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hastikMohrenstraÿe 3910117 BerlinGermanyAbstra
tCut an i.i.d. sequen
e (Xi) of `letters' into `words' a

ording to an independentrenewal pro
ess. Then one obtains an i.i.d. sequen
e of words, and thus the level threelarge deviation behaviour of this sequen
e of words is governed by the spe
i�
 relativeentropy. We 
onsider the 
orresponding problem for the 
onditional empiri
al pro
essof words, where one 
onditions on a typi
al underlying (Xi). We �nd that if the tailsof the word lengths de
ay exponentially, the large deviations under the 
onditionaldistribution are almost surely again governed by the spe
i�
 relative entropy, butthe set of attainable limits is restri
ted.We indi
ate potential appli
ations of su
h a 
onditional LDP to the 
omputationof the quen
hed free energy for dire
ted polymer models with random disorder.Key words: Conditional pro
ess level large deviations, quen
hed free energy2000 MSC: 60F10, 60G10, 82D60
1 S
enario and main resultLet E be a 
ountable set (`letters' or `symbols'), ν ∈ P(E) a probabilitymeasure on E with ν(x) > 0 for all x ∈ E. Let (Xi)i∈N be an i.i.d.-ν sequen
e,
(τj)j∈N an independent i.i.d.-ρ sequen
e with values in N. We assume that ρhas exponentially bounded tails

∃C, λ : ∀n : ρn ≤ C exp(−λ n) (1)Email address: birkner�wias-berlin.de (Matthias Birkner). 15th May 2007



and that the τs generate an aperiodi
 renewal pro
ess, i.e. gcd{i : ρi > 0} = 1.Cut out the X-sequen
e a

ording to τ : Put T0 := 0, Ti := Ti−1 + τi for i ≥ 1,
Y i =

(

XTi−1+1, XTi−1+2, . . . , XTi

)

, i ∈ N, (2)with values in Ẽ = ∪∞
k=1E

k (`words'). We write |y| = k for the `length' of
y = (y1, . . . , yk) ∈ Ẽ. By the independen
e properties of the ingredients,
Y = (Y i)i=1,2,... is then an i.i.d. sequen
e with marginal distribution

q0
(

(x1, . . . , xk)
)

:= P(Y 1 = (x1, . . . , xk)) = ρk

k∏

i=1

ν(xi). (3)For a sequen
e (Y i) with values in ẼN we write Li = |Y i| for the length of the
i-th word (in the present s
enario, we have Li = τi, but it will be 
onvenientto have a variable for word lengths also if Y does not arise from a 
onstru
tionwith a τ -sequen
e). Note that we have a (left) shift θ : EN → EN on lettersequen
es and a (left) shift θ̃ : ẼN → ẼN on word sequen
es. Let

RN :=
1

N

N−1∑

i=0

δ
θ̃i
(

(Y 1, . . . , Y N )per
) (4)be the empiri
al distribution pro
ess of the words with values in P(ẼN), theprobability measures on sequen
es of words. Here, (y1, . . . , ym

)per denotes theperiodi
 extension of (y1, . . . , ym) ∈ Ẽm to an element of ẼN.The sets E and Ẽ are 
ountable, so they are Polish spa
es with the dis
retemetri
. Then EN and ẼN are again metri
 spa
es e.g. via
dAN

(

(z1, z2, . . . ), (z
′
1, z

′
2, . . . )

)

:=
∞∑

n=1

2−|n|
(

dA(zn, z
′
n) ∧ 1

)for A = E or A = Ẽ. This metri
 indu
es the produ
t topology on EN resp.
ẼN. We equip P(ẼN) with the topology of weak 
onvergen
e. Write Pshift(ẼN)for the shift invariant probability measures on ẼN, and Perg(ẼN) for the set of(θ̃-shift) ergodi
 probability measures on ẼN. Note that Pshift(ẼN) is a 
losedsubset of P(ẼN).It is well known that the family of distributions L (RN) satis�es a large devi-ation prin
iple, the `good' rate fun
tion is given by

H(Q|Q0) = lim
N→∞

1

N
h
(

Q|FN

∣
∣
∣Q0|FN

)

, (5)the spe
i�
 relative entropy with respe
t to Q0 := L (Y ) = (q0)⊗N, see e.g. [6℄,[5℄, Chap. IX or [3℄, Chap. 6.5. Here FN = σ(Y1, . . . , YN), Q|FN
is Q restri
ted2



to the �rst N words, and for probability measures µ, µ′ on some measurablespa
e,
h(µ|µ′) =







∫

log dµ
dµ′ dµ if µ is absolutely 
ontinuous w.r.t. µ′,

∞ otherwise,denotes the relative entropy of µ with respe
t to µ′. Our aim is to understandthe almost sure large deviation behaviour of the family of random probabilitydistributions
L (RN |X).As P(EN) and P(ẼN) are Polish, we 
an and shall think in the following ofa family of regular 
onditional distributions P(RN ∈ · |X). In fa
t, it 
an begiven expli
itly as follows

L (RN |X) (6)
=

∑

j1<···<jN

N∏

i=1

ρ(ji − ji−1)
N−1∑

k=0

1

N
δ
θ̃k
(

X|[1...j1], X|[j1+1...j2], X|[jN−1+1...jN ]

)per ,where for x = (xi) ∈ EN, k < ℓ

x|[k...ℓ] := (xk, xk+1, . . . , xℓ) ∈ Ẽ. (7)Quantities involving the 
onditional expe
tation of exponential fun
tionalsof RN appear naturally in the 
omputation of the quen
hed free energy forpolymer models in disordered media. In parti
ular, the asymptoti
 evaluationof the free energy 
an be formulated as a 
onditional large deviation problem,and variational formulas as in Corollary 1 make the energy-entropy trade-o� expli
it. This potential appli
ation motivated our original interest in thequestion studied in this note, see Se
tion 2 for more details.It is natural to invert the 
utting by 
on
atenation: Let the 
on
atenationoperator κ : ẼN → EN be de�ned in the obvious way by
κ
(

(y1, y2, y3, . . . )
)

=
(

y1
1, y

1
2, . . . , y

1
ℓ1

, y2
1, y

2
2, . . . , y

2
ℓ2

, y3
1, . . .

)for yi = (yi
1, . . . , y

i
ℓi
) ∈ Ẽ. For �nite sequen
es of words, κ(y1, . . . , yn) ∈

E|y1|+···+|yn| is de�ned analogously.One 
an imagine that be
ause of the 
onditioning, whi
h �xes a typi
al re-alisation of the X-sequen
e, the 
onditional law L (RN |X) feels restri
tions,and that some deviations, whi
h are simply exponentially unlikely under the3



un
onditional law, be
ome a
tually impossible on
e a typi
al X is �xed. Let
R :=

{

Q ∈ P(ẼN) : w− lim
L→∞

1

L

L−1∑

j=0

δθjκ(Y ) = ν⊗N Q − a.s.}, (8)where w−lim denotes the limit with respe
t to the weak topology on P(EN).
Q ∈ R means that under Q, the 
on
atenation of words has almost surely thesame asymptoti
 statisti
s as a typi
al realisation of (Xi). Obviously Q0 ∈ R.Our main result is a full LDP for the (random) family L (RN |X), N ∈ N, itroughly states that under P(RN ∈ · |X), only su
h deviations 
an be realisedwhi
h respe
t the restri
tion set R.Theorem 1 Under Assumption (1), the following events o

ur with probabil-ity one:

lim sup
N→∞

1

N
log P

(

RN ∈ F
∣
∣
∣X

)

≤− inf
Q∈F∩R∩Pshift(ẼN)

H(Q|Q0)for all 
losed F ⊂ P(ẼN), (9)
lim inf

N

1

N
log P

(

RN ∈ G
∣
∣
∣X

)

≥− inf
Q∈G∩R∩Pshift(ẼN)

H(Q|Q0)for all open G ⊂ P(ẼN). (10)A standard appli
ation of Varadhan's Lemma yieldsCorollary 1 For any bounded 
ontinuous fun
tion Φ : ẼN → R we have
lim
N

1

N
log E

[

exp
(

N
∫

Φ(y)RN(dy)
)
∣
∣
∣
∣X
]

= sup
Q∈R∩Pshift(ẼN)

{ ∫

Φ(y)Q(dy) − H(Q|Q0)
} a.s. (11)

Remark 1 The same results hold for the `non-periodi
' �avour of the empir-i
al pro
ess,
Rnon−per

N :=
1

N

N−1∑

i=0

δθ̃iY .Furthermore, the restri
tion to aperiodi
 ρ is not severe. If ρ has period d > 1,simply 
onsider E ′ := Ed as a new alphabet.4



Remark 2 Theorem 1 does not hold in this form without assumptions on thetails of ρ. In fa
t, in a situation where ρn de
ays only algebrai
ally, one 
anprobe exponentially (in N , the number of pie
es one wants to 
ut) far aheadinto the X-sequen
e in order to �nd regions where X looks atypi
al.For a 
on
rete example, 
onsider the following s
enario: Let (Xi) be i.i.d.
Ber(1/2), ρn = C/na, a > 2, so mρ :=

∑

n nρn < ∞. Put
σN := min{k ∈ N : Xk = Xk+1 = Xk+[N(mρ+ǫ)] = 1}.Let q1(x1, . . . , xm) := ρm1(x1 = · · · = xm = 1), and let O ⊂ P(ẼN) be a(small) neighbourhood of (q1)⊗N. Under (q1)⊗N, all words 
onsist entirely of

