

Apparently, this identity has first been utilized by Jirina [Ji76]. By convexity
of the fk, the coefficients Ak,n are non-negative. Geiger and Kersting proved
the upper bound (see Lemma 2.1 in [GK00])

gk(s) ≤ ηk , 0 ≤ s < 1 , (6)

where ηk is the standardized second factorial moment of Qk,

ηk :=

∞∑

y=0

y(y − 1)Qk({y})
/( ∞∑

y=0

yQk({y})
)2

. (7)

Consequently, the Ak,n, k < n satisfy the estimate

0 ≤ Ak,n ≤ ηk+1 , (8)

which allows to control their magnitude and to exploit the representation of
the survival probability in (5).

Thus we succeeded in deriving a formula of the desired form, its proba-
bilistic meaning still has to be revealed. This is achieved by the probabilistic
approach which we discuss next. Our starting point is the identity

1

P{Zn > 0 | Π}
=

E[Zn | Zn > 0, Π ]

E[Zn | Π ]
=

E[Zn | Zn > 0, Π ]

µn
, (9)

which reduces the calculation of the non-extinction probability at n to that of
the conditional mean of Zn. For the latter it is essential to view the branching
process as a mechanism to generate a random family tree rather than a mere
sequence of generation sizes. We think of the family tree as a rooted ordered
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n − 1

1

0

∗

¨

tree with the distinguishable offspring of each individual ordered from left
to right. This allows to decompose the family tree along the ancestral line
of the left-most individual ∗ at generation n. (In the illustration above the
bold line marks the distinguished line of descent starting with the founding
ancestor ¨ .) This picture corresponds to a lucid probabilistic construction of
the conditional family tree. The construction was originally devised and inves-
tigated for classical Galton-Watson branching processes in [Ge99]. However,
the construction works as well for branching processes in varying (determinis-
tic) environment, and, hence, for branching processes in random environment
when conditioning on Π and the event {Zn > 0}. Note that because of the
distinguished role of ∗ as the left-most individual of generation n the subtrees
to the left of ∗’s line of descent stay below level n. On the other hand it is
natural to expect – and it does follow from the results in [Ge99] – that the
subtrees to the right of the distinguished ancestral line remain unaffected by
the conditioning event {Zn > 0}, i.e., they evolve like ordinary branching
processes given Π , independent of other parts of the tree. Thus, if T is one of
the subtrees to the right with root in generation k ∈ {1, . . . , n} and Zn,T its
number of individuals at generation n, then

E[Zn,T | Zn > 0, Π ] = eSn−Sk =
µn

µk
.

Moreover, if Rk,n is the number of siblings to the right of ∗’s ancestor at
generation k, then linearity of expectation yields
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E[Zn | Zn > 0, Π ] = 1 + E
[∑

T

Zn,T | Zn > 0, Π
]

= 1 +
n−1∑

k=0

E[Rk+1,n | Zn > 0, Π ]
µn

µk+1
,

where the 1 comes from the distinguished individual ∗ and the first sum ex-
tends over all subtrees T to the right of the distinguished ancestral line. Thus,
putting

Ãk,n := exp(−Xk+1)E[Rk+1,n | Zn > 0, Π ] , k < n , and Ãn,n := 1 ,

we end up with (recall (9))

1

P{Zn > 0 | Π}
=

n∑

k=0

Ãk,n

µk
. (10)

It is just a matter of careful calculation to show that representations (5) and
(10) agree.

Clearly, Ãk,n ≥ 0. An upper estimate for Ãk,n may be derived as follows.
The construction of the conditional family tree in [Ge99] shows that the an-
cestor of ∗ at generation k belongs to a family of a size, which is stochastically
bounded by the so-called size-biased distribution

Q̃k({y}) :=
y Qk({y})

exp(Xk)
, y ≥ 0.

It follows

E[Rk,n | Zn > 0, Π ] ≤
∑

y

y Q̃k({y}) − 1

= exp(−Xk)
∑

y

y(y − 1)Qk({y}) .

