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Abstract

Cut an i.i.d. sequence (X;) of ‘letters’ into ‘words’ according to an independent
renewal process. Then one obtains an i.i.d. sequence of words, and thus the level three
large deviation behaviour of this sequence of words is governed by the specific relative
entropy. We consider the corresponding problem for the conditional empirical process
of words, where one conditions on a typical underlying (X;). We find that if the tails
of the word lengths decay exponentially, the large deviations under the conditional
distribution are almost surely again governed by the specific relative entropy, but
the set of attainable limits is restricted.

We indicate potential applications of such a conditional LDP to the computation
of the quenched free energy for directed polymer models with random disorder.
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1 Scenario and main result

Let E be a countable set (‘letters’ or ‘symbols’), v € P(E) a probability
measure on E with v(z) > 0 for all z € E. Let (X;);en be an i.i.d.-v sequence,
(7;)jen an independent i.i.d.-p sequence with values in N. We assume that p
has exponentially bounded tails

AC N Vn 1 p, < Cexp(—An) (1)
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and that the 7s generate an aperiodic renewal process, i.e. ged{i : p; > 0} = 1.
Cut out the X-sequence according to 7: Put Ty := 0, T; :=T;, 1 + 7 for i > 1,
V= (Xr_,e1, X1_s2,.., X7,), i€N, (2)

with values in £ = U2, B (‘words’). We write |y| = k for the ‘length’ of
y = (y1,...,yx) € E. By the independence properties of the ingredients,
Y = (Yi)i:m,m is then an i.i.d. sequence with marginal distribution

k

qo((xl, o ,:L'k)) =P = (z1,...,2x) = pi [[ v(zi). (3)

i=1

For a sequence (Y?) with values in EN we write L; = |Y| for the length of the
i-th word (in the present scenario, we have L; = 7;, but it will be convenient
to have a variable for word lengths also if Y does not arise from a construction
with a 7-sequence). Note that we have a (left) shift § : EY — EN on letter
sequences and a (left) shift 6 : EN — EY on word sequences. Let

i=0 goeee

1 N-1
= — O~ 4
N Z 9@((}/1 ’YN)per) ( )
be the empirical distribution process of the words with values in P(EN), the
probability measures on sequences of words. Here, (yl, e ,ym)p denotes the

periodic extension of (y!,...,y™) € E™ to an element of EN,

The sets E and FE are countable, so they are Polish spaces with the discrete
metric. Then EY and EV are again metric spaces e.g. via

dAN((Zl, 29,0 ), (21, 25, .. )) = i 2l (dA(zn,z;) A 1)
n=1

for A= F or A = E. This metric induces the product topology on EN resp.
EN. We equip P(EN) with the topology of weak convergence. Write Pshift( EN)
for the shift invariant probability measures on EN, and P8(EN) for the set of
(9 shift) ergodic probability measures on EN. Note that P (EN) is a closed
subset of P(EN).

It is well known that the family of distributions .2 (Ry) satisfies a large devi-
ation principle, the ‘good’ rate function is given by

HQIQ) = Jim h(Qls [Q5). (5)

the specific relative entropy with respect to Q° := ( )

= (¢")®", see e.g. [6],
[5], Chap. IX or |3], Chap. 6.5. Here Fy = o(Y1,...,YN), Qlzy

is Q restricted



to the first N words, and for probability measures pu, i/ on some measurable
space,

[log & dy if p is absolutely continuous w.r.t. o/,
h(uly') = o

00 otherwise,

denotes the relative entropy of u with respect to y/. Our aim is to understand
the almost sure large deviation behaviour of the family of random probability
distributions

Z(Ry | X).

As P(EN) and P(EYN) are Polish, we can and shall think in the following of
a family of regular conditional distributions P(Ry € -|X). In fact, it can be
given explicitly as follows

Z(Ry | X) (6)
> 1 K
= pUi = i) X 19 per
ity i1 o N (X Xt Xliw41.x1)

where for z = (z;) € EN, k < (

flf|[k3] = (flfk, Thtly .o ,1175) e F. (7)

Quantities involving the conditional expectation of exponential functionals
of Ry appear naturally in the computation of the quenched free energy for
polymer models in disordered media. In particular, the asymptotic evaluation
of the free energy can be formulated as a conditional large deviation problem,
and variational formulas as in Corollary 1 make the energy-entropy trade-
off explicit. This potential application motivated our original interest in the
question studied in this note, see Section 2 for more details.

It is natural to invert the cutting by concatenation: Let the concatenation
operator k : BN — EY be defined in the obvious way by

Ry 0% ) = (U1 w3 uho U 08 Y W)

for y* = (yi.....y) € E. For finite sequences of words, s(y',...,y") €
EW'I++v"l ig defined analogously.

One can imagine that because of the conditioning, which fixes a typical re-
alisation of the X-sequence, the conditional law .Z(Ry | X) feels restrictions,
and that some deviations, which are simply exponentially unlikely under the



unconditional law, become actually impossible once a typical X is fixed. Let

L-1

B = {Q = P(EN) : w—Llim % Z 0gin(yy = v Q- a.s.}, (8)

where w—lim denotes the limit with respect to the weak topology on P(EMN).
Q € Z means that under @), the concatenation of words has almost surely the
same asymptotic statistics as a typical realisation of (X;). Obviously Q° € Z.

Our main result is a full LDP for the (random) family £ (Rx|X), N € N, it
roughly states that under P(Ry € -|X), only such deviations can be realised
which respect the restriction set Z.

Theorem 1 Under Assumption (1), the following events occur with probabil-

ity one:
: 1 : 0
111{7njolip N logP(RN e ’ X) = Qan%lﬂlgshift(EN) H(Q|Q )
for all closed F C P(EY),  (9)
1 . 0
lim inf - log P(Ry € G| X) >~ Qecwggshm(m) H(Q|Q%)

for all open G C P(EV). (10)

A standard application of Varadhan’s Lemma yields

Corollary 1 For any bounded continuous function ® : EN — R we have

1%11%10@[9@ (v @(y)RN(dy))’X]

— swp ){ [ewewy - HQIQV} as

Qeo]in’pshift (EN

(11)

Remark 1 The same results hold for the ‘non-periodic’ flavour of the empir-
ical process,

N-1
non—per ,_ -
RMTPr— N

=0

Furthermore, the restriction to aperiodic p is not severe. If p has period d > 1,
simply consider £’ := E¢ as a new alphabet.



Remark 2 Theorem 1 does not hold in this form without assumptions on the
tails of p. In fact, in a situation where p, decays only algebraically, one can
probe exponentially (in /N, the number of pieces one wants to cut) far ahead
into the X-sequence in order to find regions where X looks atypical.

For a concrete example, consider the following scenario: Let (X;) be i.i.d.
Ber(1/2), p, = C/n%, a > 2, so m, := >, np, < co. Put

ON = min{k eN: X=Xy = Xk—i—[N(mp—i-e)] = 1}.

Let ¢'(z1,...,2m) == pml(zy = -+ = 2, = 1), and let O C P(EN) be a
(small) neighbourhood of (¢')®". Under (¢*)®N, all words consist entirely of
Is. Note that logoy ~ N(m, + €)log2 by the Erdés-Rényi law and P(Ry €
O|X) > e“Np,, by Lemma 9 below (note that for @ = (¢')*N, we have
H{(Q) = —Eglog pr, in this case, ¢f Lemma 3) for large enough N, so

o1 |
thrignglogP(RN € 0|X) > th_}oIifﬁlogpgN > —00.