1s. Note that log σN ∼ N(mρ + ǫ) log 2 by the Erd®s-Rényi law and P(RN ∈
O |X) ≥ e−ǫNρσN

by Lemma 9 below (note that for Q = (q1)⊗N, we have
Hc

L(Q) = −EQ log ρL1 in this 
ase, 
f Lemma 3) for large enough N , so
lim inf
N→∞

1

N
log P(RN ∈ O|X) ≥ lim inf

N→∞

1

N
log ρσN

> −∞.On the other hand, if (9) held true in this s
enario, the answer would have tobe −∞, be
ause (q1)⊗N 6∈ R.By Lemma 8, (9) will hold with R repla
ed by R, but in view of Remark 8in Se
tion 3, this amounts essentially only to the un
onditional upper bound,whi
h we expe
t not to be sharp. The intuitive argument advo
ated on page 3,that any limiting Q must be built `on top' of a typi
al X-sequen
e, is not validin general. In fa
t, when ρ has algebrai
 tails, there will be a trade-o� on theexponential s
ale between how deep one probes into the �xed X-sequen
e,whi
h allows to �nd more atypi
al regions, and the pri
e for those long jumps.In view of the potential appli
ation to the 
omputation of quen
hed free ener-gies for polymer models in random media 
onsidered in Se
tion 2, it appears avery interesting problem to �nd a quantitative des
ription of this phenomenon.This question will be pursued in future work.Remark 3 In many appli
ations, see e.g. Se
tion 2 below, one is a
tuallyinterested in a level-2 large deviation problem, i.e. the behaviour of the em-piri
al distribution N−1∑N
i=1 δY i. This 
an be obtained from Theorem 1 via a
ontra
tion prin
iple. It appears that there is no `intrinsi
' formulation of the
onditional large deviation behaviour on level 2, as the restri
tion set R 
anonly be expressed in terms of the empiri
al pro
ess (i.e. a level 3 obje
t).Remark 4 It is 
on
eivable that the results 
ontinue to hold if the dis
rete set

E is repla
ed by a Polish spa
e. A te
hni
al di�
ulty one will en
ounter whentransferring the arguments to a general 
ontext is to give a suitably generalisedde�nition of the (
onditional) spe
i�
 entropy appearing in Lemmas 3 and 4.We have not pursued this issue further.5



The rest of this paper is organised as follows: In Se
tion 2 we indi
ate howCorollary 1, or rather, its analogue in a s
enario where in 
ontrast to As-sumption (1), ρ has algebrai
 tails, 
ould be used to represent the quen
hedfree energy of dire
ted polymer models with random disorder via a variationalformula. We illustrate the use of Corollary 1 by expressing the quen
hed freeenergy of a modi�ed polymer model. Coming ba
k to the main plot, we give inSe
tion 3 a useful 
hara
terisation of the property Q ∈ R under the additional
onstraint that Q has �nite mean word lengths. This 
hara
terisation allowsto make a 
onne
tion between Q and an `underlying' i.i.d.-ν sequen
e, and tode
ompose the relative entropy into a part derived from the 
on
atenated let-ter sequen
e plus a part related to the word lengths, given the 
on
atenation.In Se
tion 4, we prove the upper bound (9), Se
tion 5 treats the lower bound(10).2 Relation to quen
hed free energy 
omputationsComputations involving 
onditional expe
tations of exponential fun
tionals of
RN appear in studies of dire
ted polymer models in random environments. Asan example let us 
onsider the (modi�ed) quen
hed spe
i�
 free energy for therandom heteropolymer model (see [1℄ and referen
es there), de�ned as

fque(λ, h) := lim
1

N
log Z∗

N,X,where
Z∗

N,X = E

[

exp
(

λ
N∑

n=1

(Xn + h)sign(Sn)
)

; SN = 0
]

.Here, λ, h ≥ 0 are parameters, (Sn) is a symmetri
 simple random walk on Zstarting at S0 = 0, (Xn) are i.i.d. random variables, independent of S, takingthe values ±1 with probability 1/2 ea
h, and E refers to expe
tation withrespe
t to (Sn). In this 
ontext, if Sn = 0, `sign(Sn)' is de�ned as sign(Sn−1) �one thinks of the `bonds' between the steps of the random walk being aboveor below the axis. We impli
itly assume that N is even, otherwise Z∗
N,X = 0.This is a model for a polymer with a random 
omposition of hydrophili
 andhydrophobi
 monomers near an oil-water interfa
e. The `letter' Xi models thea�nity of monomer i towards di�erent parts of the solvent. h models dif-feren
es in the a�nity of the two types of monomers, and λ is an inversetemperature parameter. The free energy itself uses the same expression with-out the restri
tion on {SN = 0}, this di�eren
e is irrelevant in the limit (see[1℄, Lemma 2).Note that for the 
omputation of the free energy, the details of the a priorimeasure on paths (Sn) are not important. All that matters is the fa
t that6



ex
ursions from 0 are independent and symmetri
, the only datum that isrequired to 
ompute Z∗
N,X is the distribution (ρn) of the ex
ursion lengths: Byde
omposing the path S0, S1, . . . , SN into ex
ursions away from 0 and assigningindependent random signs to the ex
ursions, we 
an rewrite

Z∗
N,X =

∑

k

∑

j1<···<jk=N

k∏

i=1

ρji−ji−1
×

k∏

ℓ=1

cosh
(

λ
jℓ∑

i=jℓ−1+1

(Xi + h)
)

, (12)where ρn = P0(S1, . . . , Sn−1 6= 0, Sn = 0) are the return probabilities for therandom walk. Thus for z ≥ 0 the (random) generating fun
tion of Z∗
N,X isgiven by

θ(z) =
∑

N

zNZ∗
N,X

=
∑

N

∑

k

∑

j1<···<jk=N

k∏

i=1

ρji−ji−1
×

k∏

ℓ=1






zji−ji−1 cosh

(

λ
jℓ∑

i=jℓ−1+1

(Xi + h)
)






=
∞∑

k=1

Fk(X; z),where
Fk(X; z) :=

∑

j1<···<jk

k∏

i=1

ρji−ji−1
exp

( k∑

ℓ=1

fz

(

(Xjℓ−1+1, . . . , Xjℓ
)
)) (13)with

fz

(

(x1, . . . , xℓ)
)

:= ℓ log z + log cosh
(

λ
ℓ∑

i=1

(xi + h)
)

. (14)By introdu
ing an auxiliary i.i.d.-ρ sequen
e (τi) as in Se
tion 1 and de�ning
(Y i) as in (2), this 
an be expressed as

Fk(X; z) = E

[

exp
(

k
∫

fz(y) π1Rk(dy)
)∣
∣
∣
∣X
]

, (15)where π1 : ẼN → Ẽ is the proje
tion to the �rst 
oordinate (and hen
e
π1Rk := Rk ◦ (π1)

−1 the empiri
al distribution of the �rst k words).Thus if we 
ould (at least in prin
iple) 
ompute the almost sure asymptoti
growth rate
ϕ(z) := lim

k→∞

1

k
log Fk(X; z)via an analogue of Corollary 1, we obtained that the radius of 
onvergen
e of

θ(z) is given by rθ := sup{z ≥ 0 : ϕ(z) < 0}, and hen
e the quen
hed spe
i�
free energy
fque(λ, h) = − log sup{z ≥ 0 : ϕ(z) < 0} = − log rθ.7



Note that the tails of ρn, the return probability of a 1-dimensional randomwalk, de
ay only algebrai
ally in this s
enario. In parti
ular, ρ does not satisfyAssumption (1), so that the appli
ation of Corollary 1 to the 
omputation of
ϕ(z) is not justi�ed (and would, in view of Remark 2, almost 
ertainly yield anin
orre
t result). We reiterate our statement from the end of Remark 2 thatin view of the above 
onsiderations, it would be very interesting to extendTheorem 1 to the general 
ase.In order to illustrate the appli
ation of the 
onditional large deviation prin
iplestated in Se
tion 1, let us 
onsider a modi�ed model, wherethe partition fun
tion Z∗

N,X is given by (12) with
ρ satisfying lim supn→∞

(

log ρn

)

/n < 0. (16)This is a model for a situation where the polymer has a strong attra
tiontowards the interfa
e, as under the a priori measure ex
ursions have shorttails. We do not advertise this model as parti
ularly physi
ally relevant, wewould rather view it as an illustration of the use of the te
hniques developedin this paper under the restri
tion of Assumption 1. There 
an never be ade-pinning transition (as is the 
ase for the original model, see [1℄), but stillfor �xed realisation of (Xi), the polymer 
an try to optimise its 
on�gurationby grouping ex
ursions a

ording to stret
hes of Xis with the same sign, andthere will be an energy-entropy trade-o�. In this situation, the appli
ation ofCorollary 1 will be justi�ed.Let us brie�y dis
uss the 
orresponding annealed s
enario, where one alsoaverages over the sequen
e X des
ribing the polymer 
omposition. Let
f ann(λ, h) := lim

1

N
log E

[

Z∗
N,X

]be the annealed spe
i�
 free energy and θann(z) be the generating fun
tionof the sequen
e E[Z∗
N,X ]. Arguing as above we have θann(z) =

∑∞
k=1 F ann

k (z)where F ann
k (z) := E[Fk(X; z)]. As under the annealed measure the `markedex
ursions' (Y i)i=1,2,... are i.i.d., we see from (15) that F ann

k (z) =
(

F ann
1 (z)

)k,hen
e
ϕann(z) := lim

k→∞

1

k
log F ann

k (X; z) = log F ann
1 (z).Note that

F ann
1 (z) =

∞∑

j=1

zjρjE

[

cosh
(

λ
j
∑

i=1

(Xi + h)
)]

=
∞∑

j=1

zjρj

j
∑

m=0

2−j

(

j

m

)

cosh
(

λ(j − 2m + jh)
)

.8



This 
an be viewed as a power series in z with positive 
oe�
ients, let Rann
1be its radius of 
onvergen
e (note that Rann

1 > 0 as cosh(λ(1+h)j) grows onlyexponentially in j). Let zann
∗ be the (unique) solution of F ann

1 (zann
∗ ) = 1 (whi
hexists be
ause F ann

1 (0) = 0, F ann
1 (z) → ∞ as z ր Rann

1 ), hen
e
f ann(λ, h) = − log

(

sup{z ≥ 0 : ϕann(z) < 0}
)

= − log(zann
∗ ).An appli
ation of Corollary 1 yieldsLemma 1 For the modi�ed model (16) we have for any 0 ≤ z < Rann

1

ϕ(z) = sup
Q∈R∩Pshift(ẼN)

{ ∫

fz(y)(π1Q)(dy) − H(Q|Q0)
} a.s., (17)where in the notation of Se
tion 1, E = {±1}, ν(±1) = 1/2, q0
(

