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1 Senario and main resultLet E be a ountable set (`letters' or `symbols'), ν ∈ P(E) a probabilitymeasure on E with ν(x) > 0 for all x ∈ E. Let (Xi)i∈N be an i.i.d.-ν sequene,
(τj)j∈N an independent i.i.d.-ρ sequene with values in N. We assume that ρhas exponentially bounded tails
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and that the τs generate an aperiodi renewal proess, i.e. gcd{i : ρi > 0} = 1.Cut out the X-sequene aording to τ : Put T0 := 0, Ti := Ti−1 + τi for i ≥ 1,
Y i =

(

XTi−1+1, XTi−1+2, . . . , XTi

)

, i ∈ N, (2)with values in Ẽ = ∪∞
k=1E

k (`words'). We write |y| = k for the `length' of
y = (y1, . . . , yk) ∈ Ẽ. By the independene properties of the ingredients,
Y = (Y i)i=1,2,... is then an i.i.d. sequene with marginal distribution

q0
(

(x1, . . . , xk)
)

:= P(Y 1 = (x1, . . . , xk)) = ρk

k∏

i=1

ν(xi). (3)For a sequene (Y i) with values in ẼN we write Li = |Y i| for the length of the
i-th word (in the present senario, we have Li = τi, but it will be onvenientto have a variable for word lengths also if Y does not arise from a onstrutionwith a τ -sequene). Note that we have a (left) shift θ : EN → EN on lettersequenes and a (left) shift θ̃ : ẼN → ẼN on word sequenes. Let

RN :=
1

N

N−1∑

i=0

δ
θ̃i
(

(Y 1, . . . , Y N )per
) (4)be the empirial distribution proess of the words with values in P(ẼN), theprobability measures on sequenes of words. Here, (y1, . . . , ym

)per denotes theperiodi extension of (y1, . . . , ym) ∈ Ẽm to an element of ẼN.The sets E and Ẽ are ountable, so they are Polish spaes with the disretemetri. Then EN and ẼN are again metri spaes e.g. via
dAN

(

(z1, z2, . . . ), (z
′
1, z

′
2, . . . )

)

:=
∞∑

n=1

2−|n|
(

dA(zn, z
′
n) ∧ 1

)for A = E or A = Ẽ. This metri indues the produt topology on EN resp.
ẼN. We equip P(ẼN) with the topology of weak onvergene. Write Pshift(ẼN)for the shift invariant probability measures on ẼN, and Perg(ẼN) for the set of(θ̃-shift) ergodi probability measures on ẼN. Note that Pshift(ẼN) is a losedsubset of P(ẼN).It is well known that the family of distributions L (RN) satis�es a large devi-ation priniple, the `good' rate funtion is given by

H(Q|Q0) = lim
N→∞

1

N
h
(

Q|FN

∣
∣
∣Q0|FN

)

, (5)the spei� relative entropy with respet to Q0 := L (Y ) = (q0)⊗N, see e.g. [6℄,[5℄, Chap. IX or [3℄, Chap. 6.5. Here FN = σ(Y1, . . . , YN), Q|FN
is Q restrited2



to the �rst N words, and for probability measures µ, µ′ on some measurablespae,
h(µ|µ′) =







∫

log dµ
dµ′ dµ if µ is absolutely ontinuous w.r.t. µ′,

∞ otherwise,denotes the relative entropy of µ with respet to µ′. Our aim is to understandthe almost sure large deviation behaviour of the family of random probabilitydistributions
L (RN |X).As P(EN) and P(ẼN) are Polish, we an and shall think in the following ofa family of regular onditional distributions P(RN ∈ · |X). In fat, it an begiven expliitly as follows

L (RN |X) (6)
=

∑

j1<···<jN

N∏

i=1

ρ(ji − ji−1)
N−1∑

k=0

1

N
δ
θ̃k
(

X|[1...j1], X|[j1+1...j2], X|[jN−1+1...jN ]

)per ,where for x = (xi) ∈ EN, k < ℓ

x|[k...ℓ] := (xk, xk+1, . . . , xℓ) ∈ Ẽ. (7)Quantities involving the onditional expetation of exponential funtionalsof RN appear naturally in the omputation of the quenhed free energy forpolymer models in disordered media. In partiular, the asymptoti evaluationof the free energy an be formulated as a onditional large deviation problem,and variational formulas as in Corollary 1 make the energy-entropy trade-o� expliit. This potential appliation motivated our original interest in thequestion studied in this note, see Setion 2 for more details.It is natural to invert the utting by onatenation: Let the onatenationoperator κ : ẼN → EN be de�ned in the obvious way by
κ
(

(y1, y2, y3, . . . )
)

=
(

y1
1, y

1
2, . . . , y

1
ℓ1

, y2
1, y

2
2, . . . , y

2
ℓ2

, y3
1, . . .

)for yi = (yi
1, . . . , y

i
ℓi
) ∈ Ẽ. For �nite sequenes of words, κ(y1, . . . , yn) ∈

E|y1|+···+|yn| is de�ned analogously.One an imagine that beause of the onditioning, whih �xes a typial re-alisation of the X-sequene, the onditional law L (RN |X) feels restritions,and that some deviations, whih are simply exponentially unlikely under the3



unonditional law, beome atually impossible one a typial X is �xed. Let
R :=

{

Q ∈ P(ẼN) : w− lim
L→∞

1

L

L−1∑

j=0

δθjκ(Y ) = ν⊗N Q − a.s.}, (8)where w−lim denotes the limit with respet to the weak topology on P(EN).
Q ∈ R means that under Q, the onatenation of words has almost surely thesame asymptoti statistis as a typial realisation of (Xi). Obviously Q0 ∈ R.Our main result is a full LDP for the (random) family L (RN |X), N ∈ N, itroughly states that under P(RN ∈ · |X), only suh deviations an be realisedwhih respet the restrition set R.Theorem 1 Under Assumption (1), the following events our with probabil-ity one:

lim sup
N→∞

1

N
log P

(

RN ∈ F
∣
∣
∣X

)

≤− inf
Q∈F∩R∩Pshift(ẼN)

H(Q|Q0)for all losed F ⊂ P(ẼN), (9)
lim inf

N

1

N
log P

(

RN ∈ G
∣
∣
∣X

)

≥− inf
Q∈G∩R∩Pshift(ẼN)

H(Q|Q0)for all open G ⊂ P(ẼN). (10)A standard appliation of Varadhan's Lemma yieldsCorollary 1 For any bounded ontinuous funtion Φ : ẼN → R we have
lim
N

1

N
log E

[

exp
(

N
∫

Φ(y)RN(dy)
)
∣
∣
∣
∣X
]

= sup
Q∈R∩Pshift(ẼN)

{ ∫

Φ(y)Q(dy) − H(Q|Q0)
} a.s. (11)

Remark 1 The same results hold for the `non-periodi' �avour of the empir-ial proess,
Rnon−per

N :=
1

N

N−1∑

i=0

δθ̃iY .Furthermore, the restrition to aperiodi ρ is not severe. If ρ has period d > 1,simply onsider E ′ := Ed as a new alphabet.4



Remark 2 Theorem 1 does not hold in this form without assumptions on thetails of ρ. In fat, in a situation where ρn deays only algebraially, one anprobe exponentially (in N , the number of piees one wants to ut) far aheadinto the X-sequene in order to �nd regions where X looks atypial.For a onrete example, onsider the following senario: Let (Xi) be i.i.d.
Ber(1/2), ρn = C/na, a > 2, so mρ :=

∑

n nρn < ∞. Put
σN := min{k ∈ N : Xk = Xk+1 = Xk+[N(mρ+ǫ)] = 1}.Let q1(x1, . . . , xm) := ρm1(x1 = · · · = xm = 1), and let O ⊂ P(ẼN) be a(small) neighbourhood of (q1)⊗N. Under (q1)⊗N, all words onsist entirely of

1s. Note that log σN ∼ N(mρ + ǫ) log 2 by the Erd®s-Rényi law and P(RN ∈
O |X) ≥ e−ǫNρσN

by Lemma 9 below (note that for Q = (q1)⊗N, we have
Hc

L(Q) = −EQ log ρL1 in this ase, f Lemma 3) for large enough N , so
lim inf
N→∞

1

N
log P(RN ∈ O|X) ≥ lim inf

N→∞

1

N
log ρσN

> −∞.On the other hand, if (9) held true in this senario, the answer would have tobe −∞, beause (q1)⊗N 6∈ R.By Lemma 8, (9) will hold with R replaed by R, but in view of Remark 8in Setion 3, this amounts essentially only to the unonditional upper bound,whih we expet not to be sharp. The intuitive argument advoated on page 3,that any limiting Q must be built `on top' of a typial X-sequene, is not validin general. In fat, when ρ has algebrai tails, there will be a trade-o� on theexponential sale between how deep one probes into the �xed X-sequene,whih allows to �nd more atypial regions, and the prie for those long jumps.In view of the potential appliation to the omputation of quenhed free ener-gies for polymer models in random media onsidered in Setion 2, it appears avery interesting problem to �nd a quantitative desription of this phenomenon.This question will be pursued in future work.Remark 3 In many appliations, see e.g. Setion 2 below, one is atuallyinterested in a level-2 large deviation problem, i.e. the behaviour of the em-pirial distribution N−1∑N
i=1 δY i. This an be obtained from Theorem 1 via aontration priniple. It appears that there is no `intrinsi' formulation of theonditional large deviation behaviour on level 2, as the restrition set R anonly be expressed in terms of the empirial proess (i.e. a level 3 objet).Remark 4 It is oneivable that the results ontinue to hold if the disrete set