Thus
0 ≤ Ãk,n ≤ exp(−2Xk+1)

∑

y

y(y − 1)Qk+1({y}),

which is relation (8). We note that even though the estimate (8) can be verified
in a purely analytical manner it took the probabilistic interpretation to find
it.

3 Criticality

As explained in the introduction a branching population in a (sub)critical
random environment eventually becomes extinct with probability 1. A funda-
mental question for these processes is the following: If the population survives
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until some late generation n, in which way does this event occur. One can
imagine several ways: The population might have been lucky to find an ex-
traordinarily favourable environment, in which chances for survival are high.
Or the population evolved in a typical environment, still by good luck it man-
aged to avoid extinction. In order to weigh these alternatives the formula

P{Zn > 0 | Π} =
( n∑

k=0

Ak,ne−Sk

)−1

from the last section proves useful. For the moment let us neglect effects
coming from the Ak,n, which are of secondary order. Then, as explained above,
the probability of survival is high for those unlikely environments, for which
min(S0, . . . , Sn) is close to 0, otherwise the probability is extremely small.

In this section we look at critical branching processes, i.e., at the case
of an oscillating associated random walk. Then the probability of the event
{min(S0 , . . . , Sn) ≥ 0} is typically of order n−γ for some γ > 0. Thus ex-
ponentially small probabilities are negligible and one has to take only those
ways of survival into account, where the associated random walk stays away
from low negative values (for precise results compare Theorem 1 below and
its corollary). These heuristic considerations suggest a program of research,
which has been initiated by Kozlov [Ko76] and followed up by several authors,
see [Af93, Af97, Af01b, DGV03, GK00, Ko95, Va02].

The results of this section and parts of the discussion are adapted from
the recent paper [AGKV04]. As an overall assumption let us adopt Spitzer’s
condition from fluctuation theory of random walks: Assume that there exists
a number 0 < ρ < 1 such that

1

n

n∑

m=1

P{Sm > 0} → ρ .

This general condition guarantees that S is a non-degenerate oscillating
random walk. Not striving for greatest generality we restrict ourselves here
to two alternative sets of transparent further assumptions. Our first set
of assumptions strengthens the condition on the associated random walk
and adds some integrability condition on the standardized second factorial
moment η (recall the definition in (7)).

Assumption (A). Let the distribution of X belong without centering to the
domain of attraction of a stable law λ with index α ∈ (0, 2]. The limit law λ is
not a one-sided stable law, i.e., 0 < λ(R+) < 1. Further let for some ε > 0

E (log+ η)α+ε < ∞ .

Note that α = 2 is the case of a non-degenerate zero mean, finite variance
random walk.
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If we assume specific types of distribution for Q, then we can relax
Assumption (A). In particular, we can deal with the three most important
special cases of offspring distributions (playing a prominent role for classical
branching processes, too).

Assumption (B). The random offspring distribution Q is a.s. a binary, a
Poisson or a geometric distribution on N0 (with random mean).

The first of our results on the longtime behaviour of branching processes in
critical random environment concerns the asymptotic behaviour of the survival
probability at n (for the proofs of the results of this section we refer to the
paper [AGKV04]).

Theorem 1. Assume (A) or (B). Then there exists a number 0 < θ < ∞
such that, as n → ∞,

P{Zn > 0} ∼ θ P{min(S0, . . . , Sn) ≥ 0} .

This theorem gives evidence for our claim that the behaviour of Z is primarily
determined by the random walk S. Only the constant θ depends on the fine
structure of the random environment.

Since under Spitzer’s condition the asymptotic behaviour of the probability
on the right-hand side above is well-known, we obtain the following corollary.

Corollary 1. Assume (A) or (B). Then, as n → ∞,

P{Zn > 0} ∼ θnρ−1l(n) ,

where l(1), l(2), . . . is a sequence varying slowly at infinity.

The next theorem shows that conditioned on the event {Zn > 0} the pro-
cess Z0, Z1, . . . , Zn exhibits ‘supercritical behaviour’. Supercritical branching
processes (whether classical or in random environment) obey the growth law
Zn/µn → W a.s., where W is some typically non-degenerate random variable.
In our situation this kind of behaviour can no longer be formulated as a state-
ment on a.s. convergence, since the conditional probability measures depend
on n.