(x1, . . . , xℓ)
)

=

2−ℓρℓ for (x1, . . . , xℓ) ∈ {±1}ℓ, Q0 = (q0)⊗N, fz is de�ned in (14) and R in(8).Note that (15) a
tually requires only a level-2 large deviation analysis, butit seems that in order to express the restri
tion set R, one is for
ed to use alevel-3 formulation � the empiri
al distribution of words alone seems too weakto 
apture the restri
tions 
oming from 
onditioning on a typi
al X sequen
e.An expli
it evaluation of the variational problem in (17) appears extremelydi�
ult in general. Still, we 
an obtain from Lemma 1 that the `quen
hed toannealed bound' is always stri
t in this model, i.e.
fque(λ, h) < f ann(λ, h) ∀λ > 0, h ≥ 0 (18)so there is no so-
alled weak disorder regime. This is not very surprising, wewill see below that in the un
onditional problem, the sequen
e X and theex
ursions both behave atypi
ally in order to maximise the free energy, whilein the quen
hed 
ase, X is for
ed to be typi
al.Lemma 1 is basi
ally Corollary 1 applied to the asymptoti
 evaluation of (15).There is a slight 
ompli
ation be
ause fz is not bounded, but (at least) for

z < Rann
1 we 
an �nd ǫ > 0 su
h that

lim sup
k→∞

1

k
log E

[

exp
(

(1 + ǫ)k
∫

fz(y) (π1Rk)(dy)
)
∣
∣
∣
∣
∣
X

]

< ∞ a.s., (19)whi
h su�
es for an appli
ation of Varadhan's Lemma, see e.g. Condition 4.3.3in [3℄. In order to 
he
k (19) note that fz(y) ≤ C ′|y|, thus for z < Rann
1 we 
an9



�nd ǫ > 0 and z′ ∈ (z, Rann
1 ) su
h that (1 + ǫ)fz(y) ≤ fz′(y) for all y ∈ Ẽ. As

F ann
k (z′) grows only exponentially, the same will hold true for the sequen
e of
onditional expe
tations inside the log in (19), e.g. by a simple 
ombination ofMarkov's Inequality and the Borel-Cantelli Lemma as in the proof of Lemma 8.In order to prove (18), it su�
es to 
he
k that ϕ(z) < ϕann(z) for all z ∈

(0, Rann
1 ). For this it is instru
tive to apply Varadhan's Lemma to the un
on-ditional distribution and represent

ϕann(z) = log F ann
1 (z) = sup

Q∈Pshift(ẼN)

{ ∫

fz(y)(π1Q)(dy) − H(Q|Q0)
}

= sup
q∈P(Ẽ)

{ ∫

fz(y)q(dy)− h(q|q0)
}

= log F ann
1 (z) − inf

q∈P(Ẽ)
h(q|q∗,ann),

(20)
where q∗,ann

(

(x1 . . . , xℓ)
)

= 1
F ann

1 (z)
ρℓ
∏ℓ

i=1 ν(xi) × exp f
(

(x1, . . . , xℓ)
) is (themarginal of) the un
onstrained maximiser, whi
h depends impli
itly on z.Equality between the two sup-terms above stems from the fa
t that amongall Q with given marginal π1Q = q, the spe
i�
 relative entropy H(Q|Q0) isminimised by the produ
t measure Q = q⊗N.Fix z ∈ (0, Rann

1 ), note that Q∗,ann := (q∗,ann)⊗N 6∈ R. A qui
k way to 
he
kthis is as follows: In 
ase h > 0, we see easily that ∑y y1q
∗,ann(y) > 0, so

limL→∞ L−1∑L
j=1 κ(Y )j > 0 almost surely under Q∗,ann, and hen
e Q∗,ann 6∈ R.On the other hand, if h = 0 we 
an observe that ∑|y|=ℓ yiyjq

∗,ann(y) > 0 forany ℓ ≥ 2, 1 ≤ i, j ≤ ℓ, i.e. letters are positively 
orrelated under q∗,ann,so limL→∞ L−1∑L
j=1 κ(Y )jκ(Y )j+1 > 0 almost surely under Q∗,ann, and hen
eagain Q∗,ann 6∈ R.As R ∩ AM is 
ompa
t (see Remark 8), where AM = {Q : H(Q|Q0) ≤ M}is the M-level set of the rate fun
tion, and Q∗,ann 6∈ R, we 
an �nd for any

M > 0 a δ > 0 su
h that Bδ(Q
∗,ann) ∩ AM ⊂ Rc, and so by Lemma 1

ϕ(z)≤ sup

Q∈Pshift(ẼN)∩

(

(Bδ(Q∗,ann))c∪A c
M

)

{ ∫

f(y)(π1Q)(dy) − H(Q|Q0)
}

< ϕann(z)for a suitable 
hoi
e of M and δ in view of (20).10



3 A 
hara
terisation of the restri
tion setImagine 
utting the sequen
e X into pie
es and then looking at the empiri
alpro
ess of these pie
es. Then obviously the 
on
atenation κ(Y ) under a limit-ing Q ∈ Pshift(ẼN) need not be shift invariant. For example, if we arrange the
τs in su
h a way that the 
ut-points tend to o

ur before a 
ertain pattern,then under RN , the law of the 
on
atenated sequen
e will have a (possiblyatypi
al under ν⊗N) in
lination to begin with this pattern.A way to reinstate shift-invarian
e (and in some way `get ba
k the underlyingi.i.d. sequen
e') whi
h works when Q has �nite mean word lengths is to size-bias Q a

ording to L1 := |Y 1| and then `randomise out the origin' � this isfamiliar from the theory of stationary renewal pro
esses. Using this idea weobtain in this se
tion a 
hara
terisation of the set R de�ned in (8).For Q ∈ Pshift(ẼN) with mQ := EQ L1 < ∞ let Q̂ ∈ P(ẼN) be de�ned by

Q̂
(

(Y i, . . . , Y k) ∈ Bk

)

=
1

mQ
EQ

[

L11Bk

(

(Y i, . . . , Y k)
)] (21)(for any k ∈ N, and measurable Bk ⊂ Ẽk). Let (Ŷ i)i∈N have law Q̂, given Ŷ ,

V uniform on {0, 1, . . . , L1 − 1}, put
Z := θV

(

κ(Ŷ )
)

. (22)We denote the distribution of Z obtained in this way by ΨQ ∈ P(EN) to stressthat it depends on Q. Expli
itly, for measurable A ⊂ EN

ΨQ(A) =
1

mQ
EQ

[ L1−1∑

i=0

1A

(

θi(κ(Y ))
)]

. (23)We 
he
k that ΨQ is shift-invariant: Fix m ∈ N, Bm ⊂ Em measurable. Wehave
P

(

(Z1, . . . , Zm) ∈ Bm

∣
∣
∣ Ŷ
)

=
1

|Ŷ 1|

|Ŷ 1|
∑

i=1

1Bm

(

(κ(Ŷ )i, . . . , κ(Ŷ )i+m−1)
)

,hen
e (with a slight abuse of notation)
ΨQ

(

(Z1, . . . , Zm) ∈ Bm

)

=
1

mQ

EQ

[

L1
1

L1

L1∑

i=1

1Bm

(

(κ(Ŷ )i, . . . , κ(Ŷ )i+m−1)
)]

=
1

mQ

EQ

[ L1∑

i=1

1Bm

(

(κ(Ŷ )i, . . . , κ(Ŷ )i+m−1)
)]

.11



As Q is θ̃-shift invariant,
EQ

[ L1∑

i=1

1Bm

(

(κ(Ŷ )i, . . . , κ(Ŷ )i+m−1)
)]

= EQ

[ L1+···+Lk∑

i=L1+···+Lk−1+1

1Bm

(

(κ(Ŷ )i, . . . , κ(Ŷ )i+m−1)
)]for any k ∈ N, hen
e

ΨQ

(

(Z1, . . . , Zm) ∈ Bm

)

=
1

MmQ

EQ

[ L1+···+LM∑

i=1

1Bm

(

(κ(Ŷ )i, . . . , κ(Ŷ )i+m−1)
)]for all M ∈ N. Similarly, we have

ΨQ

(

(Z2, . . . , Zm+1) ∈ Bm

)

=
1

MmQ
EQ

[ L1+···+LM∑

i=1

1Bm

(

(κ(Ŷ )i+1, . . . , κ(Ŷ )i+m)
)]

,
onsequently
∣
∣
∣
∣ΨQ

(

(Z1, . . . , Zm) ∈ Bm

)

− ΨQ

(

(Z2, . . . , Zm+1) ∈ Bm

)
∣
∣
∣
∣ ≤

2

MmQ
.Taking M → ∞ we see that ΨQ is shift invariant.Remark 5 If Q is θ̃-shift ergodi
 and has �nite mean word lengths EQ |Y 1| <

∞, then ΨQ is θ-shift ergodi
.Proof. Let A ⊂ EN be θ-shift invariant. Then for y = (y1, y2, . . . ) ∈ Ẽ, κ(y) ∈
A implies θi(κ(y)) ∈ A for any i, so in parti
ular κ(θ̃(y)) = θ|y

1|(κ(y)) ∈ A.Thus, the event {κ(Y ) ∈ A} is θ̃-shift invariant, so Q(κ(Y ) ∈ A) ∈ {0, 1} byassumption. On the other hand, we see from (23) and the dis
ussion abovethat
ΨQ(A) =

1

mQ
EQ

[ |Y 1|−1
∑

i=0

1A

(

θi(κ(Y ))
)]

=
1

mQ
EQ

[

|Y 1| 1A

(

κ(Y )
)]

∈ {0, 1}.