E is replaed by a Polish spae. A tehnial di�ulty one will enounter whentransferring the arguments to a general ontext is to give a suitably generalisedde�nition of the (onditional) spei� entropy appearing in Lemmas 3 and 4.We have not pursued this issue further.5



The rest of this paper is organised as follows: In Setion 2 we indiate howCorollary 1, or rather, its analogue in a senario where in ontrast to As-sumption (1), ρ has algebrai tails, ould be used to represent the quenhedfree energy of direted polymer models with random disorder via a variationalformula. We illustrate the use of Corollary 1 by expressing the quenhed freeenergy of a modi�ed polymer model. Coming bak to the main plot, we give inSetion 3 a useful haraterisation of the property Q ∈ R under the additionalonstraint that Q has �nite mean word lengths. This haraterisation allowsto make a onnetion between Q and an `underlying' i.i.d.-ν sequene, and todeompose the relative entropy into a part derived from the onatenated let-ter sequene plus a part related to the word lengths, given the onatenation.In Setion 4, we prove the upper bound (9), Setion 5 treats the lower bound(10).2 Relation to quenhed free energy omputationsComputations involving onditional expetations of exponential funtionals of
RN appear in studies of direted polymer models in random environments. Asan example let us onsider the (modi�ed) quenhed spei� free energy for therandom heteropolymer model (see [1℄ and referenes there), de�ned as

fque(λ, h) := lim
1

N
log Z∗

N,X,where
Z∗

N,X = E

[

exp
(

λ
N∑

n=1

(Xn + h)sign(Sn)
)

; SN = 0
]

.Here, λ, h ≥ 0 are parameters, (Sn) is a symmetri simple random walk on Zstarting at S0 = 0, (Xn) are i.i.d. random variables, independent of S, takingthe values ±1 with probability 1/2 eah, and E refers to expetation withrespet to (Sn). In this ontext, if Sn = 0, `sign(Sn)' is de�ned as sign(Sn−1) �one thinks of the `bonds' between the steps of the random walk being aboveor below the axis. We impliitly assume that N is even, otherwise Z∗
N,X = 0.This is a model for a polymer with a random omposition of hydrophili andhydrophobi monomers near an oil-water interfae. The `letter' Xi models thea�nity of monomer i towards di�erent parts of the solvent. h models dif-ferenes in the a�nity of the two types of monomers, and λ is an inversetemperature parameter. The free energy itself uses the same expression with-out the restrition on {SN = 0}, this di�erene is irrelevant in the limit (see[1℄, Lemma 2).Note that for the omputation of the free energy, the details of the a priorimeasure on paths (Sn) are not important. All that matters is the fat that6



exursions from 0 are independent and symmetri, the only datum that isrequired to ompute Z∗
N,X is the distribution (ρn) of the exursion lengths: Bydeomposing the path S0, S1, . . . , SN into exursions away from 0 and assigningindependent random signs to the exursions, we an rewrite

Z∗
N,X =

∑

k

∑

j1<···<jk=N

k∏

i=1

ρji−ji−1
×

k∏

ℓ=1

cosh
(

λ
jℓ∑

i=jℓ−1+1

(Xi + h)
)

, (12)where ρn = P0(S1, . . . , Sn−1 6= 0, Sn = 0) are the return probabilities for therandom walk. Thus for z ≥ 0 the (random) generating funtion of Z∗
N,X isgiven by

θ(z) =
∑

N

zNZ∗
N,X

=
∑

N

∑

k

∑

j1<···<jk=N

k∏

i=1

ρji−ji−1
×

k∏

ℓ=1






zji−ji−1 cosh

(

λ
jℓ∑

i=jℓ−1+1

(Xi + h)
)






=
∞∑

k=1

Fk(X; z),where
Fk(X; z) :=

∑

j1<···<jk

k∏

i=1

ρji−ji−1
exp

( k∑

ℓ=1

fz

(

(Xjℓ−1+1, . . . , Xjℓ
)
)) (13)with

fz

(

(x1, . . . , xℓ)
)

:= ℓ log z + log cosh
(

λ
ℓ∑

i=1

(xi + h)
)

. (14)By introduing an auxiliary i.i.d.-ρ sequene (τi) as in Setion 1 and de�ning
(Y i) as in (2), this an be expressed as

Fk(X; z) = E

[

exp
(

k
∫

fz(y) π1Rk(dy)
)∣
∣
∣
∣X
]

, (15)where π1 : ẼN → Ẽ is the projetion to the �rst oordinate (and hene
π1Rk := Rk ◦ (π1)

−1 the empirial distribution of the �rst k words).Thus if we ould (at least in priniple) ompute the almost sure asymptotigrowth rate
ϕ(z) := lim

k→∞

1

k
log Fk(X; z)via an analogue of Corollary 1, we obtained that the radius of onvergene of

θ(z) is given by rθ := sup{z ≥ 0 : ϕ(z) < 0}, and hene the quenhed spei�free energy
fque(λ, h) = − log sup{z ≥ 0 : ϕ(z) < 0} = − log rθ.7



Note that the tails of ρn, the return probability of a 1-dimensional randomwalk, deay only algebraially in this senario. In partiular, ρ does not satisfyAssumption (1), so that the appliation of Corollary 1 to the omputation of
ϕ(z) is not justi�ed (and would, in view of Remark 2, almost ertainly yield aninorret result). We reiterate our statement from the end of Remark 2 thatin view of the above onsiderations, it would be very interesting to extendTheorem 1 to the general ase.In order to illustrate the appliation of the onditional large deviation priniplestated in Setion 1, let us onsider a modi�ed model, wherethe partition funtion Z∗

N,X is given by (12) with
ρ satisfying lim supn→∞

(

log ρn

)

/n < 0. (16)This is a model for a situation where the polymer has a strong attrationtowards the interfae, as under the a priori measure exursions have shorttails. We do not advertise this model as partiularly physially relevant, wewould rather view it as an illustration of the use of the tehniques developedin this paper under the restrition of Assumption 1. There an never be ade-pinning transition (as is the ase for the original model, see [1℄), but stillfor �xed realisation of (Xi), the polymer an try to optimise its on�gurationby grouping exursions aording to strethes of Xis with the same sign, andthere will be an energy-entropy trade-o�. In this situation, the appliation ofCorollary 1 will be justi�ed.Let us brie�y disuss the orresponding annealed senario, where one alsoaverages over the sequene X desribing the polymer omposition. Let
f ann(λ, h) := lim

1

N
log E

[

Z∗
N,X

]be the annealed spei� free energy and θann(z) be the generating funtionof the sequene E[Z∗
N,X ]. Arguing as above we have θann(z) =

∑∞
k=1 F ann

k (z)where F ann
k (z) := E[Fk(X; z)]. As under the annealed measure the `markedexursions' (Y i)i=1,2,... are i.i.d., we see from (15) that F ann

k (z) =
(

F ann
1 (z)

)k,hene
ϕann(z) := lim

k→∞

1

k
log F ann

k (X; z) = log F ann
1 (z).Note that

F ann
1 (z) =

∞∑

j=1

zjρjE

[

cosh
(

λ
j
∑

i=1

(Xi + h)
)]

=
∞∑

j=1

zjρj

j
∑

m=0

2−j

(

j

m

)

cosh
(

λ(j − 2m + jh)
)

.8



This an be viewed as a power series in z with positive oe�ients, let Rann
1be its radius of onvergene (note that Rann

1 > 0 as cosh(λ(1+h)j) grows onlyexponentially in j). Let zann
∗ be the (unique) solution of F ann

1 (zann
∗ ) = 1 (whihexists beause F ann

1 (0) = 0, F ann
1 (z) → ∞ as z ր Rann

1 ), hene
f ann(λ, h) = − log

(

sup{z ≥ 0 : ϕann(z) < 0}
)

= − log(zann
∗ ).An appliation of Corollary 1 yieldsLemma 1 For the modi�ed model (16) we have for any 0 ≤ z < Rann

1

ϕ(z) = sup
Q∈R∩Pshift(ẼN)

{ ∫

fz(y)(π1Q)(dy) − H(Q|Q0)
} a.s., (17)where in the notation of Setion 1, E = {±1}, ν(±1) = 1/2, q0
(

(x1, . . . , xℓ)
)

=

2−ℓρℓ for (x1, . . . , xℓ) ∈ {±1}ℓ, Q0 = (q0)⊗N, fz is de�ned in (14) and R in(8).Note that (15) atually requires only a level-2 large deviation analysis, butit seems that in order to express the restrition set R, one is fored to use alevel-3 formulation � the empirial distribution of words alone seems too weakto apture the restritions oming from onditioning on a typial X sequene.An expliit evaluation of the variational problem in (17) appears extremelydi�ult in general. Still, we an obtain from Lemma 1 that the `quenhed toannealed bound' is always strit in this model, i.e.
fque(λ, h) < f ann(λ, h) ∀λ > 0, h ≥ 0 (18)so there is no so-alled weak disorder regime. This is not very surprising, wewill see below that in the unonditional problem, the sequene X and theexursions both behave atypially in order to maximise the free energy, whilein the quenhed ase, X is fored to be typial.Lemma 1 is basially Corollary 1 applied to the asymptoti evaluation of (15).There is a slight ompliation beause fz is not bounded, but (at least) for

z < Rann
1 we an �nd ǫ > 0 suh that

lim sup
k→∞

1

k
log E

[

exp
(

(1 + ǫ)k
∫

fz(y) (π1Rk)(dy)
)
∣
∣
∣
∣
∣
X

]