Instead, we define for integers 0 ≤ r ≤ n the process Xr,n = (Xr,n
t )0≤t≤1

given by

Xr,n
t :=

Zr+[(n−r)t]

µr+[(n−r)t]
, 0 ≤ t ≤ 1 . (11)

Theorem 2. Assume (A) or (B). Let r1, r2, . . . be a sequence of natural num-
bers such that rn ≤ n and rn → ∞. Then, as n → ∞,

L
(
Xrn ,n

∣∣ Zn > 0
)

=⇒ L
(
(Wt)0≤t≤1

)
,

where the limiting process is a stochastic process with a.s. constant paths, i.e.,
P{Wt = W for all t ∈ [0, 1]} = 1 for some random variable W . Furthermore,

P{0 < W < ∞} = 1 .
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The symbol =⇒ denotes weak convergence w.r.t. the Skorokhod topology in
the space D[0, 1] of càdlàg functions on the unit interval. Again the growth of
Z is in the first place determined by the random walk (namely, the sequence
(µk)0≤k≤n). The fine structure of the random environment is reflected only in
the distribution of W .

Thus the properties of S determine the behaviour of Z in the main. On the
other hand one has to take into account that the properties of the random walk
change drastically, when conditioned on the event {Zn > 0}. As explained
above one expects that S conditioned on {Zn > 0} behaves just as S given
the event {min(S0, . . . , Sn) ≥ 0}, i.e., like a random walk conditioned to stay
positive for a certain period of time (a so-called random walk meander). The
next theorem confirms this expectation. Here we need Assumption (A).

Theorem 3. Assume (A). Then there exists a slowly varying sequence
`(1), `(2), . . . such that, as n → ∞,

L
((

n− 1

α `(n)S[nt]

)
0≤t≤1

∣∣∣ Zn > 0
)

=⇒ L(L+) ,

where L+ denotes the meander of a stable Lévy process with index α.

Shortly speaking the meander L+ = (L+
t )0≤t≤1 is a stable Lévy process L

conditioned to stay positive for 0 < t ≤ 1 (for details we refer to [AGKV04]).
In view of Theorem 2 the assertion of Theorem 3 is equivalent to the following
result.

Corollary 2. Assume (A). Then, as n → ∞,

L
((

n− 1

α `(n) logZ[nt]

)
0≤t≤1

∣∣∣ Zn > 0
)

=⇒ L(L+)

for some slowly varying sequence `(1), `(2), . . .

4 A transition within the subcritical phase

We have seen in Theorem 2 that critical branching processes in random envi-
ronment exhibit supercritical behaviour, when conditioned on non-extinction.
This phenomenon does not vanish instantly in the subcritical phase, but per-
sists for processes in the ‘vicinity’ of criticality. The transition from criticality
to subcriticality proceeds in several steps in a fashion, which is not known for
ordinary branching processes. From now on we assume that the conditional
mean offspring number has finite moments of all orders t,

E exp(tX) < ∞ , t ≥ 0 .

In particular, X+ has finite mean and subcriticality corresponds to

EX < 0 .
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In this case the probability of non-extinction at generation n no longer decays
at a polynomial rate (as in the critical case) but at an exponential rate.
Dealing with exponentially small probabilities it is natural to consider the
‘tilted’ measures P̂β, β ≥ 0 given by

Êβ [φ(Q1, . . . , Qn, Z1, . . . , Zn)] := γ−nE[φ(Q1, . . . , Qn, Z1, . . . , Zn)eβSn ]

for non-negative test functions φ, where

γ = γβ := E[eβX ] .

For the probability of survival at n we obtain

P{Zn > 0} = γnÊβ[P{Zn > 0 | Π}e−βSn ] , n ≥ 0 .