2Lemma 2 Assume that Q ∈ Pshift(ẼN) satis�es EQ |Y 1| < ∞. Then we have
Q ∈ R if and only if ΨQ = ν⊗N. In this 
ase, LQ(κ(Y )) ≪ ν⊗N.12



Proof. Let ΨQ = ν⊗N. Then under Q̂, the sequen
e κ(Y ) almost surely hasthe `right' asymptoti
 pattern frequen
ies (i.e.
lim

N→∞

1

N

N∑

i=1

1Bk

(

(κ(Y )i, . . . , κ(Y )i+k−1)
)

= ν⊗k(Bk) a.s.for any measurable Bk ⊂ Ek, k ∈ N). As Q ≪ Q̂ (in fa
t, the density
(EQ L1)/L1 is stri
tly positive), the same holds true for Q, i.e. Q ∈ R.Now assume that Q ∈ R. As Q̂ ≪ Q, the sequen
e Zi, i ∈ N under ΨQ alsohas the `right' asymptoti
 pattern frequen
ies, i.e.

lim
N→∞

1

N

N∑

i=1

1Bk

(

(Zi, . . . , Zi+k−1)
)

= ν⊗k(Bk) a.s. (24)for any k ∈ N, Bk ⊂ Ek measurable. It su�
es to verify that any shift invariantsequen
e (Zi) satisfying (24) is in fa
t an i.i.d.-ν sequen
e. The limit on theleft-hand side of (24) is equal to
P

(

(Z1, . . . , Zk) ∈ Bk

∣
∣
∣I

)where I is the shift-invariant σ-�eld. Thus
P

(

(Z1, . . . , Zk) ∈ Bk

)

= E

[

P

(

(Z1, . . . , Zk) ∈ Bk

∣
∣
∣I

)]

= ν⊗k(Bk)so that indeed L (Z) = ν⊗N.Now assume that ΨQ = ν⊗N and let A ⊂ EN be a (measurable) ν⊗N-null set.Then we have
0 = ν⊗N(A) = ΨQ(A) =

1

EQ L1

EQ

[L1−1∑

i=0

1A(θiκ(Y ))
]

≥
1

EQ L1

Q
(

κ(Y ) ∈ A
)

.This proves that LQ(κ(Y )) ≪ ν⊗N. 2Remark 6 If Q ∈ R and EQ L1 < ∞, by the above there is a random (Y, V )su
h that Y ∼ Q̂ and θV κ(Y ) is distributed like an i.i.d.-ν sequen
e. We 
an`invert' this relation, at least in the two-sided s
enario: There is (on someprobability spa
e) a random pair (∆, Z) with values in Z × EZ su
h that
L (Z) = ν⊗Z and L (θ∆Z) = LQ̂(κ(Y )). For example, one 
an take (Y, V ) asabove then de�ne Z := θV κ(Y ), ∆ := −V .Remark 7 Note that the mappings Q 7→ Q̂, Q 7→ ΨQ are not 
ontinuouswith respe
t to the weak topology on Pshift(ẼN) (as ẼN ∋ (yi)i 7→ |y1| is notbounded, weak 
onvergen
e need not imply 
onvergen
e of the �rst moment13



of pie
e lengths). On the other hand, assume that QN ∈ Pshift(ẼN) 
onvergeweakly to Q∞ and that additionally EQN

[

L1

]

→ EQ∞

[

L1

] as N → ∞. Then
Q̂N → Q̂∞ weakly on P(ẼN) and ΨQN

→ ΨQ∞ weakly on P(EN).Proof. Note that by the assumptions, the family {LQN
(L1), N ∈ N} is uni-formly integrable. Hen
e also for any k ∈ N, yi ∈ Ẽ, the family {LQN

(L11(Y i =
yi, i = 1, . . . , k)), N ∈ N} is uniformly integrable. This implies

Q̂N (Y i = yi, i = 1, . . . , k) → Q̂∞(Y i = yi, i = 1, . . . , k).Similarly, be
ause 0 ≤
∑L1

i=1 1(κ(Y )i = z1, . . . , κ(Y )i+m = zm+1) ≤ L1 (for any
m ∈ N, zj ∈ E), we 
on
lude that

ΨQN
(Z1 = z1, . . . , Zm+1 = zm+1) → ΨQ∞(Z1 = z1, . . . , Zm+1 = zm+1).

2Remark 8 Mu
h of the di�
ulty in the proofs below stems from the fa
tthat the set R is not 
losed in the weak topology. In fa
t, R ∩ Pshift(ẼN) =
Pshift(ẼN). On the other hand, let

AM :=
{

Q ∈ Pshift(ẼN) : H(Q|Q0) ≤ M
}

, M ≥ 0be the level sets of the rate fun
tion Q 7→ H(Q|Q0). One 
an see from the
onsiderations in Lemma 5 and Proposition 2 thatfor any M , the set R ∩ AM is 
losed (in the weak topology on P(ẼN)).(25)Proof. For the �rst 
laim it su�
es to show R ⊃
{

Q ∈ Pshift(ẼN) : EQ

[

|Y 1|
]

<

∞
}, as this set is dense in Pshift(ẼN). Fix an arbitrary Q in Pshift(ẼN) satis-fying EQ |Y 1| < ∞. Let q̃ ∈ P(Ẽ) be given by

q̃
(

(x1, . . . , xn)
)

=
C

n−3/2

n∏

i=1

ν(xi),i.e. the length of the word has heavy tails, given the length is n, it lookslike n independent draws from ν. De�ne QN as follows: under Q̃N , the blo
ks
(Y kN+1, Y kN+2, . . . , Y (k+1)N−1), k ∈ N+, are i.i.d, LQ̃N

((Y 1, . . . , Y N)) = q̃ ⊗

Q|σ(Y 1,...,Y N−1). QN is de�ned as Q̃N with randomised origin, formally QN =

N−1∑N−1
i=0 Q̃N◦θ̃i. Then we have QN ∈ Pshift(ẼN) (in fa
t even QN ∈ Perg(ẼN)),

QN → Q weakly. Finally, ea
h QN ∈ R be
ause the word length under
q̃ has no mean: imagine pointing at position U in κ(Y ) under QN , where14



U ∼ Unif({1, . . . , L}). As L → ∞, the probability tends to one that one a
tu-ally looks inside a `q̃-word' of the 
on
atenation, where the pattern frequen
iesare what they ought to be in a ν⊗N-sequen
e.In order to verify (25), note that A c
M is open be
ause H(·|Q0) is lower semi
on-tinuous. By 
ombining Lemmas 7 and 5 we 
an 
hoose for any Q ∈ AM \R anopen neighbourhood UQ ∋ Q su
h that lim sup 1

N
log P

(

RN ∈ UQ

∣
∣
∣X
)

≤ −2M .By Proposition 2, we must have UQ ∩R ⊂ A c
M . Hen
e (R ∩AM)c is open. 23.1 A de
omposition of the spe
i�
 relative entropyIn this se
tion we study how the spe
i�
 entropy (and the spe
i�
 relativeentropy w.r.t. Q0) of a Q 
an be expressed in terms involving ΨQ, whi
h willbe useful later on. Here and in the following, for a probability measure Pand a dis
rete random variable U we will be writing P (U) for the randomvariable f(U), where f(u) = P (U = u). Similarly, P (U |V ) means g(U, V ),where g(u, v) = P (U = u|V = v).Lemma 3 Let Y = (Y i)i∈N have distribution Q, write Li := |Y i|, KN :=

κ(Y 1, . . . , Y N). Assume Q ∈ Perg(ẼN) satis�es mQ := EQ L1 < ∞. Then wehave
lim

N→∞
−

1

N
log Q(KN) = mQH(ΨQ) Q-a.s., (26)

lim
N→∞

−
1

N
log Q

(

L1, . . . , LN

∣
∣
∣KN

)

=: Hc
L(Q) (27)exists Q-almost surely, the limit Hc

L(Q) is a 
onstant. In parti
ular, the spe
i�
entropy of Q 
an be represented as
H(Q) = lim

N→∞
−

1

N
log Q

(

Y 1, . . . , Y N
)

= mQH(ΨQ) + Hc
L(Q). (28)We 
all Hc

L(Q) the 
onditional spe
i�
 entropy of word lengths under Q, giventhe 
on
atenation. Intuitively, a `ΨQ-typi
al' word x ∈ Ẽ of length |x| ≈ NmQ
an be de
omposed in ≈ exp(NHc
L(Q)) di�erent ways into `Q|FN

-typi
al' N-ve
tors of words (y1, . . . , yN) satisfying κ(y1, . . . , yN) = x. See the proof ofLemma 9 for a rigorous implementation of this notion.Proof. Write SN := L1 + · · ·+ LN (= |KN |), �x ǫ > 0. Note that on the event
AN :=

{

N(mQ − ǫ) ≤ SN ≤ N(mQ + ǫ)
}we have

Q(κ(Y )|[1...N(mQ+ǫ)], SN) ≤ Q(KN) ≤ Q(κ(Y )|[1...N(mQ−ǫ)]).15



The se
ond inequality together with the fa
ts that lim infN→∞ 1AN
= 1 almostsurely by ergodi
ity of Q and LQ(κ(Y )) ≪ ΨQ by Lemma 2 shows that

lim sup
N→∞

1

N
log Q(KN) ≤ −(mQ − ǫ)H(ΨQ) a.s. (29)be
ause

lim
n→∞

1

n
log ΨQ|[1...n]

(

(Z1, . . . , Zn)
)

= −H(ΨQ) for ΨQ�a.a. Z = (Z1, Z2, . . . ),where H(ΨQ) is the spe
i�
 entropy of ΨQ (re
all that ΨQ is θ-shift ergodi
by Remark 5). On the other hand, writing
Q(κ(Y )|[1...N(mQ+ǫ)], SN) = Q(κ(Y )|[1...N(mQ+ǫ)])Q

(

SN

∣
∣
∣κ(Y )|[1...N(mQ+ǫ)]

)and noting that
lim

N→∞

1

N
log Q

(

SN

∣
∣
∣κ(Y )|[1...N(mQ+ǫ)]

)

= 0 a.s. (30)we obtain
lim inf

1

N
log Q(K(N)) ≥ −(mQ + ǫ)H(ΨQ) (31)almost surely as above. Taking ǫ → 0 in (29) and (31), we obtain (26). In-tuitively, (30) holds true be
ause the 
onditional distribution 
on
entrates ona set of size ≈ 
onst. × N , a formal argument might be as follows: For any

x ∈ E[N(mQ+ǫ)], δ > 0 we have
[N(mQ+ǫ)]
∑

k=[N(mQ−ǫ)],

Q(SN=k |κ(Y )|[1...N(mQ+ǫ)]=x)≤exp(−δN)