< ∞ a.s., (19)whih su�es for an appliation of Varadhan's Lemma, see e.g. Condition 4.3.3in [3℄. In order to hek (19) note that fz(y) ≤ C ′|y|, thus for z < Rann
1 we an9



�nd ǫ > 0 and z′ ∈ (z, Rann
1 ) suh that (1 + ǫ)fz(y) ≤ fz′(y) for all y ∈ Ẽ. As

F ann
k (z′) grows only exponentially, the same will hold true for the sequene ofonditional expetations inside the log in (19), e.g. by a simple ombination ofMarkov's Inequality and the Borel-Cantelli Lemma as in the proof of Lemma 8.In order to prove (18), it su�es to hek that ϕ(z) < ϕann(z) for all z ∈

(0, Rann
1 ). For this it is instrutive to apply Varadhan's Lemma to the unon-ditional distribution and represent

ϕann(z) = log F ann
1 (z) = sup

Q∈Pshift(ẼN)

{ ∫

fz(y)(π1Q)(dy) − H(Q|Q0)
}

= sup
q∈P(Ẽ)

{ ∫

fz(y)q(dy)− h(q|q0)
}

= log F ann
1 (z) − inf

q∈P(Ẽ)
h(q|q∗,ann),

(20)
where q∗,ann

(

(x1 . . . , xℓ)
)

= 1
F ann

1 (z)
ρℓ
∏ℓ

i=1 ν(xi) × exp f
(

(x1, . . . , xℓ)
) is (themarginal of) the unonstrained maximiser, whih depends impliitly on z.Equality between the two sup-terms above stems from the fat that amongall Q with given marginal π1Q = q, the spei� relative entropy H(Q|Q0) isminimised by the produt measure Q = q⊗N.Fix z ∈ (0, Rann

1 ), note that Q∗,ann := (q∗,ann)⊗N 6∈ R. A quik way to hekthis is as follows: In ase h > 0, we see easily that ∑y y1q
∗,ann(y) > 0, so

limL→∞ L−1∑L
j=1 κ(Y )j > 0 almost surely under Q∗,ann, and hene Q∗,ann 6∈ R.On the other hand, if h = 0 we an observe that ∑|y|=ℓ yiyjq

∗,ann(y) > 0 forany ℓ ≥ 2, 1 ≤ i, j ≤ ℓ, i.e. letters are positively orrelated under q∗,ann,so limL→∞ L−1∑L
j=1 κ(Y )jκ(Y )j+1 > 0 almost surely under Q∗,ann, and heneagain Q∗,ann 6∈ R.As R ∩ AM is ompat (see Remark 8), where AM = {Q : H(Q|Q0) ≤ M}is the M-level set of the rate funtion, and Q∗,ann 6∈ R, we an �nd for any

M > 0 a δ > 0 suh that Bδ(Q
∗,ann) ∩ AM ⊂ Rc, and so by Lemma 1

ϕ(z)≤ sup

Q∈Pshift(ẼN)∩

(

(Bδ(Q∗,ann))c∪A c
M

)

{ ∫

f(y)(π1Q)(dy) − H(Q|Q0)
}

< ϕann(z)for a suitable hoie of M and δ in view of (20).10



3 A haraterisation of the restrition setImagine utting the sequene X into piees and then looking at the empirialproess of these piees. Then obviously the onatenation κ(Y ) under a limit-ing Q ∈ Pshift(ẼN) need not be shift invariant. For example, if we arrange the
τs in suh a way that the ut-points tend to our before a ertain pattern,then under RN , the law of the onatenated sequene will have a (possiblyatypial under ν⊗N) inlination to begin with this pattern.A way to reinstate shift-invariane (and in some way `get bak the underlyingi.i.d. sequene') whih works when Q has �nite mean word lengths is to size-bias Q aording to L1 := |Y 1| and then `randomise out the origin' � this isfamiliar from the theory of stationary renewal proesses. Using this idea weobtain in this setion a haraterisation of the set R de�ned in (8).For Q ∈ Pshift(ẼN) with mQ := EQ L1 < ∞ let Q̂ ∈ P(ẼN) be de�ned by

Q̂
(

(Y i, . . . , Y k) ∈ Bk

)

=
1

mQ
EQ

[

L11Bk

(

(Y i, . . . , Y k)
)] (21)(for any k ∈ N, and measurable Bk ⊂ Ẽk). Let (Ŷ i)i∈N have law Q̂, given Ŷ ,

V uniform on {0, 1, . . . , L1 − 1}, put
Z := θV

(

κ(Ŷ )
)

. (22)We denote the distribution of Z obtained in this way by ΨQ ∈ P(EN) to stressthat it depends on Q. Expliitly, for measurable A ⊂ EN

ΨQ(A) =
1

mQ
EQ

[ L1−1∑

i=0

1A

(

θi(κ(Y ))
)]

. (23)We hek that ΨQ is shift-invariant: Fix m ∈ N, Bm ⊂ Em measurable. Wehave
P

(

(Z1, . . . , Zm) ∈ Bm

∣
∣
∣ Ŷ
)

=
1

|Ŷ 1|

|Ŷ 1|
∑

i=1

1Bm

(

(κ(Ŷ )i, . . . , κ(Ŷ )i+m−1)
)

,hene (with a slight abuse of notation)
ΨQ

(

(Z1, . . . , Zm) ∈ Bm

)

=
1

mQ

EQ

[

L1
1

L1

L1∑

i=1

1Bm

(

(κ(Ŷ )i, . . . , κ(Ŷ )i+m−1)
)]

=
1

mQ

EQ

[ L1∑

i=1

1Bm

(

(κ(Ŷ )i, . . . , κ(Ŷ )i+m−1)
)]

.11



As Q is θ̃-shift invariant,
EQ

[ L1∑

i=1

1Bm

(

(κ(Ŷ )i, . . . , κ(Ŷ )i+m−1)
)]

= EQ

[ L1+···+Lk∑

i=L1+···+Lk−1+1

1Bm

(

(κ(Ŷ )i, . . . , κ(Ŷ )i+m−1)
)]for any k ∈ N, hene

ΨQ

(

(Z1, . . . , Zm) ∈ Bm

)

=
1

MmQ

EQ

[ L1+···+LM∑

i=1

1Bm

(

(κ(Ŷ )i, . . . , κ(Ŷ )i+m−1)
)]for all M ∈ N. Similarly, we have

ΨQ

(

(Z2, . . . , Zm+1) ∈ Bm

)

=
1

MmQ
EQ

[ L1+···+LM∑

i=1

1Bm

(

(κ(Ŷ )i+1, . . . , κ(Ŷ )i+m)
)]

,onsequently
∣
∣
∣
∣ΨQ

(

(Z1, . . . , Zm) ∈ Bm

)

− ΨQ

(

(Z2, . . . , Zm+1) ∈ Bm

)
∣
∣
∣
∣ ≤

2

MmQ
.Taking M → ∞ we see that ΨQ is shift invariant.Remark 5 If Q is θ̃-shift ergodi and has �nite mean word lengths EQ |Y 1| <

∞, then ΨQ is θ-shift ergodi.Proof. Let A ⊂ EN be θ-shift invariant. Then for y = (y1, y2, . . . ) ∈ Ẽ, κ(y) ∈
A implies θi(κ(y)) ∈ A for any i, so in partiular κ(θ̃(y)) = θ|y

1|(κ(y)) ∈ A.Thus, the event {κ(Y ) ∈ A} is θ̃-shift invariant, so Q(κ(Y ) ∈ A) ∈ {0, 1} byassumption. On the other hand, we see from (23) and the disussion abovethat
ΨQ(A) =

1

mQ
EQ

[ |Y 1|−1
∑

i=0

1A

(

θi(κ(Y ))
)]

=
1

mQ
EQ

[

|Y 1| 1A

(

κ(Y )
)]

∈ {0, 1}.