For a suitable choice of β let us proceed in a heuristic fashion and replace
P{Zn > 0 | Π} by the upper bound exp(min(S0, . . . , Sn)), which, as we have
argued in Section 2, is typically of the same order. Thus we consider

E[emin(S0,...,Sn)] = γnÊβ [emin(S0,...,Sn)−βSn ] . (12)

Following common strategies from large deviation theory we like to choose β in
such a way that the expectation on the right-hand side of (12) no longer decays
(nor grows) at an exponential rate. To keep the quantity min(S0, . . . , Sn)−βSn

bounded from above, we only consider the range β ≤ 1. There are three
different scenarios where min(S0, . . . , Sn) − βSn is close to 0 with sufficiently
large probability:

(S1) ÊβX = 0 with β < 1. Then min(S0, . . . , Sn)−βSn takes a value close to
0 if and only if both min(S0, . . . , Sn) and Sn are close to 0. It is known
that for a zero mean, finite variance random walk the probability of the
event {S0, . . . , Sn−1 ≥ 0, Sn ≤ 0} (the probability for a random walk
excursion of length n) is of order n−3/2. Thus in this case one expects

Êβ [emin(S0,...,Sn)−βSn ] ≈ n−3/2 .

(S2) ÊβX = 0 with β = 1. Then min(S0 , . . . , Sn) − Sn is close to 0, if
min(S0, . . . , Sn) and Sn are close to each other, which essentially means
that the path S0, . . . , Sn attains its minimum close to the end. For a
zero mean, finite variance random walk the probability of the event
{S0, . . . , Sn−1 ≥ Sn} is of order n−1/2. Thus in this case one expects

Ê1[e
min(S0,...,Sn)−Sn ] ≈ n−1/2 .

(S3) Ê1X < 0. Then it is to be expected that

Ê1[e
min(S0,...,Sn)−Sn ] ≈ const ,

since for a random walk with negative drift the quantity
min(S0, . . . , Sn) − Sn is of constant order.
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Each of these scenarios might occur for branching processes in random
environment. Our discussion above shows that the we have to distinguish
three cases depending on where the parameter Ê1X = γ−1E[XeX ] is

located with respect to the value 0 (note that ÊβX increases with β). In
the sequel we will discuss each case in detail. Some of the results to follow
are contained in manuscripts submitted for publication, some are proved in
special situations and other are part of research in progress. We seize the
opportunity and give a general prospect of the results rather than to go into
technical details or to state precise integrability conditions (for single results
see [Af80, Af98, Af01a, Af01b, De88, d’SH97, FV99, GKV03, GL01, Liu96]).

4.1 The weakly subcritical case.

First we assume
EX < 0 , E[XeX ] > 0 . (13)

Then there exists a number 0 < β < 1 such that

E[XeβX ] = 0 ,

which is our choice for the parameter of the tilted measure. Thus

ÊβX = 0 ,

and we are in the scenario described under (S1). In accordance with our
discussion there the survival probability obeys the following asymptotics.

Result 4.1. Assume (13). Then there exists a number 0 < θ < ∞ such that,
as n → ∞,

P{Zn > 0} ∼ θ n−3/2γn .

Moreover, our heuristic arguments from (S1) suggest that only those en-
vironments give an essential contribution to the probability of non-extinction
whose associated random walk is (close to) an excursion. The following result
confirms this expectation.

Result 4.2. Assume (13) and let σ2 := ÊβX2. Then, as n → ∞,

L
((

σn− 1

2 S[nt]

)
0≤t≤1

∣∣∣ Zn > 0
)

=⇒ L(Be) ,

where Be denotes a standard Brownian excursion of length 1, i.e., a Brownian
motion B = (Bt)0≤t≤1 given the event {Bt ≥ 0 for all 0 ≤ t < 1, B1 = 0}.

This result is in some sense similar to Theorem 3 so that again one might
expect that the branching process exhibits supercritical behaviour, as long
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as the random walk excursion is still far away from 0. The following result,
which is the analogue of Theorem 2, says that this is indeed true. In fact, this
behaviour persists until just before the random walk’s return to 0. Recall the
definition of the process Xr,n from (11).

Result 4.3. Assume (13). Let r1, r2, . . . be a sequence of natural numbers
such that rn ≤ n/2 and rn → ∞. Then, as n → ∞,

L
(
Xrn ,n−rn

∣∣ Zn > 0
)

=⇒ L
(
(Wt)0≤t≤1

)
,

where the limiting process is a stochastic process with a.s. constant paths, i.e.,
P{Wt = W for all t ∈ [0, 1]} = 1 for some random variable W . Furthermore,

P{0 < W < ∞} = 1 .

