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Definition 

Crystallography: 

It is dedicated to the study of matter on the atomic scale, 

to the structural characteristics of matter and its relation 

to physical and chemical properties. 

 

This talk will be limited to crystalline matter,  

 i. e. to crystals 



Introduction 

Crystal: 

A crystal is often associated with a solid of smooth faces and 

a regular geometric shape. 

Quartz Calcite 



Epidote 

Emerald 



Virtually all naturally occuring solids, most solid inorganic materials 

and many solid organic compounds are made up of crystals. 

 

However: 

Most crystals exhibit distorted forms as a result of les-than-ideal 

growth conditions. 

Constancy of interfacial angles  (Steno, 1669): 

The  angles between corresponding faces  of different species of 

the  same kind  of crystal are the same  .  



The law of the constancy of interfacial angles  by 

Steno in 1669: 

This year is  the birth of crystallography as an exact 

discipline of science. For more than 240 years the 

studies of crystals have been based on their 

morphological appearance and their macroscopical 

properties. 



General characteristic features of a crystal   

 
 Homogeneity and Anisotropy 

A B 

Homogeneity:   In the same direction the crystal has the same         
                             property at different  points (A and B). 

Anisotropy:     A property of the crystal is different in different    
                          directions  



The formation of smooth crystal faces as well as the constancy  

of interfacial angles can easily be understood by the internal ordering  

of  the crystals:  

The crystal structure consists of a structural unit of atoms  

which is repeated periodically in three non-co-linear  

directions of  space. 

    

fictitious molecule fictitious structure 



The parallelepiped  formed by  

a, b, c and the structural 

unit is called unit cell. 

This periodic repetition can be 
described by three translation 
vectors a, b, c (basis vectors) 
which by repetition form a 3-
dimensional grid (called lattice).  
 
 

a 

b 
c 



The appearance of a crystal represents the internal 
ordered arrangements of atoms, molecules or ions.   

Structure Morphology 

Lattice plane Crystal face 

Lattice lines Crystal edge 

Galena (PbS) 

Principle of Correspondence 



Symmetry 

Crystals exhibit another characteristic feature: symmetry 

A symmetry operation on an object is a 
displacement, which maps the object onto 
itself such that the mapped object cannot be 
distinguished from the object in the original 
state.  

We shall discuss separately the symmetries of  
macroscopic crystals and of  the atomic structures.  



Symmetry of macroscopic crystals 

The symmetry operations which may be observed on 

macroscopic crystals are limited to 5 rotations and 5 roto-

inversions  

Rotation 2π/1 2π/2 2π/3 2π/4 2π/6 

Symbol 

for the 

rotation 

Symbol 

for the 

roto-

inversion 

m2
_

1
_

3
_

4
_

6

1             2             3           4              6 

 



The symmetry operations listed above leave at 

least one point in space invariant: They are called 

point symmetry operations. 

The axis of a twofold roto-

inversion is equal to a mirror 

plane m  

p 

m 
z 

P2 

P1 

1

~
P

m
_

2

Examples 

p 
P2 

P1 

2

The axis of a twofold 

rotation 

It became tradition to use the symbol       for  
_

2m 



Based on the observed symmetry of the external crystal 

form the forefathers of crystallography categorized all 

known crystals  as members of one of 32 morphological 

crystal classes. 

For this purpose 7 different crystallographic axes systems  

 (crystal system) had to be chosen.   

The precondition for an axes system (or basis) is:  

It must be invariant under the  symmetry operations  

of the crystal to be described 

 



Triclinic System 

a 

b 

c 

a b 
g 

Length of the axes: a0  b0  c0 

 

Angles: a  b  g  90° 

 

Monoclinic System 

Length of the axes: a0  b0  c0 

 

Angles: a  g  90°   b  90° 

 a 

b 

c 

g 

a 
b 



Orthorhombic System 

Length of the axes: a0  b0  c0 

 

Angles: a  b  g  90°    
 

a 
b 

c 

g 

a b 

Tetragonal  System 

a 
b g 

a b 

c 

Length of the axes: a0  b0  c0 

 

Angles: a  b  g  90° 

 



a 

b 
g 

a b 

c Cubic  System 

Length of the axes: a0  b0  c0 

 

Angles: a  b  g  90° 

 

Hexagonal  System 

Length of the axes: a0  b0  c0 

 

Angles: a  b  90°   g  120° 

 

a 
b 

g 
a b 

c 

Note:  -(a+b) is a symmetrically  

equivalent axis (green line). 
 



g 
a 

b 

a 

b 

c 

Trigonal  System 

(also called rhombohedral system) 

 

Length of the axes: a0  b0  c0 

 

Angles: a  b  g   ( 90°) 

 

Note: The trigonal symmetry  is also  

compatible with a hexagonal axes  

system. 

This is obvious in a projection along 

 the body diagonal of the trigonal  

basis; it becomes the  

hexagonal c-axis chex after a basis  

transformation. 
btr 

ctr atr 

ahex 

bhex 



Crystal Faces, Miller Indices 

In order to denote the flat crystal faces, Miller described the  
intercepts of each planar crystal form as numbers.  
The numbers are presented as whole numbers (fractions are not  
allowed) and are the reciprocal of the actual intercept number,  
all whole numbers being reduced by their lowest common denominator 

c 

a b 

pco 

mao nbo 

h = 1/m k = 1/n l = 1/p 

( h k l )     Miller Indices 



The set of all symmetry operations observed on a 

crystal forms a group in the mathematical sense:  

the point group (i. e. point symmetry group). 