2Lemma 2 Assume that Q ∈ Pshift(ẼN) satis�es EQ |Y 1| < ∞. Then we have
Q ∈ R if and only if ΨQ = ν⊗N. In this ase, LQ(κ(Y )) ≪ ν⊗N.12



Proof. Let ΨQ = ν⊗N. Then under Q̂, the sequene κ(Y ) almost surely hasthe `right' asymptoti pattern frequenies (i.e.
lim

N→∞

1

N

N∑

i=1

1Bk

(

(κ(Y )i, . . . , κ(Y )i+k−1)
)

= ν⊗k(Bk) a.s.for any measurable Bk ⊂ Ek, k ∈ N). As Q ≪ Q̂ (in fat, the density
(EQ L1)/L1 is stritly positive), the same holds true for Q, i.e. Q ∈ R.Now assume that Q ∈ R. As Q̂ ≪ Q, the sequene Zi, i ∈ N under ΨQ alsohas the `right' asymptoti pattern frequenies, i.e.

lim
N→∞

1

N

N∑

i=1

1Bk

(

(Zi, . . . , Zi+k−1)
)

= ν⊗k(Bk) a.s. (24)for any k ∈ N, Bk ⊂ Ek measurable. It su�es to verify that any shift invariantsequene (Zi) satisfying (24) is in fat an i.i.d.-ν sequene. The limit on theleft-hand side of (24) is equal to
P

(

(Z1, . . . , Zk) ∈ Bk

∣
∣
∣I

)where I is the shift-invariant σ-�eld. Thus
P

(

(Z1, . . . , Zk) ∈ Bk

)

= E

[

P

(

(Z1, . . . , Zk) ∈ Bk

∣
∣
∣I

)]

= ν⊗k(Bk)so that indeed L (Z) = ν⊗N.Now assume that ΨQ = ν⊗N and let A ⊂ EN be a (measurable) ν⊗N-null set.Then we have
0 = ν⊗N(A) = ΨQ(A) =

1

EQ L1

EQ

[L1−1∑

i=0

1A(θiκ(Y ))
]

≥
1

EQ L1

Q
(

κ(Y ) ∈ A
)

.This proves that LQ(κ(Y )) ≪ ν⊗N. 2Remark 6 If Q ∈ R and EQ L1 < ∞, by the above there is a random (Y, V )suh that Y ∼ Q̂ and θV κ(Y ) is distributed like an i.i.d.-ν sequene. We an`invert' this relation, at least in the two-sided senario: There is (on someprobability spae) a random pair (∆, Z) with values in Z × EZ suh that
L (Z) = ν⊗Z and L (θ∆Z) = LQ̂(κ(Y )). For example, one an take (Y, V ) asabove then de�ne Z := θV κ(Y ), ∆ := −V .Remark 7 Note that the mappings Q 7→ Q̂, Q 7→ ΨQ are not ontinuouswith respet to the weak topology on Pshift(ẼN) (as ẼN ∋ (yi)i 7→ |y1| is notbounded, weak onvergene need not imply onvergene of the �rst moment13



of piee lengths). On the other hand, assume that QN ∈ Pshift(ẼN) onvergeweakly to Q∞ and that additionally EQN

[

L1

]

→ EQ∞

[

L1

] as N → ∞. Then
Q̂N → Q̂∞ weakly on P(ẼN) and ΨQN

→ ΨQ∞ weakly on P(EN).Proof. Note that by the assumptions, the family {LQN
(L1), N ∈ N} is uni-formly integrable. Hene also for any k ∈ N, yi ∈ Ẽ, the family {LQN

(L11(Y i =
yi, i = 1, . . . , k)), N ∈ N} is uniformly integrable. This implies

Q̂N (Y i = yi, i = 1, . . . , k) → Q̂∞(Y i = yi, i = 1, . . . , k).Similarly, beause 0 ≤
∑L1

i=1 1(κ(Y )i = z1, . . . , κ(Y )i+m = zm+1) ≤ L1 (for any
m ∈ N, zj ∈ E), we onlude that

ΨQN
(Z1 = z1, . . . , Zm+1 = zm+1) → ΨQ∞(Z1 = z1, . . . , Zm+1 = zm+1).

2Remark 8 Muh of the di�ulty in the proofs below stems from the fatthat the set R is not losed in the weak topology. In fat, R ∩ Pshift(ẼN) =
Pshift(ẼN). On the other hand, let

AM :=
{

Q ∈ Pshift(ẼN) : H(Q|Q0) ≤ M
}

, M ≥ 0be the level sets of the rate funtion Q 7→ H(Q|Q0). One an see from theonsiderations in Lemma 5 and Proposition 2 thatfor any M , the set R ∩ AM is losed (in the weak topology on P(ẼN)).(25)Proof. For the �rst laim it su�es to show R ⊃
{

Q ∈ Pshift(ẼN) : EQ

[

|Y 1|
]

<

∞
}, as this set is dense in Pshift(ẼN). Fix an arbitrary Q in Pshift(ẼN) satis-fying EQ |Y 1| < ∞. Let q̃ ∈ P(Ẽ) be given by

q̃
(

(x1, . . . , xn)
)

=
C

n−3/2

n∏

i=1

ν(xi),i.e. the length of the word has heavy tails, given the length is n, it lookslike n independent draws from ν. De�ne QN as follows: under Q̃N , the bloks
(Y kN+1, Y kN+2, . . . , Y (k+1)N−1), k ∈ N+, are i.i.d, LQ̃N

((Y 1, . . . , Y N)) = q̃ ⊗

Q|σ(Y 1,...,Y N−1). QN is de�ned as Q̃N with randomised origin, formally QN =

N−1∑N−1
i=0 Q̃N◦θ̃i. Then we have QN ∈ Pshift(ẼN) (in fat even QN ∈ Perg(ẼN)),

QN → Q weakly. Finally, eah QN ∈ R beause the word length under
q̃ has no mean: imagine pointing at position U in κ(Y ) under QN , where14



U ∼ Unif({1, . . . , L}). As L → ∞, the probability tends to one that one atu-ally looks inside a `q̃-word' of the onatenation, where the pattern frequeniesare what they ought to be in a ν⊗N-sequene.In order to verify (25), note that A c
M is open beause H(·|Q0) is lower semion-tinuous. By ombining Lemmas 7 and 5 we an hoose for any Q ∈ AM \R anopen neighbourhood UQ ∋ Q suh that lim sup 1

N
log P

(

RN ∈ UQ

∣
∣
∣X
)

≤ −2M .By Proposition 2, we must have UQ ∩R ⊂ A c
M . Hene (R ∩AM)c is open. 23.1 A deomposition of the spei� relative entropyIn this setion we study how the spei� entropy (and the spei� relativeentropy w.r.t. Q0) of a Q an be expressed in terms involving ΨQ, whih willbe useful later on. Here and in the following, for a probability measure Pand a disrete random variable U we will be writing P (U) for the randomvariable f(U), where f(u) = P (U = u). Similarly, P (U |V ) means g(U, V ),where g(u, v) = P (U = u|V = v).Lemma 3 Let Y = (Y i)i∈N have distribution Q, write Li := |Y i|, KN :=

κ(Y 1, . . . , Y N). Assume Q ∈ Perg(ẼN) satis�es mQ := EQ L1 < ∞. Then wehave
lim

N→∞
−

1

N
log Q(KN) = mQH(ΨQ) Q-a.s., (26)

lim
N→∞

−
1

N
log Q

(

L1, . . . , LN

∣
∣
∣KN

)

=: Hc
L(Q) (27)exists Q-almost surely, the limit Hc

L(Q) is a onstant. In partiular, the spei�entropy of Q an be represented as
H(Q) = lim

N→∞
−

1

N
log Q

(

Y 1, . . . , Y N
)

= mQH(ΨQ) + Hc
L(Q). (28)We all Hc

L(Q) the onditional spei� entropy of word lengths under Q, giventhe onatenation. Intuitively, a `ΨQ-typial' word x ∈ Ẽ of length |x| ≈ NmQan be deomposed in ≈ exp(NHc
L(Q)) di�erent ways into `Q|FN

-typial' N-vetors of words (y1, . . . , yN) satisfying κ(y1, . . . , yN) = x. See the proof ofLemma 9 for a rigorous implementation of this notion.Proof. Write SN := L1 + · · ·+ LN (= |KN |), �x ǫ > 0. Note that on the event
AN :=

{

N(mQ − ǫ) ≤ SN ≤ N(mQ + ǫ)
}we have

Q(κ(Y )|[1...N(mQ+ǫ)], SN) ≤ Q(KN) ≤ Q(κ(Y )|[1...N(mQ−ǫ)]).15



The seond inequality together with the fats that lim infN→∞ 1AN
= 1 almostsurely by ergodiity of Q and LQ(κ(Y )) ≪ ΨQ by Lemma 2 shows that

lim sup
N→∞

1

N
log Q(KN) ≤ −(mQ − ǫ)H(ΨQ) a.s. (29)beause

lim
n→∞

1

n
log ΨQ|[1...n]

(

(Z1, . . . , Zn)
)

= −H(ΨQ) for ΨQ�a.a. Z = (Z1, Z2, . . . ),where H(ΨQ) is the spei� entropy of ΨQ (reall that ΨQ is θ-shift ergodiby Remark 5). On the other hand, writing
Q(κ(Y )|[1...N(mQ+ǫ)], SN) = Q(κ(Y )|[1...N(mQ+ǫ)])Q

(

SN

∣
∣
∣κ(Y )|[1...N(mQ+ǫ)]

)and noting that
lim

N→∞

1

N
log Q

(

SN

∣
∣
∣κ(Y )|[1...N(mQ+ǫ)]

)

= 0 a.s. (30)we obtain
lim inf

1

N
log Q(K(N)) ≥ −(mQ + ǫ)H(ΨQ) (31)almost surely as above. Taking ǫ → 0 in (29) and (31), we obtain (26). In-tuitively, (30) holds true beause the onditional distribution onentrates ona set of size ≈ onst. × N , a formal argument might be as follows: For any

x ∈ E[N(mQ+ǫ)], δ > 0 we have
[N(mQ+ǫ)]
∑

k=[N(mQ−ǫ)],

Q(SN=k |κ(Y )|[1...N(mQ+ǫ)]=x)≤exp(−δN)

Q
(

SN = k
∣
∣
∣κ(Y )|[1...N(mQ+ǫ)] = x

)