On the other hand, if (9) held true in this scenario, the answer would have to
be —o0, because (¢!)®N ¢ %.

By Lemma 8, (9) will hold with % replaced by Z, but in view of Remark 8
in Section 3, this amounts essentially only to the unconditional upper bound,
which we expect not to be sharp. The intuitive argument advocated on page 3,
that any limiting () must be built ‘on top’ of a typical X-sequence, is not valid
in general. In fact, when p has algebraic tails, there will be a trade-off on the
exponential scale between how deep one probes into the fixed X-sequence,
which allows to find more atypical regions, and the price for those long jumps.
In view of the potential application to the computation of quenched free ener-
gies for polymer models in random media considered in Section 2, it appears a
very interesting problem to find a quantitative description of this phenomenon.
This question will be pursued in future work.

Remark 3 In many applications, see e.g. Section 2 below, one is actually
interested in a level-2 large deviation problem, i.e. the behaviour of the em-
pirical distribution N=* 3% | §y+. This can be obtained from Theorem 1 via a
contraction principle. It appears that there is no ‘intrinsic’ formulation of the
conditional large deviation behaviour on level 2, as the restriction set % can
only be expressed in terms of the empirical process (i.e. a level 3 object).

Remark 4 It is conceivable that the results continue to hold if the discrete set
E is replaced by a Polish space. A technical difficulty one will encounter when
transferring the arguments to a general context is to give a suitably generalised
definition of the (conditional) specific entropy appearing in Lemmas 3 and 4.
We have not pursued this issue further.



The rest of this paper is organised as follows: In Section 2 we indicate how
Corollary 1, or rather, its analogue in a scenario where in contrast to As-
sumption (1), p has algebraic tails, could be used to represent the quenched
free energy of directed polymer models with random disorder via a variational
formula. We illustrate the use of Corollary 1 by expressing the quenched free
energy of a modified polymer model. Coming back to the main plot, we give in
Section 3 a useful characterisation of the property () € # under the additional
constraint that ¢ has finite mean word lengths. This characterisation allows
to make a connection between () and an ‘underlying’ i.i.d.-v sequence, and to
decompose the relative entropy into a part derived from the concatenated let-
ter sequence plus a part related to the word lengths, given the concatenation.
In Section 4, we prove the upper bound (9), Section 5 treats the lower bound
(10).

2 Relation to quenched free energy computations

Computations involving conditional expectations of exponential functionals of
Ry appear in studies of directed polymer models in random environments. As
an example let us consider the (modified) quenched specific free energy for the
random heteropolymer model (see [1] and references there), defined as

£ (A, B) = lim - log Zi .

where N
Zyx=E {exp( > (X, + h)sign(S, ));SN:()}
n=1

Here, A\, h > 0 are parameters, (.S,) is a symmetric simple random walk on Z
starting at So = 0, (X,,) are i.i.d. random variables, independent of S, taking
the values £1 with probability 1/2 each, and E refers to expectation with
respect to (S,). In this context, if S,, = 0, ‘sign(S,,)’ is defined as sign(.S,—1) —
one thinks of the ‘bonds’ between the steps of the random walk being above
or below the axis. We implicitly assume that N is even, otherwise Z3; v = 0.
This is a model for a polymer with a random composition of hydrophilic and
hydrophobic monomers near an oil-water interface. The ‘letter’ X; models the
affinity of monomer ¢ towards different parts of the solvent. h models dif-
ferences in the affinity of the two types of monomers, and A is an inverse
temperature parameter. The free energy itself uses the same expression with-
out the restriction on {Sy = 0}, this difference is irrelevant in the limit (see
[1], Lemma 2).

Note that for the computation of the free energy, the details of the a priori
measure on paths (S,) are not important. All that matters is the fact that



excursions from 0 are independent and symmetric, the only datum that is
required to compute Z} i is the distribution (p,) of the excursion lengths: By
decomposing the path Sy, S, ..., Sy into excursions away from 0 and assigning
independent random signs to the excursions, we can rewrite

Zyx=>, >, Ilpj-j.x }:[ cosh <>\ ]Ze (X, + h)), (12)

k j1<-<jp=Ni=1 i=je—1+1

where p, = Py(S1,...,5.,-1 # 0,5, = 0) are the return probabilities for the
random walk. Thus for z > 0 the (random) generating function of Z} y is
given by

2) :ZZNZJ*WX
N

N k ji<--<jp=Ni=1 =1 i=je—1+1

ZFkXZ

where

Fk(X’Z) = Z Hpjz —Ji— eXp<Zf ((ij1+1a""Xje))> (13)

J1<<jg =1

with
¢

fz((:vl, o ,xg)) := (log z + log cosh ()\ Z(ZL’Z + h)) (14)

By introducing an auxiliary i.i.d.-p sequence (7;) as in Section 1 and defining
(Y?) as in (2), this can be expressed as

Fi(X;2) = B[ exp (b [ 1.0 mBu(an)) ¥], (15)

where m; : EN — E is the projection to the first coordinate (and hence
m Ry := Ry, o (m)~! the empirical distribution of the first k& words).

Thus if we could (at least in principle) compute the almost sure asymptotic
growth rate

1
p(2) = lim - log Fi(X; 2)

via an analogue of Corollary 1, we obtained that the radius of convergence of
(z) is given by 1y :=sup{z > 0: ¢(z) < 0}, and hence the quenched specific
free energy

f(A\ h) = —logsup{z > 0: p(z) < 0} = —logry.



Note that the tails of p,, the return probability of a 1-dimensional random
walk, decay only algebraically in this scenario. In particular, p does not satisfy
Assumption (1), so that the application of Corollary 1 to the computation of
©(z) is not justified (and would, in view of Remark 2, almost certainly yield an
incorrect result). We reiterate our statement from the end of Remark 2 that
in view of the above considerations, it would be very interesting to extend
Theorem 1 to the general case.

In order to illustrate the application of the conditional large deviation principle
stated in Section 1, let us consider a modified model, where

the partition function Zy y is given by (12) with

p satisfying lim sup,, , (log pn) /n < 0. (16)
This is a model for a situation where the polymer has a strong attraction
towards the interface, as under the a priori measure excursions have short
tails. We do not advertise this model as particularly physically relevant, we
would rather view it as an illustration of the use of the techniques developed
in this paper under the restriction of Assumption 1. There can never be a
de-pinning transition (as is the case for the original model, see [1]), but still
for fixed realisation of (X;), the polymer can try to optimise its configuration
by grouping excursions according to stretches of X;s with the same sign, and
there will be an energy-entropy trade-off. In this situation, the application of
Corollary 1 will be justified.

Let us briefly discuss the corresponding annealed scenario, where one also
averages over the sequence X describing the polymer composition. Let

(X, ) = lim % logE[Zz*\f,X}

be the annealed specific free energy and 6*™(z) be the generating function
of the sequence E[Z} ]. Arguing as above we have 0™ (z) = 332, F™(z2)
where FP"™(z) := E[F,(X;2)]. As under the annealed measure the ‘marked

. k
excursions’ (Y*);—1 o . are i.i.d., we see from (15) that Fg"(z) = (Ffmn(z)) :
hence

1
e (z) = klim —log F"™(X; 2) = log F1™(2).
Note that
00 J
Flann(z) = Z Z]ij|:COSh ()\ Z(XZ + h)>:|
j=1 =1



This can be viewed as a power series in z with positive coefficients, let R3™
be its radius of convergence (note that R{™ > 0 as cosh(A(1+h)j) grows only
exponentially in 7). Let 22" be the (unique) solution of F{**(22"*) = 1 (which
exists because F™(0) =0, F?™(z) — oo as z /" R{™), hence

FmO R = —log ((sup{z 2 05 ™(2) < 0}) = — log(=2™).