Q
(

SN = k
∣
∣
∣κ(Y )|[1...N(mQ+ǫ)] = x

)

≤ 2Nǫ exp(−δN)

whi
h is summable inN . Thus the Borel-Cantelli Lemma together with lim inf 1AN
=

1 a.s. shows that
lim sup

N→∞
−

1

N
log Q

(

SN

∣
∣
∣κ(Y )|[1...N(mQ+ǫ)]

)

≤ δ a.s.for any δ > 0.Finally, we know by ergodi
ity of Q that
lim

N→∞
−

1

N
log Q

(

Y 1, . . . , Y N
)exists almost surely and equals H(Q), the spe
i�
 entropy of Q. Writing

Q
(

Y 1, . . . , Y N
)

= Q(KN )Q
(

L1, . . . , LN

∣
∣
∣KN

)

,16



this gives (27) and (28). 2The following result de
omposes the spe
i�
 entropy of Q with respe
t to Q0into a part whi
h 
omes from the 
on
atenated letters and a part des
ribingthe di�erent word length distributions.Lemma 4 Assume Q ∈ Perg(ẼN) satis�es mQ := EQ L1 < ∞. Then we have
H(Q|Q0) = mQH(ΨQ|ν

⊗N) − EQ log ρL1 − Hc
L(Q). (32)Note that the term −EQ log ρL1−Hc

L(Q) 
an be interpreted as the 
onditionalspe
i�
 relative entropy of word lengths under Q with respe
t to ρ⊗N, giventhe 
on
atenation.Proof. We have Q-a.s. by ergodi
ity of Q

H(Q|Q0) = lim
N→∞

1

N
log

Q
(

Y 1, . . . , Y N
)

Q0
(

Y 1, . . . , Y N
)

=−H(Q) − lim
N→∞

1

N

N∑

i=1

log ρLi
− lim

N→∞

1

N

L1+···+LN∑

j=1

log ν(κ(Y )j)

=−Hc
L(Q) − EQ log ρL1 − mQH(ΨQ) − lim

N→∞

1

N

L1+···+LN∑

j=1

log ν(κ(Y )j)by Lemma 3. Furthermore note that
lim

N→∞

1

N

L1+···+LN∑

j=1

log ν(κ(Y )j) = mQ

∫

EN

log ρ(z1) ΨQ(dz) Q − a.s. (33)be
ause (L1 + · · · + LN )/N → mQ, LQ(κ(Y )) ≪ ΨQ by Lemma 2 and ΨQ is
θ-shift ergodi
 by Remark 5.Finally note that (be
ause ν⊗N is a produ
t measure)

−mQH(ΨQ) − mQ

∫

EN

log ν(z1) ΨQ(dz) = mQH(ΨQ|ν
⊗N)to 
omplete the proof. 24 Conditioning and the restri
tion set, upper boundIn this se
tion we prove the upper bound in Theorem 1. First we show that

P(RN ≈ Q|X) is super-exponentially expensive for any typi
al X and Q 6∈ R.17



Intuitively, this is so be
ause then RN ≈ Q requires to in
lude substantial(i.e. with length of order N) atypi
al pie
es of the X-sequen
e in the sum(6), whi
h requires that at least some of the j-in
rements appearing in (6)are exponentially long in N . Be
ause of (1), all su
h terms will be extremelysmall.Lemma 5 Let Q ∈ Pshift(ẼN) \R satisfy mQ = EQ |Y (1)| < ∞. Then for any
B ≥ 0 there is an open neighbourhood U ⊂ Pshift(ẼN) of Q su
h that

lim sup
N→∞

1

N
log P

(

RN ∈ U
∣
∣
∣X
)

≤ −B a.s. (34)Proof. Step 1. First we 
laim that there exist ε1, ε2 > 0 su
h that for any largeenough M ∈ N there is a subset BM ⊂ ẼM of `X-unlikely senten
es' with thefollowing properties:
∑

(w1,...,wM)∈BM

Q
(

(Y 1, . . . , Y M) = (w1, . . . , wM)
)

≥ ε1 and (35)
P

(the sequen
e X begins with an element of κ(BM )
)

≤ exp(−ε2M). (36)In order to see this note that if Q is also θ̃-ergodi
, by 
ombining (26) and(33) we have (re
all KN = κ(Y 1, . . . , Y N))
1

N
log

Q(KN )
∏|KN |

i=1 ν(KN
i )

−→
N→∞

mQ H(ΨQ|ν
⊗N) Q-a.s. (37)and the righthand side is stri
tly positive for Q 6∈ R. In the general 
ase we seeby de
omposing Q into its ergodi
 
omponents (
f e.g. [4℄, Thm. 5.2.16) thatthere is a random variable Z̃ ≥ 0, adapted to the shift-invariant sigma-�eld,su
h that

1

N
log

Q(KN )
∏|KN |

i=1 ν(KN
i )

−→
N→∞

Z̃ Q-a.s., (38)and the event {Z̃ > 0} has stri
tly positive probability under Q if and only if
Q 6∈ R. Thus by assumption we 
an �nd ε1, ε2 > 0 su
h that Q(Z̃ > ε2) > 2ε1,hen
e

Q

(

1

N
log

Q(KN )
∏|KN |

i=1 ν(KN
i )

> ε2

)

> 2ε1 (39)for N large enough. As Ẽ is 
ountable, for any large enough N we 
an �nd(pairwise di�erent) words w1, . . . , wL ∈ Ẽ (the wi and L will depend on N ,18



but we suppress this dependen
y in the notation) su
h that
L∑

j=1

Q
(

KN = wj
)

> 2ε1 and (40)
log Q

(

KN = wj
)

≥ ε2N +
|wj|
∑

i=1

log ν(wj
i ), j = 1, . . . , L. (41)Note that (41) implies

L∑

j=1

|wj |
∏

i=1

ν(wj
i ) ≤ exp(−ε2N)

L∑

j=1

Q
(

KN = wj
)

≤ exp(−ε2N). (42)Finally, for ea
h of the words wj (j = 1, . . . , L) 
hoose Mj (pairwise di�erent)ordered de
ompositions into N subwords wj,k,1, . . . , wj,k,N (k = 1, . . . , Mj)su
h that wj = κ(wj,k,1, . . . , wj,k,N) for ea
h j, k and
Mj
∑

k=1

Q
(

(Y 1, . . . , Y N) = (wj,k,1, . . . , wj,k,N)
)

≥
1

2
Q
(

KN = wj
)

, j = 1, . . . , L.This yields (35) and (36) with
BN :=

{

(wj,k,1, . . . , wj,k,N) : 1 ≤ k ≤ Mj , 1 ≤ j ≤ L
}

.

Step 2. Let A ⊂ N have asymptoti
 density p ∈ (0, 1), i.e.
lim

n→∞

|A ∩ {1, . . . , n}|

n
= p, (43)and ε ∈ (0, 1). We 
laim that for any p′ > p we have for all N large enough

∑

1≤s1<s2<···<sN
|{s1,...,sN}∩A|≥εN

N∏

j=1

ρ(sj − sj−1)

≤ (C̃)N exp
(

N
(

ε log
1

ε
+ (1 − ε) log

1

1 − ε

))
(

exp(−λ̃/p′)

1 − exp(−λ̃/p′)

)εN

,(44)where C̃, λ̃ are given by Lemma 6. The left hand side of (44) is not more than19



∑

1≤i1<···<i⌈εN⌉≤N

∑

j1<···<j⌈εN⌉
j1,...,j⌈εN⌉∈A

⌈εN⌉
∏

ℓ=1

ρ∗(iℓ−iℓ−1)(jℓ − jℓ−1)

≤
∑

1≤i1<···<i⌈εN⌉≤N

∑

j1<···<j⌈εN⌉
j1,...,j⌈εN⌉∈A

⌈εN⌉
∏

ℓ=1

C̃iℓ−iℓ−1 exp
(

− λ̃(jℓ − jℓ−1)
)

≤ C̃N

(

N

⌈εN⌉

)
∑

j1<···<j⌈εN⌉
j1,...,j⌈εN⌉∈A

exp
(

− λ̃j⌈εN⌉

)

= C̃N

(

N

⌈εN⌉

)
∞∑

r=⌈εN⌉

exp(−λ̃tr(A))

(

r − 1

⌈εN⌉ − 1

)

, (45)where we used Lemma 6 in the �rst inequality and
tr(A) := min

{

k : A ∩ {1, . . . , k} = r
} (46)is the position of the r-th element of A. Note that for large N

(

N

⌈εN⌉

)

≤ 
onst.× exp
(

N
(

ε log
1

ε
+ (1 − ε) log

1

1 − ε

)) (47)by Stirling's Formula, that for s ∈ [0, 1)

∞∑

r=n

sr

(

r − 1

n − 1

)

=
∞∑

r1,...,rn=1

sr1+···+rn =

(

s

1 − s

)n (48)and that by (43)
lim
r→∞

tr(A)

r
=

1

p
. (49)Finally, 
ombine (45) and (47)�(49) to obtain the 
laim (44).Step 3. Consider (a large) M ∈ N, let ε1, ε2 and BM be as 
hosen in Step 1,put

U :=
{

Q′ ∈ Pshift(ẼN) : Q′
(

(Y 1, . . . , Y M) ∈ BM

)

> ε1/2
}

. (50)Note that by (35), U is an open neighbourhood of Q. Let
A :=

{

i ∈ N : (Xi, Xi+1, . . . , Xi+k) ∈ κ(BM) for some k
} (51)be the (random) set of positions where some element of κ(BM) starts on thegiven X. As X is i.i.d. and |κ(BM)| < ∞, A has a non-random asymptoti
density p, and p ≤ exp(−ε2M) by (36). Furthermore we see from (6) thatfor large enough N (so that boundary terms 
oming from the periodisation20



be
ome negligible) only su
h summands (j1, . . . , jN) will 
ontribute to P(RN ∈
U|X) whi
h have the property that