≤ 2Nǫ exp(−δN)

whih is summable inN . Thus the Borel-Cantelli Lemma together with lim inf 1AN
=

1 a.s. shows that
lim sup

N→∞
−

1

N
log Q

(

SN

∣
∣
∣κ(Y )|[1...N(mQ+ǫ)]

)

≤ δ a.s.for any δ > 0.Finally, we know by ergodiity of Q that
lim

N→∞
−

1

N
log Q

(

Y 1, . . . , Y N
)exists almost surely and equals H(Q), the spei� entropy of Q. Writing

Q
(

Y 1, . . . , Y N
)

= Q(KN )Q
(

L1, . . . , LN

∣
∣
∣KN

)

,16



this gives (27) and (28). 2The following result deomposes the spei� entropy of Q with respet to Q0into a part whih omes from the onatenated letters and a part desribingthe di�erent word length distributions.Lemma 4 Assume Q ∈ Perg(ẼN) satis�es mQ := EQ L1 < ∞. Then we have
H(Q|Q0) = mQH(ΨQ|ν

⊗N) − EQ log ρL1 − Hc
L(Q). (32)Note that the term −EQ log ρL1−Hc

L(Q) an be interpreted as the onditionalspei� relative entropy of word lengths under Q with respet to ρ⊗N, giventhe onatenation.Proof. We have Q-a.s. by ergodiity of Q

H(Q|Q0) = lim
N→∞

1

N
log

Q
(

Y 1, . . . , Y N
)

Q0
(

Y 1, . . . , Y N
)

=−H(Q) − lim
N→∞

1

N

N∑

i=1

log ρLi
− lim

N→∞

1

N

L1+···+LN∑

j=1

log ν(κ(Y )j)

=−Hc
L(Q) − EQ log ρL1 − mQH(ΨQ) − lim

N→∞

1

N

L1+···+LN∑

j=1

log ν(κ(Y )j)by Lemma 3. Furthermore note that
lim

N→∞

1

N

L1+···+LN∑

j=1

log ν(κ(Y )j) = mQ

∫

EN

log ρ(z1) ΨQ(dz) Q − a.s. (33)beause (L1 + · · · + LN )/N → mQ, LQ(κ(Y )) ≪ ΨQ by Lemma 2 and ΨQ is
θ-shift ergodi by Remark 5.Finally note that (beause ν⊗N is a produt measure)

−mQH(ΨQ) − mQ

∫

EN

log ν(z1) ΨQ(dz) = mQH(ΨQ|ν
⊗N)to omplete the proof. 24 Conditioning and the restrition set, upper boundIn this setion we prove the upper bound in Theorem 1. First we show that

P(RN ≈ Q|X) is super-exponentially expensive for any typial X and Q 6∈ R.17



Intuitively, this is so beause then RN ≈ Q requires to inlude substantial(i.e. with length of order N) atypial piees of the X-sequene in the sum(6), whih requires that at least some of the j-inrements appearing in (6)are exponentially long in N . Beause of (1), all suh terms will be extremelysmall.Lemma 5 Let Q ∈ Pshift(ẼN) \R satisfy mQ = EQ |Y (1)| < ∞. Then for any
B ≥ 0 there is an open neighbourhood U ⊂ Pshift(ẼN) of Q suh that

lim sup
N→∞

1

N
log P

(

RN ∈ U
∣
∣
∣X
)

≤ −B a.s. (34)Proof. Step 1. First we laim that there exist ε1, ε2 > 0 suh that for any largeenough M ∈ N there is a subset BM ⊂ ẼM of `X-unlikely sentenes' with thefollowing properties:
∑

(w1,...,wM)∈BM

Q
(

(Y 1, . . . , Y M) = (w1, . . . , wM)
)

≥ ε1 and (35)
P

(the sequene X begins with an element of κ(BM )
)

≤ exp(−ε2M). (36)In order to see this note that if Q is also θ̃-ergodi, by ombining (26) and(33) we have (reall KN = κ(Y 1, . . . , Y N))
1

N
log

Q(KN )
∏|KN |

i=1 ν(KN
i )

−→
N→∞

mQ H(ΨQ|ν
⊗N) Q-a.s. (37)and the righthand side is stritly positive for Q 6∈ R. In the general ase we seeby deomposing Q into its ergodi omponents (f e.g. [4℄, Thm. 5.2.16) thatthere is a random variable Z̃ ≥ 0, adapted to the shift-invariant sigma-�eld,suh that

1

N
log

Q(KN )
∏|KN |

i=1 ν(KN
i )

−→
N→∞

Z̃ Q-a.s., (38)and the event {Z̃ > 0} has stritly positive probability under Q if and only if
Q 6∈ R. Thus by assumption we an �nd ε1, ε2 > 0 suh that Q(Z̃ > ε2) > 2ε1,hene

Q

(

1

N
log

Q(KN )
∏|KN |

i=1 ν(KN
i )

> ε2

)

> 2ε1 (39)for N large enough. As Ẽ is ountable, for any large enough N we an �nd(pairwise di�erent) words w1, . . . , wL ∈ Ẽ (the wi and L will depend on N ,18



but we suppress this dependeny in the notation) suh that
L∑

j=1

Q
(

KN = wj
)

> 2ε1 and (40)
log Q

(

KN = wj
)

≥ ε2N +
|wj|
∑

i=1

log ν(wj
i ), j = 1, . . . , L. (41)Note that (41) implies

L∑

j=1

|wj |
∏

i=1

ν(wj
i ) ≤ exp(−ε2N)

L∑

j=1

Q
(

KN = wj
)

≤ exp(−ε2N). (42)Finally, for eah of the words wj (j = 1, . . . , L) hoose Mj (pairwise di�erent)ordered deompositions into N subwords wj,k,1, . . . , wj,k,N (k = 1, . . . , Mj)suh that wj = κ(wj,k,1, . . . , wj,k,N) for eah j, k and
Mj
∑

k=1

Q
(

(Y 1, . . . , Y N) = (wj,k,1, . . . , wj,k,N)
)

≥
1

2
Q
(

KN = wj
)

, j = 1, . . . , L.This yields (35) and (36) with
BN :=

{

(wj,k,1, . . . , wj,k,N) : 1 ≤ k ≤ Mj , 1 ≤ j ≤ L
}

.

Step 2. Let A ⊂ N have asymptoti density p ∈ (0, 1), i.e.
lim

n→∞

|A ∩ {1, . . . , n}|

n
= p, (43)and ε ∈ (0, 1). We laim that for any p′ > p we have for all N large enough

∑

1≤s1<s2<···<sN
|{s1,...,sN}∩A|≥εN

N∏

j=1

ρ(sj − sj−1)

≤ (C̃)N exp
(

N
(

ε log
1

ε
+ (1 − ε) log

1

1 − ε

))
(

exp(−λ̃/p′)

1 − exp(−λ̃/p′)

)εN

,(44)where C̃, λ̃ are given by Lemma 6. The left hand side of (44) is not more than19



∑

1≤i1<···<i⌈εN⌉≤N

∑

j1<···<j⌈εN⌉
j1,...,j⌈εN⌉∈A

⌈εN⌉
∏

ℓ=1

ρ∗(iℓ−iℓ−1)(jℓ − jℓ−1)

≤
∑

1≤i1<···<i⌈εN⌉≤N

∑

j1<···<j⌈εN⌉
j1,...,j⌈εN⌉∈A

⌈εN⌉
∏

ℓ=1

C̃iℓ−iℓ−1 exp
(

− λ̃(jℓ − jℓ−1)
)

≤ C̃N

(

N

⌈εN⌉

)
∑

j1<···<j⌈εN⌉
j1,...,j⌈εN⌉∈A

exp
(

− λ̃j⌈εN⌉

)

= C̃N

(

N

⌈εN⌉

)
∞∑

r=⌈εN⌉

exp(−λ̃tr(A))

(

r − 1

⌈εN⌉ − 1

)

, (45)where we used Lemma 6 in the �rst inequality and
tr(A) := min

{

k : A ∩ {1, . . . , k} = r
} (46)is the position of the r-th element of A. Note that for large N

(

N

⌈εN⌉

)

≤ onst.× exp
(

N
(

ε log
1

ε
+ (1 − ε) log

1

1 − ε

)) (47)by Stirling's Formula, that for s ∈ [0, 1)

∞∑

r=n

sr

(

r − 1

n − 1

)

=
∞∑

r1,...,rn=1

sr1+···+rn =

(

s

1 − s

)n (48)and that by (43)
lim
r→∞

tr(A)

r
=

1

p
. (49)Finally, ombine (45) and (47)�(49) to obtain the laim (44).Step 3. Consider (a large) M ∈ N, let ε1, ε2 and BM be as hosen in Step 1,put

U :=
{

Q′ ∈ Pshift(ẼN) : Q′
(

(Y 1, . . . , Y M) ∈ BM

)

> ε1/2
}

. (50)Note that by (35), U is an open neighbourhood of Q. Let
A :=

{

i ∈ N : (Xi, Xi+1, . . . , Xi+k) ∈ κ(BM) for some k
} (51)be the (random) set of positions where some element of κ(BM) starts on thegiven X. As X is i.i.d. and |κ(BM)| < ∞, A has a non-random asymptotidensity p, and p ≤ exp(−ε2M) by (36). Furthermore we see from (6) thatfor large enough N (so that boundary terms oming from the periodisation20



beome negligible) only suh summands (j1, . . . , jN) will ontribute to P(RN ∈
U|X) whih have the property that