An application of Corollary 1 yields

Lemma 1 For the modified model (16) we have for any 0 < z < R3™

o0 = s | [EmQE) - HEQQ)} s (D

Qe%mpshift (EN

where in the notation of Section 1, E = {£1}, v(£1) = 1/2, qo((xl, . ,xg)) =
270y for (x1,...,20) € {£1}, Q¥ = (¢°)®N, f. is defined in (14) and Z in
(8).

Note that (15) actually requires only a level-2 large deviation analysis, but
it seems that in order to express the restriction set %, one is forced to use a
level-3 formulation the empirical distribution of words alone seems too weak
to capture the restrictions coming from conditioning on a typical X sequence.

An explicit evaluation of the variational problem in (17) appears extremely
difficult in general. Still, we can obtain from Lemma 1 that the ‘quenched to
annealed bound’ is always strict in this model, i.e.

FUNR) < £\ R) YA >0,k >0 (18)

so there is no so-called weak disorder regime. This is not very surprising, we
will see below that in the unconditional problem, the sequence X and the
excursions both behave atypically in order to maximise the free energy, while
in the quenched case, X is forced to be typical.

Lemma 1 is basically Corollary 1 applied to the asymptotic evaluation of (15).
There is a slight complication because f, is not bounded, but (at least) for
z < R{™ we can find € > 0 such that

<oo as., (19)

lim sup % 1ogIEleXp ((1 +e)k / f-(y) (Wle)(dy)> ‘X

k—o00

which suffices for an application of Varadhan’s Lemma, see e.g. Condition 4.3.3
in [3]. In order to check (19) note that f,(y) < C’|y|, thus for z < R{™ we can



find e > 0 and 2’ € (z, R%) such that (1+ €)f.(y) < f.(y) for all y € E. As
Fp»(2') grows only exponentially, the same will hold true for the sequence of
conditional expectations inside the log in (19), e.g. by a simple combination of
Markov’s Inequality and the Borel-Cantelli Lemma as in the proof of Lemma 8.

In order to prove (18), it suffices to check that ¢(z) < ¢*"(z) for all z €
(0, R&™™). For this it is instructive to apply Varadhan’s Lemma to the uncon-
ditional distribution and represent

P () =log F(z) = s { [ £)(mQ)dy) - H@QIQ")]

Qe’])shift(E‘N)
20
= sup {/f h(f]lqo)} (20)
qGP(E
=log F™(2) — inf_h(glg™™™),

q€P(E)

where q*’ann((atl . ,l’g)) = Fann( Ty Pt T5_, v(x;) x exp f((xl, . ,l’g)) is (the
marginal of) the unconstrained maximiser, which depends implicitly on z.
Equality between the two sup-terms above stems from the fact that among
all Q with given marginal 7@ = ¢, the specific relative entropy H(Q|Q°) is
minimised by the product measure Q = ¢®"

Fix z € (0, R™), note that Q™ := (¢~*™)®N ¢ 2. A quick way to check
this is as follows: In case h > 0, we see easily that >, y1¢"*"(y) > 0, so
limy . L1 Ele k(Y); > 0 almost surely under Q**™, and hence Q**" ¢ Z.
On the other hand, if h = 0 we can observe that 3, ._, yiy;¢**"(y) > 0 for
any ¢ > 2,1 < 4,5 < [, i.e. letters are positively correlated under ¢**",
so limy_o L™ Z]L: (Y)JH(Y)]_H > 0 almost surely under Q**"™ and hence
again Q""" & Z.

As # N )y is compact (see Remark 8), where @, = {Q : H(Q|Q°) < M}
is the M-level set of the rate function, and Q**™ & %, we can find for any
M >0 a6 > 0 such that Bs(Q™*") N @, C Z°, and so by Lemma 1

o) < sup { [ 1m)mam) - 1@}
QE’PShi“(EN)ﬂ((B(g(Q*»ann))cUy{J\C/[)
< (pann( )

for a suitable choice of M and § in view of (20).

10



3 A characterisation of the restriction set

Imagine cutting the sequence X into pieces and then looking at the empirical
process of these pieces. Then obviously the concatenation £(Y') under a limit-
ing Q € Pift(EN) need not be shift invariant. For example, if we arrange the
7s in such a way that the cut-points tend to occur before a certain pattern,
then under Ry, the law of the concatenated sequence will have a (possibly
atypical under v®*Y) inclination to begin with this pattern.

A way to reinstate shift-invariance (and in some way ‘get back the underlying
i.i.d. sequence’) which works when @ has finite mean word lengths is to size-
bias Q according to L; := |Y!| and then ‘randomise out the origin’ — this is
familiar from the theory of stationary renewal processes. Using this idea we
obtain in this section a characterisation of the set & defined in (8).

For Q € PHift(EN) with mg = Eg L; < oo let Q € P(EN) be defined by
A ) 1 )
7 k o ) k

(for any k € N, and measurable B, C EF). Let (Y?);cy have law Q, given Y,
V uniform on {0,1,...,L; — 1}, put

7 :=0"(k(Y)). (22)
We denote the distribution of Z obtained in this way by ¥ € P(EY) to stress
that it depends on Q. Explicitly, for measurable A C EN
1 Li—1 )
Vo) = Eq| 3 Lu(#(n(Y)))] (23)
i=0

We check that Wg is shift-invariant: Fix m € N, B,, C £™ measurable. We
have

. 7 . .
P((Z1,..., Zm) € B |Y) = ﬁ > g, (RO )is o 5 )igmo1),

i=1

hence (with a slight abuse of notation)

Vo((Zu, ... Zn) € Bu) = miQEQ [LlLil 2 L, (V) n(?)Hm_l))}
- mLEQ [Ell 1Bm ((H(Y)Zv ) K(?>i+m—1)):| :

11



As Q is f-shift invariant,

Eq [Z L, (5D o5V i)

Li+-+Lg .

e D S P (S ML W) |

i=L1++Li_1+1

for any k£ € N, hence

Vo((Z1,... Zn) € Br)

1 Li++Ly

_ MmQEQ S 1, ((H(Y)i, . .,K(?)i+m—l>)]

i=1

for all M € N. Similarly, we have

Uo((Z2,. .. Zms1) € Bn)

~

1 Lit+-+Ly .
= MmQEQ[ ; 1B7,L((/€(Y)i+1>---a/‘f(Y)ier)) ;
consequently
2
’\1/@((21, i Zm) € By) = Vo((Zey ... Zmir) € B )’ o

Taking M — oo we see that W is shift invariant.

Remark 5 If Q is 0-shift ergodic and has finite mean word lengths Eg |V <
oo, then W is 0-shift ergodic.