#
{

1 ≤ i ≤ N : ji ∈ A
}

≥
ε1

4M
=: ε. (52)(We divide by M to a

ount for possible overlaps of the 
on
atenations ofdi�erent elements of BM .) Now (44) yields

lim sup
N→∞

1

N
log P(RN ∈ U|X)

≤ log C̃ +
(

ε log
1

ε
+ (1 − ε) log

1

1 − ε

)

+ ε log
(

2 exp
(

− λ̃/p
))

≤ log C̃ +
(

ε log
1

ε
+ (1 − ε) log

1

1 − ε

)

+ ε log 2 −
ε1

4M
× λ̃ exp

(

ε2M
)

.The expression in the last line 
an be made arbitrarily negative by pi
king alarge M (note that the terms involving ε are uniformly bounded for ε ∈ (0, 1)).
2Lemma 6 Let ρ satisfy (1). There are C̃ and λ̃ > 0 su
h that

∀ k, n ∈ N : ρ∗k(n) ≤ C̃k exp(−λ̃n). (53)Proof. We have
ρ∗k(n) ≤

∞∑

n1,...,nk=1
n1+···+nk=n

k∏

i=1

Ce−λni = Cke−λn

(

n − 1

k − 1

)

. (54)
Fix ε ∈ (0, 1/2). As k 7→

(
n−1
k−1

) is in
reasing for k < (n− 1)/2, the right handside of (54) for k ≤ εn is not more than
Cke−λn

(

n − 1

⌈εn⌉

)

≤ 
onst.× Ck exp
(

− λn + n
(

ε log
1

ε
+ (1 − ε) log

1

1 − ε

))by Stirling's Formula, while for k > εn the observation (n−1
k−1

)

≤ 2n−1 yieldsthe bound
Cke−λn2k/ε = (21/εC)ke−λn.Put λ̃ := λ + ε log ε + (1 − ε) log(1 − ε), C̃ := 21/εC. Note that λ̃ < λ 
an be
hosen arbitrarily 
lose to λ, at the expense of enlarging C̃. 2Lemma 7 Let ρ satisfy (1). Then any Q ∈ Pshift(ẼN) with H(Q|Q0) < ∞has mQ = EQ |Y 1| < ∞. 21



Proof. Let µ := LQ(|Y 1|) ∈ P(N) be the marginal distribution of wordlengths under Q. As N−1h(Q|FN
|Q0|FN

) ր H(Q|Q0) < ∞ and h(µ|ρ) ≤
h(Q|F1 |Q

0|F1) it su�
es to 
he
k that
h(µ|ρ) =

∞∑

n=1

ρn
µn

ρn

log
µn

ρn

< ∞ (55)implies ∑n nµn < ∞. This must be well known, for 
ompleteness and la
k ofreferen
e, here is a short argument: Split the sum in (55) into
∞∑

n=1
µn≥ρn

ρn
µn

ρn
log

µn

ρn
+

∞∑

n=1
µn<ρn

ρn
µn

ρn
log

µn

ρn
.As x 7→ x log x is 
ontinuous on [0, 1], the se
ond sum has some �nite value

∈ (−∞, 0], so the assumption implies
∞>

∞∑

n=1
µn≥ρn

µn log
µn

ρn
=

∞∑

n=1
µn≥ρn

µn

(

log µn − log ρn
︸ ︷︷ ︸

≥0

)

≥
∞∑

n=1
µn≥C exp(−λn/2)

µn

(

log µn − log ρn

)

≥
∞∑

n=1
µn≥C exp(−λn/2)

µn
λn

2by (1). On the other hand,
∞∑

n=1
µn<C exp(−λn/2)

nµn < ∞holds automati
ally. Combining these two estimates yields the 
laim. 2Next we observe that an un
onditional upper bound is automati
ally also anupper bound for the 
onditional distributions:Lemma 8 For any 
losed F ⊂ P(ẼN) we have
lim sup

N→∞

1

N
log P(RN ∈ F |X) ≤ − inf

Q∈F∩Pshift(ẼN)
H(Q|Q0) a.s. (56)This is well known, here is a short proof for the sake of 
ompleteness.Proof. Write I(F ) := infQ∈F∩Pshift(ẼN) H(Q|Q0). For ǫ > 0 we have by Markov'sInequality and the un
onditional LDP22



P

(

P(RN ∈ F |X) ≥ exp(−N(I(F ) − 2ǫ)
)

≤ eN(I(F )−2ǫ)
E

[

P(RN ∈ F |X)
]

= eN(I(F )−2ǫ)
P(RN ∈ F )

≤ eN(I(F )−2ǫ)e−N(I(F )−ǫ) = e−ǫNfor N large enough, and hen
e
lim sup

N→∞

1

N
log P(RN ∈ F |X) ≤ −I(F ) − 2ǫ a.s.by the Borel-Cantelli Lemma. Take ǫ → 0 to 
on
lude. 2The following is the main result of this se
tion:Proposition 1 For any 
losed F ⊂ P(ẼN) we have a.s.

lim sup
N→∞

1

N
log P(RN ∈ F |X) ≤ − inf

Q∈F∩Pshift(ẼN)∩R
H(Q|Q0). (57)In parti
ular, for F ∩R = ∅ the 
onditional probability P(RN ∈ F |X) de
aysalmost surely super-exponentially.Remark 9 As the weak topology on Pshift(ẼN) is separable, it is standard tostrengthen (57) to hold with probability one simultaneously for all 
losed sets

F , see e.g. [2℄, proof of Prop. III.2.Proof of Proposition 1. First note that even though RN is not exa
tly shift-invariant be
ause of boundary terms, it is nearly so: for any weak neighbour-hood O of Pshift(ẼN), there is n0 su
h that RN ∈ O for N ≥ n0. As Pshift(ẼN)is 
losed in the weak topology, we 
an restri
t to F ∩ Pshift(ẼN) on the right-hand side of (57).Fix B > 0 and ε > 0 for the moment, let AB = {Q : H(Q|Q0) ≤ B} be the
B-level set of H(· |Q0). Re
all that AB is 
ompa
t with respe
t to the weaktopology on P(ẼN). For any Q ∈ F ∩ AB 
hoose an open neighbourhood UQof Q as follows:(1) If Q 6∈ R, take UQ = U as guaranteed by Lemma 5, so that (34) issatis�ed.(2) If Q ∈ R, 
hoose UQ su
h that infQ′∈UQ

H(Q′|Q0) ≥ H(Q|Q0) − ε. Thisis possible by lower semi
ontinuity of H(· |Q0).23



As F ∩AB is 
ompa
t, we 
an pi
k a �nite sub-
over UQ1 , . . . ,UQm. Note that
F ∩

(

∪m
i=1 UQi

)c is 
losed and 
ontained in A c
B, so

inf
Q∈F∩

(

∪m
i=1UQi

)c
H(Q|Q0) ≥ B,and hen
e

lim sup
N→∞

1

N
log P

(

RN ∈ F ∩
(

∪m
i=1 UQi

)c
∣
∣
∣
∣X

)

≤ −B a.s.by Lemma 8. On the other hand, for i = 1, . . . , m we have by 
onstru
tion(employing Lemma 5 if Qi 6∈ R and Lemma 8 if Qi ∈ R)
lim sup

N→∞

1

N
log P

(

RN ∈ UQi

∣
∣
∣
∣X

)

≤
(

− B
)

∨
(

− inf
Q∈F∩R

H(Q|Q0) + ε
) a.s.,
onsequently

lim sup
N→∞

1

N
log P

(

RN ∈ F
∣
∣
∣X

)

≤
(

− B
)

∨
(

− inf
Q∈F∩R

H(Q|Q0) + ε
) a.s.Take B → ∞, ε → 0 to 
on
lude. 25 Lower boundProposition 2 Let Q ∈ R ∩ Pshift(ẼN), and let O ⊂ P(ẼN) be an openneighbourhood of Q. Then we have

lim inf
N→∞

1

N
log P(RN ∈ O|X) ≥ −H(Q|Q0) a.s. (58)Remark 10 Again it is standard to strengthen (58) to hold with probabilityone simultaneously for all open sets O, see e.g. [2℄, proof of Prop. III.3.We will have o

asion to 
onsider open neighbourhoods of Q ∈ Pshift(ẼN) ofthe following form

ÕQ :=
{

Q′ ∈ Pshift(ẼN) :
∣
∣
∣

∫

gi dQ′ −
∫

gi dQ
∣
∣
∣ < ε̃i, i = 1, . . . , AÕQ

} (59)where gi : ẼN → R (i = 1, . . . , AÕQ
) satisfy ||gi||∞ ≤ 1 and depend onlyon y1, . . . , y

BÕQ for some BÕQ
∈ N. Note that su
h sets generate the weaktopology on Pshift(ẼN). 24



For x ∈ Em, m ∈ {n, n + 1, . . . } ∪ {∞} let
Rn(x) :=

1

n

n−1∑

i=0

δ
θi
(

(x|[1...n])
per
) ∈ P(EN) (60)be the 
orresponding n-th empiri
al letter pro
ess measure. Furthermore, for

1 ≤ j1 < · · · < jn let
R̃n

j1,...,jn
(x) :=

1

n

n−1∑

i=0

δ
θ̃i
(

(x|[1...j1], x|[j1+1...j2], . . . , x|[jn−1+1...jn])
per
) ∈ P(ẼN)(61)the n-th empiri
al word pro
ess measure obtained by 
utting x at the 
ut-points ji. Note that in this notation (see equations (2) and (4)),

RN = R̃N
T1,...,TN

(X).Proof of Proposition 2. We 
an assume that H(Q|Q0) < ∞, and hen
e inview of Lemma 7 we may also assume that mQ := EQ |Y 1| < ∞. Let us �rst
onsider a shift-ergodi
 Q. Note that Q ∈ R ∩ Pshift(ẼN) with EQ L1 < ∞implies ΨQ = ν⊗N, and hen
e H(Q|Q0) = −EQ log ρL1 −Hc
L(Q) by Lemma 4.We 
an �nd a neighbourhood ÕQ ⊂ O of the type de�ned in (59), and itsu�
es to restri
t to ÕQ. For given ε > 0, take the open neighbourhood