#
{

1 ≤ i ≤ N : ji ∈ A
}

≥
ε1

4M
=: ε. (52)(We divide by M to aount for possible overlaps of the onatenations ofdi�erent elements of BM .) Now (44) yields

lim sup
N→∞

1

N
log P(RN ∈ U|X)

≤ log C̃ +
(

ε log
1

ε
+ (1 − ε) log

1

1 − ε

)

+ ε log
(

2 exp
(

− λ̃/p
))

≤ log C̃ +
(

ε log
1

ε
+ (1 − ε) log

1

1 − ε

)

+ ε log 2 −
ε1

4M
× λ̃ exp

(

ε2M
)

.The expression in the last line an be made arbitrarily negative by piking alarge M (note that the terms involving ε are uniformly bounded for ε ∈ (0, 1)).
2Lemma 6 Let ρ satisfy (1). There are C̃ and λ̃ > 0 suh that

∀ k, n ∈ N : ρ∗k(n) ≤ C̃k exp(−λ̃n). (53)Proof. We have
ρ∗k(n) ≤

∞∑

n1,...,nk=1
n1+···+nk=n

k∏

i=1

Ce−λni = Cke−λn

(

n − 1

k − 1

)

. (54)
Fix ε ∈ (0, 1/2). As k 7→

(
n−1
k−1

) is inreasing for k < (n− 1)/2, the right handside of (54) for k ≤ εn is not more than
Cke−λn

(

n − 1

⌈εn⌉

)

≤ onst.× Ck exp
(

− λn + n
(

ε log
1

ε
+ (1 − ε) log

1

1 − ε

))by Stirling's Formula, while for k > εn the observation (n−1
k−1

)

≤ 2n−1 yieldsthe bound
Cke−λn2k/ε = (21/εC)ke−λn.Put λ̃ := λ + ε log ε + (1 − ε) log(1 − ε), C̃ := 21/εC. Note that λ̃ < λ an behosen arbitrarily lose to λ, at the expense of enlarging C̃. 2Lemma 7 Let ρ satisfy (1). Then any Q ∈ Pshift(ẼN) with H(Q|Q0) < ∞has mQ = EQ |Y 1| < ∞. 21



Proof. Let µ := LQ(|Y 1|) ∈ P(N) be the marginal distribution of wordlengths under Q. As N−1h(Q|FN
|Q0|FN

) ր H(Q|Q0) < ∞ and h(µ|ρ) ≤
h(Q|F1 |Q

0|F1) it su�es to hek that
h(µ|ρ) =

∞∑

n=1

ρn
µn

ρn

log
µn

ρn

< ∞ (55)implies ∑n nµn < ∞. This must be well known, for ompleteness and lak ofreferene, here is a short argument: Split the sum in (55) into
∞∑

n=1
µn≥ρn

ρn
µn

ρn
log

µn

ρn
+

∞∑

n=1
µn<ρn

ρn
µn

ρn
log

µn

ρn
.As x 7→ x log x is ontinuous on [0, 1], the seond sum has some �nite value

∈ (−∞, 0], so the assumption implies
∞>

∞∑

n=1
µn≥ρn

µn log
µn

ρn
=

∞∑

n=1
µn≥ρn

µn

(

log µn − log ρn
︸ ︷︷ ︸

≥0

)

≥
∞∑

n=1
µn≥C exp(−λn/2)

µn

(

log µn − log ρn

)

≥
∞∑

n=1
µn≥C exp(−λn/2)

µn
λn

2by (1). On the other hand,
∞∑

n=1
µn<C exp(−λn/2)

nµn < ∞holds automatially. Combining these two estimates yields the laim. 2Next we observe that an unonditional upper bound is automatially also anupper bound for the onditional distributions:Lemma 8 For any losed F ⊂ P(ẼN) we have
lim sup

N→∞

1

N
log P(RN ∈ F |X) ≤ − inf

Q∈F∩Pshift(ẼN)
H(Q|Q0) a.s. (56)This is well known, here is a short proof for the sake of ompleteness.Proof. Write I(F ) := infQ∈F∩Pshift(ẼN) H(Q|Q0). For ǫ > 0 we have by Markov'sInequality and the unonditional LDP22



P

(

P(RN ∈ F |X) ≥ exp(−N(I(F ) − 2ǫ)
)

≤ eN(I(F )−2ǫ)
E

[

P(RN ∈ F |X)
]

= eN(I(F )−2ǫ)
P(RN ∈ F )

≤ eN(I(F )−2ǫ)e−N(I(F )−ǫ) = e−ǫNfor N large enough, and hene
lim sup

N→∞

1

N
log P(RN ∈ F |X) ≤ −I(F ) − 2ǫ a.s.by the Borel-Cantelli Lemma. Take ǫ → 0 to onlude. 2The following is the main result of this setion:Proposition 1 For any losed F ⊂ P(ẼN) we have a.s.

lim sup
N→∞

1

N
log P(RN ∈ F |X) ≤ − inf

Q∈F∩Pshift(ẼN)∩R
H(Q|Q0). (57)In partiular, for F ∩R = ∅ the onditional probability P(RN ∈ F |X) deaysalmost surely super-exponentially.Remark 9 As the weak topology on Pshift(ẼN) is separable, it is standard tostrengthen (57) to hold with probability one simultaneously for all losed sets

F , see e.g. [2℄, proof of Prop. III.2.Proof of Proposition 1. First note that even though RN is not exatly shift-invariant beause of boundary terms, it is nearly so: for any weak neighbour-hood O of Pshift(ẼN), there is n0 suh that RN ∈ O for N ≥ n0. As Pshift(ẼN)is losed in the weak topology, we an restrit to F ∩ Pshift(ẼN) on the right-hand side of (57).Fix B > 0 and ε > 0 for the moment, let AB = {Q : H(Q|Q0) ≤ B} be the
B-level set of H(· |Q0). Reall that AB is ompat with respet to the weaktopology on P(ẼN). For any Q ∈ F ∩ AB hoose an open neighbourhood UQof Q as follows:(1) If Q 6∈ R, take UQ = U as guaranteed by Lemma 5, so that (34) issatis�ed.(2) If Q ∈ R, hoose UQ suh that infQ′∈UQ

H(Q′|Q0) ≥ H(Q|Q0) − ε. Thisis possible by lower semiontinuity of H(· |Q0).23



As F ∩AB is ompat, we an pik a �nite sub-over UQ1 , . . . ,UQm. Note that
F ∩

(

∪m
i=1 UQi

)c is losed and ontained in A c
B, so

inf
Q∈F∩

(

∪m
i=1UQi

)c
H(Q|Q0) ≥ B,and hene

lim sup
N→∞

1

N
log P

(

RN ∈ F ∩
(

∪m
i=1 UQi

)c
∣
∣
∣
∣X

)

≤ −B a.s.by Lemma 8. On the other hand, for i = 1, . . . , m we have by onstrution(employing Lemma 5 if Qi 6∈ R and Lemma 8 if Qi ∈ R)
lim sup

N→∞

1

N
log P

(

RN ∈ UQi

∣
∣
∣
∣X

)

≤
(

− B
)

∨
(

− inf
Q∈F∩R

H(Q|Q0) + ε
) a.s.,onsequently

lim sup
N→∞

1

N
log P

(

RN ∈ F
∣
∣
∣X

)

≤
(

− B
)

∨
(

− inf
Q∈F∩R

H(Q|Q0) + ε
) a.s.Take B → ∞, ε → 0 to onlude. 25 Lower boundProposition 2 Let Q ∈ R ∩ Pshift(ẼN), and let O ⊂ P(ẼN) be an openneighbourhood of Q. Then we have

lim inf
N→∞

1

N
log P(RN ∈ O|X) ≥ −H(Q|Q0) a.s. (58)Remark 10 Again it is standard to strengthen (58) to hold with probabilityone simultaneously for all open sets O, see e.g. [2℄, proof of Prop. III.3.We will have oasion to onsider open neighbourhoods of Q ∈ Pshift(ẼN) ofthe following form

ÕQ :=
{

Q′ ∈ Pshift(ẼN) :
∣
∣
∣

∫

gi dQ′ −
∫

gi dQ
∣
∣
∣ < ε̃i, i = 1, . . . , AÕQ

} (59)where gi : ẼN → R (i = 1, . . . , AÕQ
) satisfy ||gi||∞ ≤ 1 and depend onlyon y1, . . . , y

BÕQ for some BÕQ
∈ N. Note that suh sets generate the weaktopology on Pshift(ẼN). 24



For x ∈ Em, m ∈ {n, n + 1, . . . } ∪ {∞} let
Rn(x) :=

1

n

n−1∑

i=0

δ
θi
(

(x|[1...n])
per
) ∈ P(EN) (60)be the orresponding n-th empirial letter proess measure. Furthermore, for

1 ≤ j1 < · · · < jn let
R̃n

j1,...,jn
(x) :=

1

n

n−1∑

i=0

δ
θ̃i
(

(x|[1...j1], x|[j1+1...j2], . . . , x|[jn−1+1...jn])
per
) ∈ P(ẼN)(61)the n-th empirial word proess measure obtained by utting x at the ut-points ji. Note that in this notation (see equations (2) and (4)),