Proof. Let A C EN be 6-shift invariant. Then for y = (y',4?, .. ) € E, k(y) e
A implies 0(r(y)) € A for any i, so in particular x(0(y)) = 01v'|(k(y)) € A.
Thus, the event {k(Y) € A} is f-shift invariant, so Q(k(Y) € A) € {0,1} by
assumption. On the other hand, we see from (23) and the discussion above
that

Y11
Uo(A) = miQEQ[ ) La(0(e()) | = miQEQ I 1a(n(1) | € 0,1},

O

Lemma 2 Assume that Q € P EN) satisfies Bg |Y?'| < oo. Then we have
Q € Z if and only if Vo = v®N. In this case, Lo(k(Y)) < v®N,

12



Proof. Let Wg = v®N. Then under Q, the sequence k(Y) almost surely has
the ‘right’ asymptotic pattern frequencies (i.e.

lim — " L, ((R(YV)is o 5(V)igxn)) = V¥ (By) as.

for any measurable B, C EF k € N). As Q < Q (in fact, the density
(Eg Ly)/L; is strictly positive), the same holds true for @, i.e. Q € Z.

Now assume that Q € Z. As Q < @, the sequence Z;, i € N under ¥y also
has the ‘right” asymptotic pattern frequencies, i.e.

o1 &
ngr}mﬁglm((zi,...,zw_l)):y®k(3k) a.s. (24)

for any k € N, B;, C E* measurable. It suffices to verify that any shift invariant
sequence (Z;) satisfying (24) is in fact an i.i.d.-v sequence. The limit on the
left-hand side of (24) is equal to
P((Z1,..., %) € By | 7)
where .# is the shift-invariant o-field. Thus
P((Z1,....Z) € By) = E[P((Zl, -2 Zk) € By| ﬂ)] = V%% (By)
so that indeed £ (Z) = vV,

Now assume that Ug = v®N and let A C EN be a (measurable) v®N-null set.
Then we have

1 ! : 1
_ ,,®N _ _ i
0= () = Wq(A) = g LIEQ[; 1.4(0 K(Y))] > 5T Q(r(Y) € A).
This proves that % (k(Y)) < v®N. 0

Remark 6 If Q) € #Z and Eg L, < oo, by the above there is a random (Y, V)
such that ¥ ~ Q and 0V k(Y) is distributed like an i.i.d.-v sequence. We can
‘invert’ this relation, at least in the two-sided scenario: There is (on some
probability space) a random pair (A, Z) with values in Z x EZ such that
L(Z) =v® and L(0°7) = Z5(k(Y)). For example, one can take (Y, V) as
above then define Z := 0Vk(Y), A := V.

Remark 7 Note that the mappings @ — Q, Q) — Wgq are not continuous
with respect to the weak topology on Pift(EN) (as EN 3 (y%); — |y!| is not
bounded, weak convergence need not imply convergence of the first moment

13



of piece lengths). On the other hand, assume that Qy € Pift(EN) converge
weakly to () and that additionally Eg [Ll} — Eq.. [Ll} as N — oo. Then

Qn — Qo weakly on P(EY) and Vo, — Vg, weakly on P(EYN).

Proof. Note that by the assumptions, the family { £, (L1), N € N} is uni-
formly integrable. Hence also for any k € N, y* € E, the family { %, (L11(Y" =
y',i=1,...,k)), N € N} is uniformly integrable. This implies

QvYi=yi=1,...k) = Qu(Yi=yli=1,... k).
Similarly, because 0 < 351, 1(k(Y)i=2z1, ., K(Y)itm = 2ms1) < Ly (for any
m €N, z; € E), we conclude that
\I]QN(ZI =21y, Zm+1 = Zm+1) — \IIQOO(Zl = 21y ey Zm+1 = Zm+1>.

O

Remark 8 Much of the difficulty in the proofs below stems from the fact
that the set Z is not closed in the weak topology. In fact, Z N P (EN) =
Pehift(EN)On the other hand, let

= {Q e PMUEY) : HQIQY) < M}, M >0

be the level sets of the rate function Q — H(Q|Q"). One can see from the
considerations in Lemma 5 and Proposition 2 that

for any M, the set % N ./ is closed (in the weak topology on P(EN)).
(25)

Proof. For the first claim it suffices to show Z D {Q e Pft(EN) L By “Ylu <
oo}, as this set is dense in P (EY), Fix an arbitrary Q in P (EN) satis-

fying Eq |Y?!| < 0o. Let § € P(E) be given by

Q((ml, . ,xn)) = % f[ll/(xi),

i.e. the length of the word has heavy tails, given the length is n, it looks
like nn independent draws from v. Define Qy as follows: under Q, the blocks
(RN y RNz Ly (RONED) ke Ny, are Lid, 25 (V.. YY) =¢®
Qlovt,. . yv-1). Qn is defined as Qn with randomised origin, formally Qy =
NNt Qnof. Then we have Qy € Pt (EN) (in fact even Qy € P8(EV)),
@y — Q weakly. Finally, each Qny € % because the word length under
¢ has no mean: imagine pointing at position U in (YY) under @)y, where
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U ~ Unif({1,...,L}). As L — oo, the probability tends to one that one actu-
ally looks inside a ‘g-word’ of the concatenation, where the pattern frequencies
are what they ought to be in a v®N-sequence.

In order to verify (25), note that 7y, is open because H(-|Q°) is lower semicon-
tinuous. By combining Lemmas 7 and 5 we can choose for any Q) € @7, \ Z an
open neighbourhood Ug > @ such that lim sup % logP(RN € LIQ‘X) < —2M.
By Proposition 2, we must have Uy NZ C <7y;. Hence (% N o)) is open. O

3.1 A decomposition of the specific relative entropy

In this section we study how the specific entropy (and the specific relative
entropy w.r.t. Q%) of a @ can be expressed in terms involving g, which will
be useful later on. Here and in the following, for a probability measure P
and a discrete random variable U we will be writing P(U) for the random
variable f(U), where f(u) = P(U = u). Similarly, P(U|V') means g(U,V),
where g(u,v) = P(U = ulV = v).

Lemma 3 Let Y = (Y')en have distribution Q, write L; := |Y'], KN :=
k(Y. ., YN). Assume Q € P8(EY) satisfies mg := Eg L1 < oo. Then we
have

1
A}im N log Q(K™N) = mgoH (V) Q-a.s., (26)
: 1 c
Jim —<-10gQ(Ly. .., Ly|KV) =t H{(Q) (27)

exists Q-almost surely, the limit H(Q) is a constant. In particular, the specific
entropy of QQ can be represented as

H(@Q) = Jim —1ogQ(V', YY) = moH(Wg) + Q). (29

We call H{(Q) the conditional specific entropy of word lengths under @, given
the concatenation. Intuitively, a ‘Wq-typical” word = € E of length |z| = Nmy
can be decomposed in ~ exp(NHj(Q)) different ways into ‘Q|z,-typical’ N-
vectors of words (y!,...,y") satisfying s(y',...,y") = x. See the proof of
Lemma 9 for a rigorous implementation of this notion.