U ⊂ Pshift(EN) of ν⊗N guaranteed by Lemma 9. By the strong law, the event
{

Rn(X) ∈ U for all su�
iently large n
}has probability one. As

P(RN ∈ ÕQ|X) ≥
∑

0<j1<···<jN=[mQN ],

R̃N
j1,...,jN

(X)∈ÕQ

N∏

i=1

ρji−ji−1
,

we obtain
lim inf
N→∞

1

N
log P(RN ∈ O|X) ≥ −H(Q|Q0) − εby Lemma 9. Take ε → 0 to 
on
lude the proof in the ergodi
 
ase.Now 
onsider a general Q ∈ R∩Pshift(ẼN) with EQ |Y 1| < ∞. By the Ergodi
De
omposition Theorem (
f e.g. [4℄, Thm. 5.2.16), we 
an represent
Q =

∫

Perg(ẼN)
R ρQ(dR), (62)25



where ρQ is a probability measure on Perg(ẼN). The event
{

w− lim
L→∞

1

L

L−1∑

j=0

δθjκ(Y ) = ν⊗N

}is invariant under the (word-level) shift θ̃ and has Q-probability one, thus by(62), we have ρQ(R) = 1. Furthermore, as EQ |Y 1| =
∫

ER |Y 1| ρQ(dR), ρQmust be 
on
entrated on {Q′ : EQ |Y 1| < ∞}. As R 7→ H(R|Q0) is lowersemi
ontinuous and a�ne, (62) implies H(Q|Q0) =
∫

H(R|Q0) ρQ(dR), and Q
an be approximated by �nite 
onvex 
ombinations of Qi ∈ R ∩ Perg(ẼN) insu
h a way that the 
orresponding spe
i�
 relative entropies 
onverge as well(see e.g. [4℄, Lemma 5.4.24 and its proof). More pre
isely, for any δ > 0, we
an �nd n ∈ N, λ1, . . . , λn ∈ (0, 1) with ∑n
i=1 λi = 1 and Qi ∈ R ∩ Perg(ẼN)with mQi

= EQi
|Y 1| < ∞ (so in parti
ular ΨQi

= ν⊗N) su
h that
Q̃ := λ1Q1 + · · · + λnQn ∈ O and

H(Q|Q0) ≥ H(Q̃|Q0) − δ = λ1H(Q1|Q
0) + · · ·+ λnH(Qn|Q

0) − δ.

(63)Let Õ ⊂ O be an open neighbourhood of Q̃ of the type de�ned in (59), and let
Õm be 
orresponding open neighbourhoods of Qm, m = 1, . . . , n, but with ε̃irepla
ed by ε̃i/(2n). For (large) N ∈ N put Nm := [λmN ], Ñm := N1+· · ·+Nm(m = 1, . . . , n) and N̄m := [N1mQ1] + · · · [NmmQm ]. Note that by 
onstru
tionfor any x ∈ EN̄n and j1 < · · · < jÑn

,
R̃Nm

jÑm−1+1,jÑm−1+2,...,jÑm

(

x
∣
∣
∣
[

(N̄m−1+1)...N̄m

]

)

∈ Õm for m = 1, . . . , n

=⇒ R̃Ñn
j1,...,jÑn

(x) ∈ Õ.Let Um be a neighbourhood of ΨQm (= ν⊗N) as 
onstru
ted in Lemma 9 
orre-sponding to Q = Qm and ε = δ. Applying Lemma 9 separately on the stret
hes
X|[(N̄m−1+1)...N̄m], m = 1, . . . , n and `glueing together' the 
orresponding ve
-tors of 
ut-points, we obtain from the dis
ussion above that on the event

GN :=
{

R[NmmQm ](X|[(N̄m−1+1)...N̄m]) ∈ Um, m = 1, . . . , n
}we have

P(RN ∈ Õ|X)≥
n∏

m=1

exp
(

− Nm

(

H(Qm|Q
0) + δ

))

≥ exp
(

− N
(

λ1H(Q1|Q
0) + · · ·+ λnH(Qn|Q

0) + 2δ
))

≥ exp
(

− N
(

H(Q|Q0) + 3δ
))26



when N is su�
iently large. Now ∪M ∩N≥M GN o

urs almost surely (one 
ane.g. use large deviation results for the empiri
al distribution of X to see that
P

(

(GN)c
) de
ays exponentially in N), hen
e

lim inf
N→∞

1

N
log P(RN ∈ O|X) ≥ −H(Q|Q0) − 3δ.Now take δ → 0. 2The following lemma is the 
ombinatorial 
ore of the lower bound, its intuitive
ontent is that for a word x of length ≈ NmQ whi
h looks `ΨQ-typi
al', thereare ≈ exp(NHc

L(Q)) ways of 
utting it into N subwords in su
h a way that a`Q-typi
al' sequen
e arises. The `pri
e' for any su
h pattern of 
ut points willthen be ≈ exp(NEQ log ρ(|Y 1|)).Lemma 9 Let Q ∈ Perg(ẼN) with mQ := EQ[L1] < ∞ be given, and let ÕQbe a neighbourhood of Q as de�ned in (59). For any ε > 0 there exists an openneighbourhood U ⊂ Pshift(EN) of ΨQ and N0 ∈ N su
h that
N ≥ N0, x ∈ E[mQN ] with R[mQN ](x) ∈ Uimplies

∑

0<j1<···<jN=[mQN ],

R̃N
j1,...,jN

(x)∈ÕQ

N∏

i=1

ρ(ji − ji−1) ≥ exp
(

N
(

EQ log ρL1 + Hc
L(Q) − ε

))

. (64)
Proof. Step 1. Let Õ′

Q be de�ned as in (59) with ε̃i repla
ed by ε̃i/2 (i =

1, . . . , AOQ
), and similarly Õ′′

Q with ε̃i repla
ed by ε̃i/4. For M ∈ N, ε1 > 0,
x ∈ E[MmQ] let
JM,ε1(x) :=

{

(j1, . . . , jM) :
0 ≤ j1 < · · · < jM = [MmQ], R̃M

j1,...,jM
(x) ∈ Õ′

Q,

1
M

∑M
i=1 log ρji−ji−1

∈ [EQ log ρL1 − ε1, EQ log ρL1 + ε1]

}This is the set of all 
ut-ve
tors whi
h are `suitable' for the given word x. We
laim that for given ε2 > 0 we 
an 
hoose M su�
iently large and pairwisedi�erent words ξ1, . . . , ξL ∈ E[MmQ] su
h that
L∑

i=1

ΨQ|[1...MmQ](ξ
i)≥ 1 − ε2 and (65)

∣
∣
∣JM,ε1(ξ

i)
∣
∣
∣≥ exp

(

M(Hc
L(Q) − ε2)

)

, i = 1, . . . , L. (66)27



In order to 
he
k this let Q̂ be de�ned as in (21), re
all (dQ̂/dQ)(Y ) =
|Y 1|/mQ. By Lemma 3 and the fa
t that Q̂ ≪ Q we have Q̂-a.s.

lim
N→∞

1

N
|κ(Y 1, . . . , Y N)|= mQ

lim
N→∞

1

N
log Q̂(κ(Y 1, . . . , Y N ))=−mQH(ΨQ),

lim
N→∞

1

N
log Q̂(Y 1, . . . , Y N )=−H(Q),

lim
N→∞

1

N

N∑

i=1

log ρ(|Y i|)= EQ log ρ(|Y 1|),

lim
N→∞

RN = Q ∈ Õ′′
Q.Thus, for large enough N we 
an �nd A pairwise di�erent zi ∈ Ẽ and forea
h zk we 
an 
hoose Bk di�erent de
ompositions (yk,j,1, . . . , yk,j,N) ∈ ẼN ,

j = 1, . . . , Bk, where
κ(yk,j,1, . . . , yk,j,N) = zk for ea
h j, k,su
h that ea
h |zk| ∈ [N(mQ − ε1), N(mQ − ε1)],

A∑

k=1

Q̂(KN = zk) ≥ 1 − ε1 (67)and the following holds for k = 1, . . . , A and j = 1, . . . , Bk (unless otherwisequanti�ed):
Q̂(KN = zk)≥ exp(−N(mQH(ΨQ) + ε1)), (68)

Q̂
(

(Y 1, . . . , Y N) = (yk,j,1, . . . , yk,j,N)
)

≤ exp(−N(H(Q) − ε1)), (69)
Bk∑

j=1

Q̂
(

(Y 1, . . . , Y N) = (yk,j,1, . . . , yk,j,N)
)

≥ (1 − ε1)Q̂(KN = zk), (70)
1

N

N∑

i=1

log ρ(|yk,j,i|) ∈ [EQ log ρ(|Y 1|) −
ε1

2
, EQ log ρ(|Y 1|) +

ε1

2
], (71)

1

N

N−1∑

i=1

δ
θ̃i
(

(yk,j,1, . . . , yk,j,N)per
) ∈ Õ′′

Q. (72)Note that (69), (70) and (68) imply for ea
h k that28



Bke
−N(H(Q)−ε1) ≥

Bk∑

j=1

Q̂
(

(Y 1, . . . , Y N) = (yk,j,1, . . . , yk,j,N)
)

≥ (1 − ε1)Q̂(KN = zk) ≥ (1 − ε1)e
−N(mQH(ΨQ)+ε1)

≥ exp
(

− N(mQH(ΨQ) + 2ε1)
)for N large enough, hen
e

Bk ≥ exp
(

N(H(Q) − mQH(ΨQ) − 3ε1)
)

= exp
(

N(Hc
L(Q) − 3ε1)

)for k = 1, . . . , A by Lemma 3. Note that this together with (71) and (72)shows that
∣
∣
∣JN,ε1(z

k)
∣
∣
∣ ≥ exp

(

N(Hc
L(Q) − 3ε1)