RN = R̃N
T1,...,TN

(X).Proof of Proposition 2. We an assume that H(Q|Q0) < ∞, and hene inview of Lemma 7 we may also assume that mQ := EQ |Y 1| < ∞. Let us �rstonsider a shift-ergodi Q. Note that Q ∈ R ∩ Pshift(ẼN) with EQ L1 < ∞implies ΨQ = ν⊗N, and hene H(Q|Q0) = −EQ log ρL1 −Hc
L(Q) by Lemma 4.We an �nd a neighbourhood ÕQ ⊂ O of the type de�ned in (59), and itsu�es to restrit to ÕQ. For given ε > 0, take the open neighbourhood

U ⊂ Pshift(EN) of ν⊗N guaranteed by Lemma 9. By the strong law, the event
{

Rn(X) ∈ U for all su�iently large n
}has probability one. As

P(RN ∈ ÕQ|X) ≥
∑

0<j1<···<jN=[mQN ],

R̃N
j1,...,jN

(X)∈ÕQ

N∏

i=1

ρji−ji−1
,

we obtain
lim inf
N→∞

1

N
log P(RN ∈ O|X) ≥ −H(Q|Q0) − εby Lemma 9. Take ε → 0 to onlude the proof in the ergodi ase.Now onsider a general Q ∈ R∩Pshift(ẼN) with EQ |Y 1| < ∞. By the ErgodiDeomposition Theorem (f e.g. [4℄, Thm. 5.2.16), we an represent
Q =

∫

Perg(ẼN)
R ρQ(dR), (62)25



where ρQ is a probability measure on Perg(ẼN). The event
{

w− lim
L→∞

1

L

L−1∑

j=0

δθjκ(Y ) = ν⊗N

}is invariant under the (word-level) shift θ̃ and has Q-probability one, thus by(62), we have ρQ(R) = 1. Furthermore, as EQ |Y 1| =
∫

ER |Y 1| ρQ(dR), ρQmust be onentrated on {Q′ : EQ |Y 1| < ∞}. As R 7→ H(R|Q0) is lowersemiontinuous and a�ne, (62) implies H(Q|Q0) =
∫

H(R|Q0) ρQ(dR), and Qan be approximated by �nite onvex ombinations of Qi ∈ R ∩ Perg(ẼN) insuh a way that the orresponding spei� relative entropies onverge as well(see e.g. [4℄, Lemma 5.4.24 and its proof). More preisely, for any δ > 0, wean �nd n ∈ N, λ1, . . . , λn ∈ (0, 1) with ∑n
i=1 λi = 1 and Qi ∈ R ∩ Perg(ẼN)with mQi

= EQi
|Y 1| < ∞ (so in partiular ΨQi

= ν⊗N) suh that
Q̃ := λ1Q1 + · · · + λnQn ∈ O and

H(Q|Q0) ≥ H(Q̃|Q0) − δ = λ1H(Q1|Q
0) + · · ·+ λnH(Qn|Q

0) − δ.

(63)Let Õ ⊂ O be an open neighbourhood of Q̃ of the type de�ned in (59), and let
Õm be orresponding open neighbourhoods of Qm, m = 1, . . . , n, but with ε̃ireplaed by ε̃i/(2n). For (large) N ∈ N put Nm := [λmN ], Ñm := N1+· · ·+Nm(m = 1, . . . , n) and N̄m := [N1mQ1] + · · · [NmmQm ]. Note that by onstrutionfor any x ∈ EN̄n and j1 < · · · < jÑn

,
R̃Nm

jÑm−1+1,jÑm−1+2,...,jÑm

(

x
∣
∣
∣
[

(N̄m−1+1)...N̄m

]

)

∈ Õm for m = 1, . . . , n

=⇒ R̃Ñn
j1,...,jÑn

(x) ∈ Õ.Let Um be a neighbourhood of ΨQm (= ν⊗N) as onstruted in Lemma 9 orre-sponding to Q = Qm and ε = δ. Applying Lemma 9 separately on the strethes
X|[(N̄m−1+1)...N̄m], m = 1, . . . , n and `glueing together' the orresponding ve-tors of ut-points, we obtain from the disussion above that on the event

GN :=
{

R[NmmQm ](X|[(N̄m−1+1)...N̄m]) ∈ Um, m = 1, . . . , n
}we have

P(RN ∈ Õ|X)≥
n∏

m=1

exp
(

− Nm

(

H(Qm|Q
0) + δ

))

≥ exp
(

− N
(

λ1H(Q1|Q
0) + · · ·+ λnH(Qn|Q

0) + 2δ
))

≥ exp
(

− N
(

H(Q|Q0) + 3δ
))26



when N is su�iently large. Now ∪M ∩N≥M GN ours almost surely (one ane.g. use large deviation results for the empirial distribution of X to see that
P

(

(GN)c
) deays exponentially in N), hene

lim inf
N→∞

1

N
log P(RN ∈ O|X) ≥ −H(Q|Q0) − 3δ.Now take δ → 0. 2The following lemma is the ombinatorial ore of the lower bound, its intuitiveontent is that for a word x of length ≈ NmQ whih looks `ΨQ-typial', thereare ≈ exp(NHc

L(Q)) ways of utting it into N subwords in suh a way that a`Q-typial' sequene arises. The `prie' for any suh pattern of ut points willthen be ≈ exp(NEQ log ρ(|Y 1|)).Lemma 9 Let Q ∈ Perg(ẼN) with mQ := EQ[L1] < ∞ be given, and let ÕQbe a neighbourhood of Q as de�ned in (59). For any ε > 0 there exists an openneighbourhood U ⊂ Pshift(EN) of ΨQ and N0 ∈ N suh that
N ≥ N0, x ∈ E[mQN ] with R[mQN ](x) ∈ Uimplies

∑

0<j1<···<jN=[mQN ],

R̃N
j1,...,jN

(x)∈ÕQ

N∏

i=1

ρ(ji − ji−1) ≥ exp
(

N
(

EQ log ρL1 + Hc
L(Q) − ε

))

. (64)
Proof. Step 1. Let Õ′

Q be de�ned as in (59) with ε̃i replaed by ε̃i/2 (i =

1, . . . , AOQ
), and similarly Õ′′

Q with ε̃i replaed by ε̃i/4. For M ∈ N, ε1 > 0,
x ∈ E[MmQ] let
JM,ε1(x) :=

{

(j1, . . . , jM) :
0 ≤ j1 < · · · < jM = [MmQ], R̃M

j1,...,jM
(x) ∈ Õ′

Q,

1
M

∑M
i=1 log ρji−ji−1

∈ [EQ log ρL1 − ε1, EQ log ρL1 + ε1]

}This is the set of all ut-vetors whih are `suitable' for the given word x. Welaim that for given ε2 > 0 we an hoose M su�iently large and pairwisedi�erent words ξ1, . . . , ξL ∈ E[MmQ] suh that
L∑

i=1

ΨQ|[1...MmQ](ξ
i)≥ 1 − ε2 and (65)

∣
∣
∣JM,ε1(ξ

i)
∣
∣
∣≥ exp

(

M(Hc
L(Q) − ε2)

)

, i = 1, . . . , L. (66)27



In order to hek this let Q̂ be de�ned as in (21), reall (dQ̂/dQ)(Y ) =
|Y 1|/mQ. By Lemma 3 and the fat that Q̂ ≪ Q we have Q̂-a.s.

lim
N→∞

1

N
|κ(Y 1, . . . , Y N)|= mQ

lim
N→∞

1

N
log Q̂(κ(Y 1, . . . , Y N ))=−mQH(ΨQ),

lim
N→∞

1

N
log Q̂(Y 1, . . . , Y N )=−H(Q),

lim
N→∞

1

N

N∑

i=1

log ρ(|Y i|)= EQ log ρ(|Y 1|),

lim
N→∞

RN = Q ∈ Õ′′
Q.Thus, for large enough N we an �nd A pairwise di�erent zi ∈ Ẽ and foreah zk we an hoose Bk di�erent deompositions (yk,j,1, . . . , yk,j,N) ∈ ẼN ,

j = 1, . . . , Bk, where
κ(yk,j,1, . . . , yk,j,N) = zk for eah j, k,suh that eah |zk| ∈ [N(mQ − ε1), N(mQ − ε1)],

A∑

k=1

Q̂(KN = zk) ≥ 1 − ε1 (67)and the following holds for k = 1, . . . , A and j = 1, . . . , Bk (unless otherwisequanti�ed):
Q̂(KN = zk)≥ exp(−N(mQH(ΨQ) + ε1)), (68)

Q̂
(

(Y 1, . . . , Y N) = (yk,j,1, . . . , yk,j,N)
)

≤ exp(−N(H(Q) − ε1)), (69)
Bk∑

j=1

Q̂
(

(Y 1, . . . , Y N) = (yk,j,1, . . . , yk,j,N)
)

≥ (1 − ε1)Q̂(KN = zk), (70)
1

N

N∑

i=1

log ρ(|yk,j,i|) ∈ [EQ log ρ(|Y 1|) −
ε1

2
, EQ log ρ(|Y 1|) +

ε1

2
], (71)

1

N

N−1∑

i=1

δ
θ̃i
(

(yk,j,1, . . . , yk,j,N)per
) ∈ Õ′′

Q. (72)Note that (69), (70) and (68) imply for eah k that28



Bke
−N(H(Q)−ε1) ≥

Bk∑

j=1

Q̂
(

(Y 1, . . . , Y N) = (yk,j,1, . . . , yk,j,N)
)