Proof. Write Sy := Ly +---+ Ly (= |K"]), fix e > 0. Note that on the event
Ay = {N(mQ —€) < Sy < N(mg —i—e)}
we have

Q(r(Y)|p..Nmo+a], Sv) < QUK™) < Q((Y)|n...N(mg—a))-

15



The second inequality together with the facts that liminfy_,. 14, = 1 almost
surely by ergodicity of @ and Z,(k(Y)) < ¥ by Lemma 2 shows that

1
lim sup N log Q(K™) < —(mg — €)H(Vg) as. (29)
N—oo

because

1
lim ~log Woli.m((Z1, ... Za)) = —H(Uq) for g aa. Z=(Z1,2,...),

n—oo n,

where H(W() is the specific entropy of Wq (recall that W is #-shift ergodic
by Remark 5). On the other hand, writing

Q(E(Y)|1..Nmo+e], Sn) = QYY) (1. Nmg+e)) (SN‘ N~ mQ+E)])
and noting that
. 1
]\}EI}X)NlogQ(SN‘K(Y)\[L“N(mQJFE)]) =0 a.s. (30)
we obtain
lim inf N log Q(K™) > —(mg + €)H(T) (31)

almost surely as above. Taking ¢ — 0 in (29) and (31), we obtain (26). In-
tuitively, (30) holds true because the conditional distribution concentrates on
a set of size ~ const. x N, a formal argument might be as follows: For any
z € EINtmetal § > () we have

[N(mq+e)]
Z Q(SN = ]{Z‘ |[1 N(mg+e)] = 37) < QNEGXp( 5N)

k=[N(mgq—e)],
QISN=k|K(Y)|[1...N (mg +e) =) Sexp(=ON)

which is summable in N. Thus the Borel-Cantelli Lemma together with liminf 14, =
1 a.s. shows that

lljglj;p_NIOgQ(SN‘ it Nmo+e) ) <J as.
for any 0 > 0.
Finally, we know by ergodicity of () that
. 1 1 N
]\}ﬁo—ﬁlogQ(Y s, Y )
exists almost surely and equals H(Q), the specific entropy of ). Writing

QIY'....YN) = QUKMQ(Ly, - ..,LNyKN),

16



this gives (27) and (28). O

The following result decomposes the specific entropy of () with respect to Q°
into a part which comes from the concatenated letters and a part describing
the different word length distributions.

Lemma 4 Assume Q € P8(EN) satisfies mg == Eg Ly < co. Then we have
H(QIQ") = mqH (Vo|v™") — Eq log pr, — HE(Q). (32)
Note that the term —Eq log pr,, — H7 (Q) can be interpreted as the conditional

specific relative entropy of word lengths under Q with respect to p®N, given
the concatenation.

Proof. We have Q-a.s. by ergodicity of @)

1 N
HQIQ") = fm L 1os ;20((3; 1; N))
1 N Li+-+Lyn
=—H(Q) = Jim  Dlogon,— fim X logn(e(1))
Li++Ly

. 1
= —H}(Q) — Bq logpy, —moH(¥q) — lim — 3 logu(x(Y);)

j=1
by Lemma 3. Furthermore note that

lim — 1 Z Nlog v(k(Y);) =mg /EN log p(z1) Vg(dz) @ —as. (33)

N—>ooN =

because (L1 +---+ Lx)/N — mg, ZLo(k(Y)) < ¥ by Lemma 2 and Vg, is
f-shift ergodic by Remark 5.

Finally note that (because v®" is a product measure)

—mqH(¥q) —mq [ logv(z1) Wo(dz) = moH(Wlv™)

to complete the proof. O

4 Conditioning and the restriction set, upper bound

In this section we prove the upper bound in Theorem 1. First we show that
P(Ry =~ Q]X) is super-exponentially expensive for any typical X and Q) & Z.

17



Intuitively, this is so because then Ry ~ @ requires to include substantial
(i.e. with length of order N) atypical pieces of the X-sequence in the sum
(6), which requires that at least some of the j-increments appearing in (6)
are exponentially long in N. Because of (1), all such terms will be extremely
small.

Lemma 5 Let Q € Pift(EN)\ Z satisfy mg = Eg |YW| < 0o. Then for any
B >0 there is an open neighbourhood U C PHY(EN) of Q such that

hjr\?jolipﬁlogp(RN € Z/I‘X) <—-B as. (34)

Proof. Step 1. First we claim that there exist £1,e2 > 0 such that for any large
enough M € N there is a subset By, C EM of ‘X-unlikely sentences’ with the
following properties:

oot Yy =@, wM) =g and (35)

P(the sequence X begins with an element of K(BM)) < exp(—eoM). (36)

In order to see this note that if @) is also é—ergodic, by combining (26) and
(33) we have (recall K = (Y1, ... YN))

1oy QUEY)

N — mg H(Ugo|v®Y) Q-a.s. (37)

H\KN| (KN) N—o0

and the righthand side is strictly positive for ) € Z. In the general case we see

by decomposing @ into its ergodic components (cf e.g. [4], Thm. 5.2.16) that

there is a random variable Z > 0, adapted to the shift-invariant sigma-field,
such that

N ~

LY

— log 1‘[|I{N‘—(I(JV) N Q—a.s., (38)

N

and the event {Z > 0} has strictly positive probability under Q if and only if
Q & Z%. Thus by assumption we can find €1, 9 > 0 such that Q(Z > e3) > 2¢y,
hence

— log

1 Q(KY)
Q(N HlKNl y(KN)

> 62) > 2eq (39)

for N large enough. As E is countable, for any large enough N we can find
(pairwise different) words w?,..., w? € E (the w® and L will depend on N,

18



but we suppress this dependency in the notation) such that

L
ZQ(KN = wj) > 2e;  and (40)
j=1
| | ,
logQ(KN:wJ) > &N+ logv(w!), j=1,...,L. (41)
i=1

Note that (41) implies

L |wil

S I v(w!) < exp(—e2N) E ( wj> < exp(—eaN). (42)

7j=1i=1

Finally, for each of the words w’ (j =1,..., L) choose M; (pairwise different)

ordered decompositions into N subwords wi®! ... wi®N (kK = 1,... M;)
such that w’ = x(w®1 ... w?*N) for each j, k and

M; ‘ . 1 ;

S QY. YNy = (it wEN)) > 5Q(KN =w’), j=1,...,L

This yields (35) and (36) with

By i= {(@!,...,w*) : 1<k <M 1< < L,

Step 2. Let A C N have asymptotic density p € (0,1), i.e

lim |Aﬂ{1,...,n}\:p7 (43)

n—oo n

and € € (0,1). We claim that for any p’ > p we have for all N large enough

> lj_:[ — 5j-1)

1<s1<sg<-<sy
{515y JNA|>eN

< (@) exp <N(510g§+(1—5)10g1i6)) (

exp(=A/p) )”V
1L—exp(=A/p))
(44)

where C, X are given by Lemma 6. The left hand side of (44) is not more than

19



[eN]
*(tg—1p— . .
Z Z H p(e 0 1)(%_]6—1)
1<in <o+ <ipey SN J1<<ifeny £=1
F1seees ]I—EN'I €A
[eN] _
> > [I " texp ( — AJe — jZ—l))
1< << SN 1<<Jpeny =1
J1s-d[eN] €A

IN

SéN((ajzva >, e (=)

:@zv((;jv w) S exp<_xtT<A>><(€jv;i 1), (45)

r=[eN]
where we used Lemma 6 in the first inequality and
t(A) s=min{k: An{1,..., k} =r} (46)

is the position of the r-th element of A. Note that for large N

<(€jj\ﬂ> < const. X exp (N(5 logé +(1—¢)logy i 6)) (47)

by Stirling’s Formula, that for s € [0,1)

S

and that by (43)

lim ==, (49)

r—00 T p
Finally, combine (45) and (47) (49) to obtain the claim (44).