4.2 The intermediate subcritical case.

This case is where supercritical behaviour resolves into subcritical behaviour
on the event {Zn > 0}. Here we assume

EX < 0 , E[XeX ] = 0 . (14)

This time we choose β = 1, so that

ÊβX = 0 .

Now (S2) is the relevant scenario and the behaviour of the process changes in
a remarkable fashion.

Our first result again describes the exact asymptotics of the non-extinction
probability at n.

Result 4.4. Assume (14). Then there exists a number 0 < θ < ∞ such that,
as n → ∞,

P{Zn > 0} ∼ θ n−1/2γn .

As suggested in the discussion of (S2) the event of survival is essentially
carried by those environments whose associated random walk path has a late
minimum. This is expressed by the following limit law.

Result 4.5. Assume (14). Then, as n → ∞,

L
((

σn− 1

2 S[nt]

)
0≤t≤1

∣∣∣ Zn > 0
)

=⇒ L(Bl) ,

where Bl denotes a standard Brownian motion B = (Bt)0≤t≤1 conditioned on
the event {Bt ≥ B1 for all 0 ≤ t ≤ 1}.
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The change from Brownian excursion Be to conditional Brownian motion
Bl implies a change in the behaviour of Z which is unique for branching
processes. Note that Bl is not built of a single excursion but contains countably
many local excursions. At the same time Bl has (uncountably) many local
minima. For this reason we distinguish two different types of epochs. The
moment k ∈ {0, 1, . . . , n} is of the first type if the random walk S reaches a
new minimum around k. Such moments are particularly difficult to survive and
an unconditioned population would die out in the long run when repeatedly
facing such bottlenecks. Given the event {Zn > 0} it is natural to expect
that at such epochs the population consists of only very few indviduals (as
in the strongly subcritical case discussed below). The other type of epoch
is if the last minimum of S before time k is quite some time in the past
and the next minimum is still quite far in the future. Then the random walk
is in the midth of a local excursion. On such time stretches the population
again exhibits supercritical behaviour and grows to a large size (as in the
preceding weakly subcritical case). Thus it is reasonable to expect that sub-
and supercritical behaviour alternate in the course of time.

It requires some effort to convert these heuristics into a precise mathemat-
ical statement. Still we formulate a result corresponding to Theorem 2 and
Result 4.3. Keeping track of the successive minima of S the right normaliza-
tion of Zk is seen to be

µ̃k :=
µk

minj≤k µj
= exp

(
Sk − min

j≤k
Sj

)

(rather than µk). (3) shows that one might alternatively use

µ̄k :=
µk

P{Zk > 0 | Π}
= E[Zk | Zk > 0, Π ] .

Now recall that an excursion interval of the conditioned Brownian process
Bl is an interval e = (a, b) ⊂ [0, 1] of maximal length such that Bl

a = Bl
b and

Bl
t > Bl

a for all t ∈ e. There are countably many excursion intervals e1, e2, . . .
which we assume to be enumerated in some order. Write j(t) := j, if t ∈ ej .

Result 4.6. Assume (14) and let 0 < t1 < · · · < tk < 1. Then, as n → ∞,

L
((Z[nt1]

µ̃[nt1]
, . . . ,

Z[ntk]

µ̃[ntk]

) ∣∣∣ Zn > 0
)

w
−→ L

(
(Wj(t1), . . . , Wj(tk))

)
,

where W1, W2, . . . are independent of Bl and i.i.d. copies of some random
variable W satisfying

P{0 < W < ∞} = 1 .

Thus the ith and jth component of the limiting random vector are identical, if
ti and tj belong to the same excursion interval of Bl, otherwise they are inde-
pendent. This result expresses the alternation between sub- and supercritical
behaviour described above.
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4.3 The strongly subcritical case.

Finally, we come to the case, where supercritical behaviour vanishes com-
pletely. Now let

EX < 0 , E[XeX ] < 0 . (15)

We choose β = 1 again. Then (other than in the intermediate subcritical case)

ÊβX < 0

and we are in the situation captured in scenario (S3).