) for k = 1, . . . , A (73)(with a notational grain of salt be
ause |zk| is not exa
tly [NmQ]). This isalmost what we need to prove (65) and (66), ex
ept for the slight nuisan
ethat the zk have not exa
tly length [NmQ] and the fa
t that (67) guaranteesthat one of the zk is very likely to o

ur as the 
on
atenation of the �rst Nwords under Q̂, whereas (65) speaks about the �rst [NmQ] letters under ΨQ.Remembering the de�nition (22) of ΨQ involving Q̂, this 
an e.g. be remediedas follows: Pi
k M so large that (67)�(73) are satis�ed for N = M . Considerthe set of words
{

ξ̃r : r = 1, . . . , R
}

:=
{

θi
(

κ(yk,j,1, . . . , yk,j,N)
)

: 0 ≤ i < |yk,j,1|, j = 1, . . . , Bk, k = 1, . . . , A
}

,trun
ate ea
h of them at [M(mQ − 2ε1] letters. Thus in view of (22) and (67),
R∑

r=1

ΨQ|[1...M(mQ−2ε1)](ξ̃
r|[1...M(mQ−2ε1)]) ≥ 1 − ε1.Now generate a set {ξi : i = 1, . . . , L} from {ξ̃r : r = 1, . . . , R} by atta
hingvarious su�xes of length [MmQ] − [M(mQ − 2ε1)] to ea
h ξ̃r in su
h a waythat ∑L

i=1 ΨQ|[1...MmQ](ξ
i) ≥ 1−2ε1. As ea
h ξi agrees with some zk ex
ept fora very short initial pie
e and a short �nal pie
e, (73) implies ∣∣∣JM,ε1(z

k)
∣
∣
∣ ≥

exp
(

M(Hc
L(Q) − 4ε1)

) for ea
h i when M is large enough. By 
hoosing ε1small enough, this proves (65) and (66).Step 2. Let A := {ξi : i = 1, . . . , L} denote the set of words of length [MmQ]
onstru
ted in Step 1. For K ≥ [MmQ] (we think of K ≫ [MmQ]) and ε3 > 029



denote the set of all x ∈ EK su
h that
∣
∣
∣
∣
∣

1

N
#{1 ≤ j ≤ K − [MmQ] : (xj , . . . , xj+[MmQ]−1) = ξi} − ΨQ|[1...MmQ](ξ

i)

∣
∣
∣
∣
∣

< ε3/Lfor all ξi ∈ A by DK,ε3. Note that x ∈ DK,ε3 means that the letter sequen
e
x is typi
al for ΨQ in the sense that the frequen
y of all the patterns ξi(i = 1, . . . , L) 
hosen above is 
lose to the theoreti
al value.We 
laim that for any ε > 0 we 
an 
hoose above ε1, ε2, ε3 su�
iently smalland L, M su�
iently large and N0 ∈ N su
h that

N ≥ N0, x ∈ D[mQN ],ε3

=⇒
∑

0<j1<···<jN=[mQN ],

R̃N
j1,...,jN

(x)∈ÕQ

N∏

i=1

ρji−ji−1
≥ exp

(

N
(

EQ log ρL1 + Hc
L(Q) − ε

))

.(74)Note that (74) implies the 
laim of the lemma by 
hoosing U as
{

Ψ ∈ Pshift(EN) :
∣
∣
∣Ψ|[1...mQM ](ξ

i) − ΨQ|[1...mQM ](ξ
i)
∣
∣
∣ < ε3/(2L), i = 1, . . . , L

}

.

Step 3. It remains to prove (74), the idea is as follows: x ∈ D[mQN ],ε3
impliesthat we 
an 
over x with ≈ N/M non-overlapping patterns from A := {ξi, i =

1, . . . , L}, up to a small fra
tion of remaining `gaps'. On ea
h of the patternsfrom the `almost 
overing', we have by 
onstru
tion su�
iently many 
hoi
es of`good 
ut-points', and the probability that the jumps bridge exa
tly the given`gaps' is 
ontrolled on the exponential s
ale be
ause the total gap length isonly a small fra
tion of N . Here are the details:
x ∈ D[mQN ],ε3 implies
#
{

j ≤ [mQN ] − [mQM ] : one of the words from A starts at j
}

≥ [NmQ](1 − ε2 − ε3)(as ∑L
i=1(ΨQ(ξi) − ε3/L) ≥ 1 − ε2 − ε3). Let n1 := n0 ∨ (2mQ/δ0), where n0,

δ0 are as given by Lemma 10. When N is large enough, we 
an �nd
ε̃ ∈ [ε/2, 2ε] (75)30



(ε̃ will impli
itly depend on N be
ause we require 
ertain expressions belowto be integers, but (75) will be satis�ed independently of N) su
h that
k = (1 − ε̃)

N

M
∈ Nand we 
an �nd k positions

n1 ≤ r1 < · · · < rk ≤ [NmQ] − n1where one of the patterns from A is written on x, i.e.
x|[rj ...rj+[MmQ]−1] = ξi for some i ∈ {1, . . . , L}, j = 1, . . . , k ,and

rj − rj−1 ≥ [mQM ] + n1, j = 1, . . . , k.Note that between the end of the (j − 1)-th and the beginning of the j-thsubword from A on x, there is a `gap' of length
sj := rj − rj−1 − [mQM ] (≥ n1).The total length of these gaps is

s1 + · · ·+ sk+1 = [NmQ] − (1 − ε̃)
N

M
[MmQ] = ε′NmQ.The display above impli
itly de�nes ε′, when N (and M) are large enough, itwill satisfy

ε′ ∈
[

ε̃(1 − δ0/2), ε̃(1 + δ0/2)
]

, (76)where δ0 is as given by Lemma 10.The sum appearing in (74) has N summation variables, and on ea
h of the k`good subwords of x' �xed above, we will use M of them. Thus there remain
N − kM = ε̃Nsummation variables whi
h we 
an use to `�ll the gaps'. We 
an �nd m1, . . . ,

mk+1 ∈ N su
h that
m1 + · · · + mk+1 = ε̃Nand

(1 − δ0)
sj

mQ
≤ mj ≤ (1 + δ0)

sj

mQ
, j = 1, . . . , k + 1.To see this 
onsider �rst m̃i := (si/mQ)(ε̃/ε′). Then we have ∑ m̃i = ε̃N , but the

m̃i need not be integers. On the other hand we have
si

mQ
(1 − δ0) ≤ m̃i − 1 ≤ ⌈m̃i⌉ ≤ m̃i + 1 ≤

si

mQ
(1 + δ0)31



and S :=
∑k+1

i=1 (m̃i − ⌈m̃i⌉) ∈ {0, 1, . . . , k + 1}. Then put e.g. mi := ⌈m̃i⌉ + 1 if
i ≤ S, mi := ⌈m̃i⌉ otherwise.In order to generate ve
tors (j1, . . . , jN) suitable for the righthand side of (74),we 
an pro
eed as follows: On the `good subwords', 
hoose any M-ve
tor of
ut-points from the 
orresponding JM,ε1, and use mi summation variables togenerate the `jump' over the i-th gap. Using Lemma 10, we 
an 
hoose for ea
hgap mi 
ut-lengths whose total probability under ρ is at least exp(−Csi). Bythe de�nition of JM,ε1, any su
h ve
tor (j1, . . . , jN) will have the propertythat RN

j1,...,jN
(x) ∈ ÕQ be
ause the 
ontribution to RN

j1,...,jN
(x) from the `gaps'is negligible. Furthermore, again by the de�nition of JM,ε1 and the 
hoi
e ofthe 
ut-points on the gaps, we have

N∏

i=1

ρji−ji−1
≥ exp

(

kM
(

EQ log ρL1 − ε1

))

× exp
(

− Cε′mQN
)

= exp
(

N
(

(1 − ε̃)(EQ log ρL1 − ε1) − ε′CmQ

))for ea
h su
h 
hoi
e. Finally, by (66) there are at least
(

exp
(

M(Hc
L(Q) − ε2)

))k

= exp
(

N(1 − ε̃)(Hc
L(Q) − ε2)

)admissible 
hoi
es of 
ut-points on the good subwords. Combining, we obtainthat the righthand side of (74) is at least
exp

(

N
(

(1 − ε̃)(EQ log ρL1 + Hc
L(Q) − ε1 − ε2) − ε′CmQ

))whenever N is su�
iently large. 2The following lemma is a standard result about aperiodi
 renewal pro
esses:Lemma 10 Let mQ ∈ [1,∞). There exist n0 ∈ N, C > 0 and δ0 > 0 su
hthat for any pair (m, n) ∈ N
2 satisfying

n ≥ n0,
n

mQ
(1 − δ0) ≤ m ≤

n

mQ
(1 + δ0)there are ℓ1, . . . , ℓm with

ℓ1 + · · · + ℓm = n and m∏

i=1

ρℓi
≥ exp(−Cn).Remark 11 Note that the proof of Proposition 2 via Lemma 9 is rather
ombinatori
. At least in the 
ase of a neighbourhood of an ergodi
 Q ∈ R,one 
an use the 
oupling between X and a shift of κ(Y ) under Q̂ given byRemark 6 to employ a `
onditional tilting' argument whi
h is more in theprobabilisti
 spirit of 
lassi
al proofs of lower large deviation bounds.32



A
knowledgementThe author would like to thank Andreas Greven and Frank den Hollander forvery stimulating dis
ussions on this subje
t.Referen
es[1℄ Erwin Bolthausen, Frank den Hollander, Lo
alization transition for a polymernear an interfa
e. Ann. Probab. 25 (1997), no. 3, 1334�1366.[2℄ Fran
is Comets, Large deviation estimates for a 
onditional probabilitydistribution. Appli
ations to random intera
tion Gibbs measures. Probab.Theory Related Fields 80 (1989), no. 3, 407�432.[3℄ Amir Dembo, Ofer Zeitouni, Large deviations te
hniques and appli
ations.Jones and Bartlett Publishers, Boston, 1993.[4℄ Jean-Dominique Deus
hel, Daniel W. Stroo
k, Large deviations. A
ademi
Press, Boston, 1989.[5℄ Ri
hard S. Ellis, Entropy, large deviations, and statisti
al me
hani
s. Springer-Verlag, New York, 1985.[6℄ Hans Föllmer, Steven Orey, Large deviations for the empiri
al �eld of a Gibbsmeasure. Ann. Probab. 16 (1988), no. 3, 961�977.

33