Step 3. Consider (a large) M € N, let £1,e5 and By, be as chosen in Step 1,
put

U= {Q’ e PUUEN) - (Y., YM) € By) > 51/2}. (50)
Note that by (35), U is an open neighbourhood of Q. Let

A= {z eN: (X, Xit1,..., Xivk) € 6(By) for some k} (51)

be the (random) set of positions where some element of x(B)/) starts on the
given X. As X is i.i.d. and |k(By)| < oo, A has a non-random asymptotic
density p, and p < exp(—eoM) by (36). Furthermore we see from (6) that
for large enough N (so that boundary terms coming from the periodisation
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become negligible) only such summands (j1, . .., jn) will contribute to P(Ry €
U|X) which have the property that

#{lgigN:jieA}zj—]\l/[::a (52)

(We divide by M to account for possible overlaps of the concatenations of
different elements of By,.) Now (44) yields

1
lim sup N logP(Ry € U|X)

N—oo

§10g6~‘+(510g§+(1—5)10g )—I—elog(2exp(—5\/p>)

1—c¢

+elog?2 — BN A exp (@M).

~ 1
§logC’+(6logg+(1—5)log1_€) Yi

The expression in the last line can be made arbitrarily negative by picking a
large M (note that the terms involving e are uniformly bounded for € € (0, 1)).
O

Lemma 6 Let p satisfy (1). There are C and A > 0 such that

Vk,neN: p*(n) < C*exp(—An). (53)
Proof. We have
[e'e) k n—1
pF(n) < > I Ce M= Cre (k: 1). (54)
i=1 -
ni,...,np=1

k-1
side of (54) for k < en is not more than

Fix e € (0,1/2). As k> ({}) is increasing for k < (n—1)/2, the right hand

—1 1 1
Che=n [ < const. x C* exp ( —An+ n(€ log — 4 (1 —¢) log ))
[en] € L=

by Stirling’s Formula, while for & > en the observation (Z:}) < 2771 yields
the bound

Cke—)\an/a — (21/€C)k6_)‘n.
Put A := A+ eloge + (1 — ) log(l — ), C = 2/°C. Note that A < A can be
chosen arbitrarily close to A, at the expense of enlarging C'. a

Lemma 7 Let p satisfy (1). Then any Q € PM(EN) with H(Q|Q") < oo
has mg = Eq |V < oc.
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Proof. Let pu := Zo(|Y']) € P(N) be the marginal distribution of word

lengths under Q. As N7'h(Q|z, | Q°|#y) /" H(Q|Q®) < oo and h(u|p) <
h(Q|z | Q°|#) it suffices to check that

L
h(ulp) = anp log £ < o0 (55)

implies Y, nu, < oco. This must be well known, for completeness and lack of
reference, here is a short argument: Split the sum in (55) into

Z pn’;”logp + Z P 1og 1

n=1 n n = n n
“n=>pn Hn<Pn

As x +— xlogx is continuous on [0, 1], the second sum has some finite value
€ (—00,0], so the assumption implies

o0

00 > Z unlog—— > ta(log 1, — log py, )
pnzpn hm 2o >0
> Z Hn ( log pin, — log pn) > Z ,un7
i >C oxp(~An/2) i > onp(—An/2)

y (1). On the other hand,

o

Z Ny, < 00

n=1
pn <Cexp(—An/2)

holds automatically. Combining these two estimates yields the claim. a

Next we observe that an unconditional upper bound is automatically also an
upper bound for the conditional distributions:

Lemma 8 For any closed F C P(EN) we have

limsup%logP(RNeF|X)§— mf HQIQY)  as  (36)

N—oo QEFNPshift(FN)

This is well known, here is a short proof for the sake of completeness.

Proof. Write I(F) := inf o prypanin gy H(Q|Q"). For € > 0 we have by Markov’s
Inequality and the unconditional LDP
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P(P(Ry € F|X) > exp(—=N(I(F) - 2¢))

< 6N(I(F)—2E)E[]P)(RN cF | X)} = eN(I(F)_Qe)]P)(RN c F)

< NU(F)~26) (= N(I(F)=¢) _ o=eN

for N large enough, and hence

1
lim sup N logP(Ry € F'| X) < —I(F) — 2¢ a.s.

N—o0
by the Borel-Cantelli Lemma. Take ¢ — 0 to conclude. O
The following is the main result of this section:

Proposition 1 For any closed F C P(EY) we have a.s.

1
lim sup v logP(Ry € F| X) < — inf H(Q|QY). (57)

N—oo QeFﬁPShift(EN)ﬂ%

In particular, for FNZ = () the conditional probability P(Ry € F'| X) decays
almost surely super-exponentially.

Remark 9 As the weak topology on PShift(EN) 15 separable, it is standard to
strengthen (57) to hold with probability one simultaneously for all closed sets
F, see e.g. [2], proof of Prop. III.2.

Proof of Proposition 1. First note that even though Ry is not exactly shift-
invariant because of boundary terms, it is nearly so: for any weak neighbour-
hood O of Pt (EN) there is ng such that Ry € O for N > ng. As Pshift(EN)
is closed in the weak topology, we can restrict to F'N PShift(EN) on the right-
hand side of (57).

Fix B > 0 and ¢ > 0 for the moment, let &z = {Q : H(Q|Q") < B} be the
B-level set of H(-|Q°). Recall that 73 is compact with respect to the weak

topology on P(EN). For any (Q € F'N </ choose an open neighbourhood U
of @ as follows:

(1) If @ ¢ Z, take Uy = U as guaranteed by Lemma 5, so that (34) is
satisfied.
(2) If @ € #, choose Ug such that inf g7 H(Q'|Q%) > H(Q|Q") — . This

is possible by lower semicontinuity of H(-|Q").
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As F'N@/p is compact, we can pick a finite sub-cover U, , . ..,Uq,,. Note that
C
Fn (U;’;l L{Qi) is closed and contained in @75, so

inf H(Q|Q") > B,
QEFN u;?;luQi)

and hence

1 c
limsupﬁlogP<RN e F'n (U;’il Z/{Qi) ’X) < —-B as.

N—oo

by Lemma 8. On the other hand, for ¢+ = 1,...,m we have by construction
(employing Lemma 5 if Q; ¢ Z and Lemma 8 if Q; € %)

: 1 : 0
llgljolipﬁbgp(RN € Uy, ’X) < (—B) v (—Qel%fWH(QKQ )—l—a) a.s.,

consequently

limsup%logP(RN € F‘X) < (— B) % (— inf H(Q|Q") —i—€> a.s.

N—o0 QeFNZ

Take B — 00, € — 0 to conclude. O

5 Lower bound

Proposition 2 Let Q € Z N PMYEY), and let O € P(EN) be an open
neighbourhood of Q. Then we have

lim inf % logP(Ry € O|X) > —H(Q|Q°)  a.s. (58)

N—oo

Remark 10 Again it is standard to strengthen (58) to hold with probability
one simultaneously for all open sets O, see e.q. [2], proof of Prop. III.3.

We will have occasion to consider open neighbourhoods of Q € Pt (EN) of
the following form

Og = {Q' e pohift(ENY ’/gidQ'—/gidQ} < &= 1,...,A@Q} (59)

where g; : EN — R (i = L,..., Ap,) safisfy [[gi[l« < 1 and depend only
on y',... ,yB@Q for some B@Q € N. Note that such sets generate the weak
topology on Pshift( EN).
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Forz € E™ m e {n,n+1,...} U{oc} let

c P(EY) (60)

L ned
= & ()

be the corresponding n-th empirical letter process measure. Furthermore, for
1< << g, let

1 n—1 B
R (@)=Y 6 € P(EY)
oo n n ; 6 ((x|[1---j1}’ x|[j1+1---j2}> cee ax|[jn71+1---jn})p
(61)

the n-th empirical word process measure obtained by cutting x at the cut-
points j;. Note that in this notation (see equations (2) and (4)),

.....