≥ (1 − ε1)Q̂(KN = zk) ≥ (1 − ε1)e
−N(mQH(ΨQ)+ε1)

≥ exp
(

− N(mQH(ΨQ) + 2ε1)
)for N large enough, hene

Bk ≥ exp
(

N(H(Q) − mQH(ΨQ) − 3ε1)
)

= exp
(

N(Hc
L(Q) − 3ε1)

)for k = 1, . . . , A by Lemma 3. Note that this together with (71) and (72)shows that
∣
∣
∣JN,ε1(z

k)
∣
∣
∣ ≥ exp

(

N(Hc
L(Q) − 3ε1)

) for k = 1, . . . , A (73)(with a notational grain of salt beause |zk| is not exatly [NmQ]). This isalmost what we need to prove (65) and (66), exept for the slight nuisanethat the zk have not exatly length [NmQ] and the fat that (67) guaranteesthat one of the zk is very likely to our as the onatenation of the �rst Nwords under Q̂, whereas (65) speaks about the �rst [NmQ] letters under ΨQ.Remembering the de�nition (22) of ΨQ involving Q̂, this an e.g. be remediedas follows: Pik M so large that (67)�(73) are satis�ed for N = M . Considerthe set of words
{

ξ̃r : r = 1, . . . , R
}

:=
{

θi
(

κ(yk,j,1, . . . , yk,j,N)
)

: 0 ≤ i < |yk,j,1|, j = 1, . . . , Bk, k = 1, . . . , A
}

,trunate eah of them at [M(mQ − 2ε1] letters. Thus in view of (22) and (67),
R∑

r=1

ΨQ|[1...M(mQ−2ε1)](ξ̃
r|[1...M(mQ−2ε1)]) ≥ 1 − ε1.Now generate a set {ξi : i = 1, . . . , L} from {ξ̃r : r = 1, . . . , R} by attahingvarious su�xes of length [MmQ] − [M(mQ − 2ε1)] to eah ξ̃r in suh a waythat ∑L

i=1 ΨQ|[1...MmQ](ξ
i) ≥ 1−2ε1. As eah ξi agrees with some zk exept fora very short initial piee and a short �nal piee, (73) implies ∣∣∣JM,ε1(z

k)
∣
∣
∣ ≥

exp
(

M(Hc
L(Q) − 4ε1)

) for eah i when M is large enough. By hoosing ε1small enough, this proves (65) and (66).Step 2. Let A := {ξi : i = 1, . . . , L} denote the set of words of length [MmQ]onstruted in Step 1. For K ≥ [MmQ] (we think of K ≫ [MmQ]) and ε3 > 029



denote the set of all x ∈ EK suh that
∣
∣
∣
∣
∣

1

N
#{1 ≤ j ≤ K − [MmQ] : (xj , . . . , xj+[MmQ]−1) = ξi} − ΨQ|[1...MmQ](ξ

i)

∣
∣
∣
∣
∣

< ε3/Lfor all ξi ∈ A by DK,ε3. Note that x ∈ DK,ε3 means that the letter sequene
x is typial for ΨQ in the sense that the frequeny of all the patterns ξi(i = 1, . . . , L) hosen above is lose to the theoretial value.We laim that for any ε > 0 we an hoose above ε1, ε2, ε3 su�iently smalland L, M su�iently large and N0 ∈ N suh that

N ≥ N0, x ∈ D[mQN ],ε3

=⇒
∑

0<j1<···<jN=[mQN ],

R̃N
j1,...,jN

(x)∈ÕQ

N∏

i=1

ρji−ji−1
≥ exp

(

N
(

EQ log ρL1 + Hc
L(Q) − ε

))

.(74)Note that (74) implies the laim of the lemma by hoosing U as
{

Ψ ∈ Pshift(EN) :
∣
∣
∣Ψ|[1...mQM ](ξ

i) − ΨQ|[1...mQM ](ξ
i)
∣
∣
∣ < ε3/(2L), i = 1, . . . , L

}

.

Step 3. It remains to prove (74), the idea is as follows: x ∈ D[mQN ],ε3
impliesthat we an over x with ≈ N/M non-overlapping patterns from A := {ξi, i =

1, . . . , L}, up to a small fration of remaining `gaps'. On eah of the patternsfrom the `almost overing', we have by onstrution su�iently many hoies of`good ut-points', and the probability that the jumps bridge exatly the given`gaps' is ontrolled on the exponential sale beause the total gap length isonly a small fration of N . Here are the details:
x ∈ D[mQN ],ε3 implies
#
{

j ≤ [mQN ] − [mQM ] : one of the words from A starts at j
}

≥ [NmQ](1 − ε2 − ε3)(as ∑L
i=1(ΨQ(ξi) − ε3/L) ≥ 1 − ε2 − ε3). Let n1 := n0 ∨ (2mQ/δ0), where n0,

δ0 are as given by Lemma 10. When N is large enough, we an �nd
ε̃ ∈ [ε/2, 2ε] (75)30



(ε̃ will impliitly depend on N beause we require ertain expressions belowto be integers, but (75) will be satis�ed independently of N) suh that
k = (1 − ε̃)

N

M
∈ Nand we an �nd k positions

n1 ≤ r1 < · · · < rk ≤ [NmQ] − n1where one of the patterns from A is written on x, i.e.
x|[rj ...rj+[MmQ]−1] = ξi for some i ∈ {1, . . . , L}, j = 1, . . . , k ,and

rj − rj−1 ≥ [mQM ] + n1, j = 1, . . . , k.Note that between the end of the (j − 1)-th and the beginning of the j-thsubword from A on x, there is a `gap' of length
sj := rj − rj−1 − [mQM ] (≥ n1).The total length of these gaps is

s1 + · · ·+ sk+1 = [NmQ] − (1 − ε̃)
N

M
[MmQ] = ε′NmQ.The display above impliitly de�nes ε′, when N (and M) are large enough, itwill satisfy

ε′ ∈
[

ε̃(1 − δ0/2), ε̃(1 + δ0/2)
]

, (76)where δ0 is as given by Lemma 10.The sum appearing in (74) has N summation variables, and on eah of the k`good subwords of x' �xed above, we will use M of them. Thus there remain
N − kM = ε̃Nsummation variables whih we an use to `�ll the gaps'. We an �nd m1, . . . ,

mk+1 ∈ N suh that
m1 + · · · + mk+1 = ε̃Nand

(1 − δ0)
sj

mQ
≤ mj ≤ (1 + δ0)

sj

mQ
, j = 1, . . . , k + 1.To see this onsider �rst m̃i := (si/mQ)(ε̃/ε′). Then we have ∑ m̃i = ε̃N , but the

m̃i need not be integers. On the other hand we have
si

mQ
(1 − δ0) ≤ m̃i − 1 ≤ ⌈m̃i⌉ ≤ m̃i + 1 ≤

si

mQ
(1 + δ0)31



and S :=
∑k+1

i=1 (m̃i − ⌈m̃i⌉) ∈ {0, 1, . . . , k + 1}. Then put e.g. mi := ⌈m̃i⌉ + 1 if
i ≤ S, mi := ⌈m̃i⌉ otherwise.In order to generate vetors (j1, . . . , jN) suitable for the righthand side of (74),we an proeed as follows: On the `good subwords', hoose any M-vetor ofut-points from the orresponding JM,ε1, and use mi summation variables togenerate the `jump' over the i-th gap. Using Lemma 10, we an hoose for eahgap mi ut-lengths whose total probability under ρ is at least exp(−Csi). Bythe de�nition of JM,ε1, any suh vetor (j1, . . . , jN) will have the propertythat RN

j1,...,jN
(x) ∈ ÕQ beause the ontribution to RN

j1,...,jN
(x) from the `gaps'is negligible. Furthermore, again by the de�nition of JM,ε1 and the hoie ofthe ut-points on the gaps, we have

N∏

i=1

ρji−ji−1
≥ exp

(

kM
(

EQ log ρL1 − ε1

))

× exp
(

− Cε′mQN
)

= exp
(

N
(

(1 − ε̃)(EQ log ρL1 − ε1) − ε′CmQ

))for eah suh hoie. Finally, by (66) there are at least
(

exp
(

M(Hc
L(Q) − ε2)

))k

= exp
(

N(1 − ε̃)(Hc
L(Q) − ε2)

)admissible hoies of ut-points on the good subwords. Combining, we obtainthat the righthand side of (74) is at least
exp

(

N
(

(1 − ε̃)(EQ log ρL1 + Hc
L(Q) − ε1 − ε2) − ε′CmQ

))whenever N is su�iently large. 2The following lemma is a standard result about aperiodi renewal proesses:Lemma 10 Let mQ ∈ [1,∞). There exist n0 ∈ N, C > 0 and δ0 > 0 suhthat for any pair (m, n) ∈ N
2 satisfying

n ≥ n0,
n

mQ
(1 − δ0) ≤ m ≤

n

mQ
(1 + δ0)there are ℓ1, . . . , ℓm with

ℓ1 + · · · + ℓm = n and m∏

i=1

ρℓi
≥ exp(−Cn).Remark 11 Note that the proof of Proposition 2 via Lemma 9 is ratherombinatori. At least in the ase of a neighbourhood of an ergodi Q ∈ R,one an use the oupling between X and a shift of κ(Y ) under Q̂ given byRemark 6 to employ a `onditional tilting' argument whih is more in theprobabilisti spirit of lassial proofs of lower large deviation bounds.32
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