Result 4.7. Assume (15). Then there exists a number 0 < θ ≤ 1 such that,
as n → ∞,

P{Zn > 0} ∼ θγn .

In scenario (S3) the behaviour of S given non-extinction at n is governed
by the law of large numbers. This is the content of the following result.

Result 4.8. Assume (15). Then, as n → ∞,

L
((

n−1S[nt]

)
0≤t≤1

∣∣∣ Zn > 0
)

=⇒ L
(
(t Ê1X)0≤t≤1

)
.

In particular, local random walk excursions vanish in the scaling limit
and Z no longer exhibits any supercritical behaviour on the event {Zn > 0}.
Instead our last result shows that the population stays small throughout the
time interval from 0 to n.

Result 4.9. Assume (15) and let 0 < t1 < · · · < tk < 1. Then, as n → ∞,

L
(
(Z[nt1], . . . , Z[ntk])

∣∣ Zn > 0
) d

−→ (W1, . . . , Wk) ,

where W1, W2, . . . are i.i.d. copies of some random variable W satisfying

P{1 ≤ W < ∞} = 1 .

5 Spatial branching processes in space-time i.i.d. random

environment

In this section we consider a model of a spatial branching process in random
environment. Now individuals live on a countable Abelian group G. Again
we start with a single founding ancestor who at time 0 is located at position
0 ∈ G. Individuals at generation n−1 located at x have independent offspring
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according to the random distribution Qn,x. Each child independently moves to
y with probability p(x, y) = p(y − x), where p is a given (irreducible) random
walk kernel. Let Zn(x) be the number of individuals at x in generation n, and
Zn :=

∑
x Zn(x) the population size at generation n.

The random offspring distributions Qn,x, n ∈ N, x ∈ G are assumed i.i.d.
Given the environment Π = (Qn,x) individuals branch and move indepen-
dently. For a probability measure q = (qy)y∈N0

we denote the first and second
moments as

m1(q) :=
∑

y

yqy, m2(q) :=
∑

y

y2qy.

We will assume Em2(Q) < ∞. A quantity of particular interest is

m := Em1(Q), (16)

the mean number of offspring per individual. For deterministic Q, where
(Zn)n≥0 is a classical Galton-Watson process, the case m = 1 is critical in
the sense that Zn → 0 a.s., if m ≤ 1 (and q1 < 1), whereas Zn → ∞ with
positive probability if m > 1. On the other hand, we have seen in previous sec-
tions that in a non-spatial scenario with G = {0}, the criterion for criticality
is E log m1(Q) = 0. We shall see that the model considered here is in a certain
sense intermediate between these two cases. In principle, it is a special case
of branching processes in random environment with infinitely many types.

Let Fn := σ(Zk(x), Qk+1,x, x ∈ G, k ≤ n). One easily checks that

Mn :=
Zn

mn
, n = 0, 1, . . . (17)

is an (Fn)-martingale.
Let X and Y be two independent p-random walks on G. Note that then

X − Y is again a random walk, we denote its transition matrix by p̃(x) :=∑
y p(y)p(x − y). Let

α :=
Em1(Q)2

(
Em1(Q)

)2 (∈ (1,∞) ), (18)

α∗ := sup
{

a > 0 : E(0,0)

[
a#{i≥1:Yi=Xi} |X

]
< ∞ a.s.

}
. (19)

Remark. Obviously, α∗ ≥
(
P(0,0)(∃ k ≥ 1 : Xk = Yk)

)−1
. This inequality is

in fact strict in many cases, as

α∗ = 1 +

( ∑

n≥1

exp(−H(pn))

)−1

whenever supn≥1,x∈G pn(x)/p̃n(0) < ∞, where H(pn) is the entropy of
pn(0, ·), see Theorem 5 in [Bi03].
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Theorem 4. a) If m ≤ 1 we have Zn → 0 a.s., in particular, M∞ = 0.
b) Assume that Var(m1(Q)) > 0 and that there exists a sequence (Cn) of finite
subsets of G satisfying

∑

n

|Cn|
−1 = ∞ and lim

n→∞

∑

y∈Cn

pn(y, 0) = 1. (20)

Then M∞ = 0, irrespective of the value of m.
c) If m > 1, p̃ is transient, α < α∗, and

lim inf
k→∞

mkpk(0, Xk) > 0 a.s., (21)

then the family (Mn) is uniformly integrable, hence, EM∞ = 1. In particular,
Zn → ∞ with positive probability in this case.