Proof of Proposition 2. We can assume that H(Q|Q) < oo, and hence in
view of Lemma 7 we may also assume that mg := Eq [Y!] < co. Let us first
consider a shift-ergodic Q. Note that Q € % N P (EY) with Eq L; < oo
implies U = v*N and hence H(Q|Q") = —Eg log pr, — H5(Q) by Lemma 4.
We can find a neighbourhood Oy C O of the type defined in (59), and it
suffices to restrict to @Q. For given ¢ > 0, take the open neighbourhood
U C Psf(EN) of v®N guaranteed by Lemma 9. By the strong law, the event

{Rn(X) € U for all sufficiently large n}

has probability one. As

N
]P)(RN S OQ|X) > Z H Pji—ji-1>
=1
0<j1<<jn=[mgN],
RJNI )))) JN( )E@Q

we obtain
1
li]{]nian logP(Ry € O|X) > —H(Q|Q°) —

by Lemma 9. Take ¢ — 0 to conclude the proof in the ergodic case.

Now consider a general Q € ZNP(EN) with Eq |[Y!| < oo. By the Ergodic
Decomposition Theorem (cf e.g. [4], Thm. 5.2.16), we can represent

= Rpo(dR 62
Q= [ g RPQLAE) (62)
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where pg is a probability measure on P¢(EN). The event

L-1

1
Cim L3 6 = ®N}
{w LI—IEOL;) bin(Y) =V

is invariant under the (word-level) shift 0 and has @-probability one, thus by
(62), we have po(#) = 1. Furthermore, as Eq |Y!| = [Eg|Y!| po(dR), po
must be concentrated on {Q' : Eg|Y'| < co}. As R — H(R|Q") is lower
semicontinuous and affine, (62) implies H(Q|Q") = [ H(R|Q°) po(dR), and Q
can be approximated by finite convex combinations of Q; € Z N P8(EN) in
such a way that the corresponding specific relative entropies converge as well
(see e.g. [4], Lemma 5.4.24 and its proof). More precisely, for any 6 > 0, we
can find n € N, Aj,..., A\, € (0,1) with X7, \; = 1 and Q; € Z N Ps(EN)
with mg, = Eg, |[Y'| < oo (so in particular ¥, = v®N) such that

Q:=MQi+ -+ XQ, €O and (63)

H(Q|Q%) > H(Q|Q) — 6 = MH(Q1]Q") + -+ + M H (Qn]Q°) — 6.

Let O C O be an open neighbourhood of Q of the type defined in (59), and let
@m be corresponding open neighbourhoods of @,,, m = 1,...,n, but with &
replaced by £;/(2n). For (large) N € N put N,,, := [\, V], N,, := Ni+---+N,,
(m=1,...,n) and N,, := [Nymq,]+ - - - [Nmwmg,.]. Note that by construction
for any x € EM and j; < --- < jg |

-
I 110 Ry g 20T o (x‘ |:(Nmf1+1)~~']\7m

}) €O, form=1,....n

Let Uy, be a neighbourhood of U, (= v*N) as constructed in Lemma 9 corre-
sponding to Q = @,, and £ = §. Applying Lemma 9 separately on the stretches
X|i(Np141).. 8, m = 1,...,n and ‘glueing together’ the corresponding vec-
tors of cut-points, we obtain from the discussion above that on the event

Gy = {R[Nmem](X|[(Nm1+1)...Nm]) €EUpm, m=1,... ,n}

we have

P(Ry € O|X) > ﬁ exp ( — Nm(H(Qm|QO) +5)>

> exp ( B N()‘lH(QﬂQO) +o A H (Qn]Q°) + 25))
> exp (= N(H(QIQ") +39) )
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when N is sufficiently large. Now Ups Ny>a Gy occurs almost surely (one can
e.g. use large deviation results for the empirical distribution of X to see that
IP’((GN)C> decays exponentially in N), hence

1
lim inf - log P(Ry € O|X) > —H(Q|Q") — 34.
Now take 6 — 0. O

The following lemma is the combinatorial core of the lower bound, its intuitive
content is that for a word z of length ~ Nmg which looks “Wq-typical’, there
are ~ exp(NH{(Q)) ways of cutting it into N subwords in such a way that a
‘Q-typical’ sequence arises. The ‘price’ for any such pattern of cut points will
then be ~ exp(NEq log p(|Y])).

Lemma 9 Let Q € P8(EN) with mg = Eg[L1] < 0o be given, and let O
be a neighbourhood of Q as defined in (59). For any e > 0 there exists an open
neighbourhood U C P (EN) of U and Ny € N such that

N > Ny, z € BN with Rpyn,n(z) €U

implies

N

> IIeli—dion) = exp (N(Eq log pr, + Hi (@)~ <) ). (60
=1
0<j1<<jn=[mgN],

DN
R in ()e0q

Proof. Step 1. Let (’j’Q be defined as in (59) with &; replaced by &;/2 (i =
1,...,Ap,), and similarly (’5&’2 with &; replaced by &;/4. For M € N, g > 0,
x € EMmal Jet

/Mm(x) =
{Gie s

0<ji<---<ju=[Mmgl,R} , (z)¢€ (’5’Q, }
% Zi\il IOg Pji—ji1 € [EQ 10gpL1 - €1>EQ 1Og PrL, + 51]

This is the set of all cut-vectors which are ‘suitable’ for the given word z. We
claim that for given €5 > 0 we can choose M sufficiently large and pairwise
different words €', ..., &0 € EIM™al guch that

L
> Vol mmg)(€) =1 — e and (65)

| Pt ()] 2 exp (M(HS(Q) = 22)), i=1,....L (66)
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In order to check this let Q be defined as in (21), recall (dQ/dQ)(Y) =
Y| /mq. By Lemma 3 and the fact that Q < Q we have Q-a.s.

1 N
Jim IOV = mg

.1
]\;1_r)noo N log Q(k(Y?,...,YN)) = —moH(¥y),

: 1 A 1 Ny _
J\;lm NlogQ(Y 7"'7Y )__H(Q)7

lim —Zlogp Y'[)=Eq log p(|Y'"]),

=1

. _ A

Thus, for large enough N we can find A pairwise different 2* € E and for
each 2* we can choose By, different decompositions (y*41, ... y*N) ¢ BN,
73 =1,..., By, where

k,ij) — Zk for eaCh j7 k?

such that each |2*| € [N(mg —€1), N(mg — €1)],

A
Z > 1 — &1 (67)

and the following holds for k = 1,..., A and j = 1,..., By (unless otherwise
quantified):

QUE™ = ) > exp(~ N(moH(Wg) + 1), (68)

QY. YNy = (™ g Y)) Sexp(=N(H(Q) — 1), (69)
'_k O, YY) = (g5, ™) 2 (1= e QY = 29, (70)
¥ L loselly ) € [Bolog p(¥') = 5 Eqlogp(Y') + 51, (7)

% ; ( k., 1’ o 7yk,j,N)per) < @é (72)

Note that (69), (70) and (68) imply for each k that
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Bre M@0 > S (Y, YN) = (9Lt ))