Remark. Condition (20) in b) implies that p̃ is recurrent. It is satisfied for
G = Z if

∑
x |x|p(x) < ∞, and for G = Z

2 if
∑

x ||x||
2p(x) < ∞ (see [Li85],

p. 450).
Condition (21) is satisfied (in fact, the left-hand side is ∞) whenever p

satisfies a local CLT and a LIL, so e.g. for simple random walk on Z
d.

Sketch of proof. a) Follows easily by comparison with a classical Galton-
Watson process with offspring generating function ϕ̄(s) := E[

∑
y syQ({y}]:

A Jensen-type argument gives

E[sZn ] ≥ ϕ̄ ◦ · · · ◦ ϕ̄︸ ︷︷ ︸
n times

(s), s ∈ [0, 1],

and it is well-known that the right-hand side tends to 1 as n → ∞ because
ϕ̄′(1−) ≤ 1. Thus Zn → 0 in probability, which together with {Zn = 0} ⊂
{Zm = 0, ∀m ≥ n} proves the claim.

b) Note that ζn(x) := m−nE
[
Zn(x) |Π

]
satisfies

ζn+1(x) =
∑

y

ζn(y)
m1(Qn+1,y)

m
p(y, x), n ∈ N0, x ∈ G, (22)

so (ζn) is a discrete-time version of a Potlatch process (cf. e.g. Chapter IX
in [Li85]), starting from ζ0(·) = δ(0, ·). One can easily adapt the proof
of Theorem IX.4.5 in [Li85] to this discrete-time setting to obtain that
E[Mn|Π ] =

∑
x ζn(x) → 0 a.s. as n → ∞ if there is a sequence (Cn) sat-

isfying (20). This implies that Mn → 0 in probability by the (conditional)
Markov inequality. As Mn → M∞ a.s. we obtain P(M∞ = 0) = 1.

c) It is well-known that uniform integrability of (Mn)n∈N0
is equivalent to

tightness of the family of the corresponding size-biased laws, see e.g. Lemma 9
in [Bi03]. We use a stochastic representation of the size-biasing of Mn to obtain
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the criterion. We can view P as a measure on {ordered, spatially embedded
trees} × {space-time fields of offspring distributions}. We think of size-biasing
of Zn as picking “uniformly” an individual at time n from a(n infinite) forest of
independent trees (grown in independent environments), and then looking at
the tree the chosen individual belongs to. Let us denote the chosen (spatially
embedded, ordered) tree by τ with selected ancestral line λ, denote the space-
time field of offspring laws by Qn,x, x ∈ G, n ∈ N. Technically, we construct

a measure P̃ on {infinite, ordered, spatially embedded trees} × {ancestral
lines} × {space-time fields of offspring distributions} with the property

P̃
(
τ |n = t, λ|n = a, Qk,x ∈ Bx,k, x ∈ A, 1 ≤ k ≤ n + 1

)

=
1

mn
P

(
τ |n = t, Qk,x ∈ Bx,k, x ∈ A, 1 ≤ k ≤ n + 1

)
(23)

for any n ∈ N and spatially embedded, ordered, rooted tree t of height at
most n, ancestral line a ⊂ t of length n, finite A ⊂ G and measurable Bx,k ⊂

M1(N0). (τ, λ, Π) under P̃ arises as follows:
Let Y = (Yj) be a p-random walk starting from Y0 = 0. This will be the

spatial embedding of the selected line. Given Y , the field Π has independent
coordinates, and the law of Qj+1,x is L(Q) if x 6= Yj , whereas it is L(Q̂) if

x = Yj, where P̃(Q̂ ∈ dν) = (m1(ν)/m)P(Q ∈ dν). Given this, let K̂0, K̂1, . . .