(1 N El)Q(KN _ Zk) > (1 . 61)6—N(mQH(\I/Q)+a1)
exp (= N(mqH (V) +221))

»

for N large enough, hence
By > exp (N(H(Q) — mgH(Uq) — 3¢1)) = exp (N(HE(Q) — 321))

for k = 1,..., A by Lemma 3. Note that this together with (71) and (72)
shows that

| Fne ()| > exp (N(HF(Q) = 3e1)) fork=1,..., 4 (73)

(with a notational grain of salt because |2*| is not exactly [Nmg]). This is
almost what we need to prove (65) and (66), except for the slight nuisance
that the 2* have not exactly length [Nmg] and the fact that (67) guarantees
that one of the z¥ is very likely to occur as the concatenation of the first N

N

words under (), whereas (65) speaks about the first [Nmg] letters under Ug.
Remembering the definition (22) of U, involving @, this can e.g. be remedied
as follows: Pick M so large that (67) (73) are satisfied for N = M. Consider
the set of words

{ér:rzl,...,R}
= {0 (k) s 0<i <y, =1, By, k=1, A,

truncate each of them at [M(mg — 2¢;] letters. Thus in view of (22) and (67),

R
Z ‘I’Q|[1...M(mQ—2sl)} (€T|[1...M(mQ—2€1)]) > 1—e1.

r=1

Now generate a set {6/ : i =1,..., L} from {£":r=1,... , R} by attaching
various suffixes of length [Mmg| — [M(mg — 2¢1)] to each £ in such a way
that & | \IIQ|[1___MmQ](§i) > 1—2¢1. As each £ agrees with some z* except for

a very short initial piece and a short final piece, (73) implies ‘/M,al(zk)‘ >

exp (M(HE(Q) — 451)) for each ¢ when M is large enough. By choosing ¢4
small enough, this proves (65) and (66).

Step 2. Let o :={¢" :i=1,...,L} denote the set of words of length [Mm]
constructed in Step 1. For K > [Mmg] (we think of K > [Mmyg]) and €3 > 0
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denote the set of all x € EX such that
1 ‘ i i
N ST < K= [Mmg]: (., 24 ipmel-1) = €3 = Yolp..arme)(€)
< 83/L
for all & € & by Py .,. Note that € Py ., means that the letter sequence
x is typical for Wy in the sense that the frequency of all the patterns &'

(t=1,..., L) chosen above is close to the theoretical value.

We claim that for any € > 0 we can choose above e1, g5, €3 sufficiently small
and L, M sufficiently large and Ny € N such that

N Z N07 VS -@[mQN},S:;

N
= > 11 psi—jiy = exp <N(EQ log pr, + H7 (Q) — 5))
i=1
0<j1<--<jn=[mgN],
;\i """ jN(x)G@Q
(74)

Note that (74) implies the claim of the lemma by choosing U as

{0 € PIEY Wl mrn (€) = Volimeun(€)] < 20/ @L), i =1, L},

Step 8. It remains to prove (74), the idea is as follows: * € P}, ), implies
that we can cover x with ~ N/M non-overlapping patterns from . := {£!,i =
1,..., L}, up to a small fraction of remaining ‘gaps’. On each of the patterns
from the ‘almost covering’, we have by construction sufficiently many choices of
‘good cut-points’, and the probability that the jumps bridge exactly the given
‘gaps’ is controlled on the exponential scale because the total gap length is
only a small fraction of N. Here are the details:

T € DmgN)e; implies

#{j < [mgN] — [mgM] : one of the words from & starts at j}
> [NmQ](l — &9 — 83)

(as SF (Wg(€)) —e3/L) > 1 — g9 — 3). Let ny 1= ng V (2mg/dp), where ng,
dp are as given by Lemma 10. When N is large enough, we can find

£ € e)2,2¢] (75)
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(¢ will implicitly depend on N because we require certain expressions below
to be integers, but (75) will be satisfied independently of N) such that

k=(1- é)% eN
and we can find k positions
ny <rp <---<rp < [Nmg|—n
where one of the patterns from .7 is written on z, i.e.
Tyt [Mmg)—1) = ¢ forsomeic€ {1,...,L}, j=1,...k,

and

rj—rj_lz[mQM]+n1, jzl,,]{?
Note that between the end of the (j — 1)-th and the beginning of the j-th
subword from & on z, there is a ‘gap’ of length

sj =1 —rj-1 = [mgM] (= na).
The total length of these gaps is

N
sut s = [Nmgl — (1= &) 77 [Mmg] = ¢'Nmg.

The display above implicitly defines £/, when N (and M) are large enough, it
will satisfy

e € [6(1 - 60/2), &(1 + 60/2)] (76)

where g is as given by Lemma 10.

The sum appearing in (74) has N summation variables, and on each of the k
‘good subwords of 2’ fixed above, we will use M of them. Thus there remain

N — kM =N

summation variables which we can use to ‘fill the gaps’. We can find my, ...,
myy1 € N such that

my + -+ myp =EN
and

(1-00)-L <m; < (1+60)—-L, j=1,....k+1
mq mq

To see this consider first m; := (s;/mq)(é/€’). Then we have ) m; = €N, but the

m; need not be integers. On the other hand we have

54 54

(1—06p) <m;—1<[m;] <m;+1<
mo mo

(1 + 50)



and S = Efjf(mz — [mi]) € {0,1,...,k + 1}. Then put e.g. m; := [m;| + 1 if
i < S, m; = [m;] otherwise.

In order to generate vectors (j, ..., jn) suitable for the righthand side of (74),
we can proceed as follows: On the ‘good subwords’, choose any M-vector of
cut-points from the corresponding _#j;.,, and use m; summation variables to
generate the ‘jump’ over the i-th gap. Using Lemma 10, we can choose for each
gap m; cut-lengths whose total probability under p is at least exp(—C's;). By
the definition of #y.,, any such vector (ji,...,jn) will have the property
that R . (z) € Og because the contribution to R} . (x) from the ‘gaps’
is negligible. Furthermore, again by the definition of #j;., and the choice of
the cut-points on the gaps, we have

ﬁ Pji—ji_y = €XP (kM(EQ log pr, — 51)> X exp ( — Ce’mQN)
i=1

= exp (N((l —&)(Eqlogpr, —e1) — 5/07"@))

for each such choice. Finally, by (66) there are at least

(exp (M(HH(Q) ~ 22))) = exp (N(1—2)(5(@) )

admissible choices of cut-points on the good subwords. Combining, we obtain
that the righthand side of (74) is at least

exp (N((l —&)(Eglogpr, + Hi (Q) —e1 —e2) — 5’CmQ)>
whenever N is sufficiently large. a
The following lemma is a standard result about aperiodic renewal processes:

Lemma 10 Let mg € [1,00). There exist ng € N, C' > 0 and oy > 0 such
that for any pair (m,n) € N? satisfying

n

n > ng, —(1 =) <m < ——(1+d)

mq mq

there are (1, ..., 0, with

m
b+ +Llp=n and H,% > exp(—Chn).

i=1
Remark 11 Note that the proof of Proposition 2 via Lemma 9 is rather
combinatoric. At least in the case of a neighbourhood of an ergodic QQ € %,
one can use the coupling between X and a shift of x(Y") under Q given by
Remark 6 to employ a ‘conditional tilting’ argument which is more in the
probabilistic spirit of classical proofs of lower large deviation bounds.
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