be independent with P̃(K̂i = k|Y, Π) = (k/m1(Qi+1,Yi
))Qi+1,Yi

({k}). The

individual at generation i along the selected line will have K̂i children (note
that K̂i ≥ 1 always), and we choose uniformly one of them to continue the
distinguished line. The spatial embedding of the chosen child will then be
Yi+1, her siblings take each an independent p-step from Yi. Finally, all the
siblings branching off from the selected line form independent populations in
the given space-time medium Π they see. Then straightforward calculation
gives (23). We omit the details, see [Bi03], p. 69f where an analogous proof is
carried out for a related construction. By summing over all possible ancestral
lines of length n we obtain from (23) that

P̃(Zn = k) =
k

mn
P(Zn = k).

We have to show that the distributions of Mn under P̃ form a tight family.
In order to do so it suffices to show that

sup
n∈N

Ẽ
[
Mn | Y

]
< ∞ a.s. (24)

To prove (24) we compute
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favorable Q̂s

along Y ,
“ordinary” Qs
away from Y

K̂i−1 siblings branch-
ing off from the se-
lected ancestral line in
generation i

generations

space

Ẽ

[
Zn

mn

∣∣∣∣ Y

]
=

1

mn

{
1 + E[K̂ − 1]

n−1∑

k=0

E(Yk,k)

[(
E[m1(Q̂)

)#{k<i<n:Yi=Xi}
×

m#{k<i<n:Yi 6=Xi}

∣∣∣∣Y
]}

=
1

mn
+

n−1∑

k=0

E[K̂ − 1]

mk+1
E(Yk,k)

[
α#{k<i<n:Yi=Xi}

∣∣∣ Y
]
.

Note that assumption (21) implies that

A := inf
k∈N

mk+1pk(0, Yk) ∈ (0,∞] a.s., (25)

which allows to estimate

1

mk
E(Yk,k)

[
α#{k<i<n:Yi=Xi}

∣∣∣Y
]
≤

1

A
E(0,0)

[
1(Yk = Xk)α#{k<i<n:Yi=Xi}

∣∣∣ Y
]
,

yielding

Ẽ

[
Zn

mn

∣∣∣∣ Y

]
≤

1

mn
+

E[K̂ − 1]

A
E(0,0)

[
n−1∑

k=0

1(Yk = Xk)α#{k<i<n:Yi=Xi}

∣∣∣∣∣ Y

]

≤ 1 +
E[K̂ − 1]

A
E(0,0)

[
#{i ≥ 0 : Yi = Xi}α

#{i≥0:Yi=Xi}
∣∣∣ Y

]

uniformly in n. The right-hand side is a.s. finite because α < α∗. 2
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Let us note in concluding that in the spatial scenario, the picture is by
far less complete than for the non-spatial branching processes discussed in
Sections 2 to 4. Even the question of tractable criteria for criticality seems
open. Theorem 4 shows that if p̃ is transient and the variance of the mean
offspring number is small enough in comparison with a threshold that depends
only on the motion, then the classical dichotomy for Galton-Watson processes
(without random environments) holds: m ≤ 1 implies almost sure extinction
of a single family, while m > 1 implies survival with positive probability, and
in this case the population grows exponentially.

This naturally leaves us with some questions: First, is the threshold value
α∗ given in Theorem 4 (c) sharp in the sense that α > α∗ would imply M∞ =
0? Arguments from [CSY03] can be adapted to our scenario to show that even
for transient p̃ we will have M∞ = 0, if E[m1(Q) logm1(Q)]/E[m1(Q)] is suf-
ficiently large, see Theorem 2.3 (a) there, but there is this a wide gap between
the two criteria. In principle, a route to check this would be to directly analyse
the distributions of Mn under P̃ (recall that we only checked boundedness of
some conditional expectation in the proof of Theorem 4 (c)). This looks like
a very hard problem.

Second, even if the growth rate of the population is not captured by m and
hence M∞ = 0, this need not necessarily (and in general will not) imply a.s.
extinction of a single family: Comparison with the non-spatial case shows at
least that E[log(m1(Q))] > 0 entails a positive probability of non-extinction
irrespective of p.
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