 

The observed point symmetry group of any external  

crystal form  belongs to one of 32 point groups. 

In crystallography the symmetries of a point group 
are denoted by the Hermann-Mauguin  symbol  
(or international symbol) 

Therefore the axioms for a mathematical group apply: 
e. g. the combination of two group elements 
 (i.e. symmetry operations) generate another element  
of the group. 
In general a crystal exhibits a combination of several  
symmetry elements . 



The Hermann-Mauguin symbol . It contains the sequence of  

symmetry elements according the following hierarchy: 

 
 The unique rotation or roto-inversion  axis of the highest order  
    is parallel to a basis vector and it takes the first position in the symbol. 

 
 If additional symmetry elements exist, they are placed in the second  
   and even the third position if necessary. 

 
 If two types of symmetry elements are perpendicular to eachother,  
   they are separated by a “/”. 
 



 

orthorhombic 

_

33 23 m3 m
_

3

4
_

4 m/4 422 mm4 m24
_

mmm/4

6
_

6 m/6 622 mm6 m26
_

mmm/6

23
_

3m 234 m34 mm3

2 m m/2

222 2mm mmm

1
_

1triclinic 

monoclinic 

trigonal 

tetragonal 

hexagonal 

cubic 

The 32 Crystallographic Point Groups 



Note: In the orthorhombic system there are three     or 

      axes parallel to the basis vectors.  2

2

 

Summary :All crystals can be categorized as one of 32 crystal  

classes or as one of 32 point groups. 
The  notations of a crystal as a member of a crystal class or as  
a member of a point group are isomorphic. 

In the cubic system there are three      or       or      or     axes  
parallel to the basis vectors; but in addition three      or       
must exist in the space diagonal. 

2
3

_

42 4 _

3

_

2Note:            , therefore       perpendicular to      is used  

instead of       . 

m m2
_

2



Symbol for the 
rotation 

  1   2   3   4   6 

Graphic 
symbol 
 

Symbol for the 
roto-inversion 

Graphic 
symbol 
 

m2
_

1
_

3
_

4
_

6

Graphic Symbols 



Orientation of the Symmetry Elements in Space 

Important :The orientation of the symmetry elements in space 

is restricted by the condition, that the symmetry element must  
transform the basis vectors into themselves (or into an equivalent 
set of vectors ). 

Example :  4/mmm 

a1 

a2 

c 

m 

m 

m 
m 



Symmetry of Crystal Structures 

Remember: 

The crystal structure consists of  

a structural unit of atoms which  

is repeated periodically in three  

non-co-linear directions of  space. 

This periodic repetition can be  

described by three basis vectors  

a, b, c which by repetition form 

 a 3-dimensional lattice. 

 

a  

c  b  



1. Consequence. 

There is a new symmetry, which determines the crystal structure:  

the  translation. 

2. Consequence: 

Since there are 7 different axes systems (crystal systems), we must 

consider 7 different lattices. They are called primitive lattices. 

3. Consequence: 

Since translation is a new symmetry element  in crystal structures, 

 it might be coupled with a point group symmetry elements.  

 



However: The translations coupled with point group symmetry 

elements must be consistent with the  lattice, i.e. they must not 

destroy the lattice. 

Example 
The coupling between a mirror plane and a translation: 

m 

Glide plane 



t 

The glide plane in a lattice:  

The translation vector t must lead to a lattice point  
after two translations 



The convention which is 

used to name glide planes. 

Arrows and letters indicate 

the gliding directions and 

the corresponding symbols. 

A glide plane parallel to a 

diagonal of the unit cell is  

in some cases denoted with 

the letter  d. 

Example: Glide planes in an  

                      orthorhombic system 
Glide planes may exist instead of 
 mirror planes 

a 
n b 

n c 

a 

b 

c 
n 

b 
a 

c 



The coupling between a rotation and a translation: 

Screw axis (helicoidal axis)  

Example :  
A threefold screw axis  
with a translation of 1/3 
and 2/3.  The subscript quantifies  
the translation along the axis 
 3 31 3 32 

Note: The translation vector must be parallel to the axis of  

rotation  



The screw axis  in a lattice:  

21 -axis 

t 

The translation vector t  
must lead to a lattice  
point after two  
translations, t must be  
parallel to the axis. 
 



Axis Translation num. Symbol graph. Symbol 

2 1/2 21 

3 1/3, 2/3 31, 32 

4 1/4, 1/2, 3/4 41, 42, 43 

6 1/6, 1/3,  1/2, 2/3, 5/6  61, 62, 63, 64, 65 

The rotation axes coupled with the possible translations  
and  the symbols of the screw axes. 



Translation Lattices, Bravais Lattices 

Remember: 

The periodic repetition of the three basis vectors a, b, c form 

 a 3-dimensional point lattice, which is called  a  primitive lattice. 

Since  there are 7  basis systems , we can distinguish 7 primitive 

lattices. 

Each lattice has the property that  a translation  of the lattice to any 

lattice point leaves the lattice invariant. 

Beside the 7 primitive lattices there are other lattices conceivable, 

which have the property: The lattices are centered 

 



Example: Centered lattice in an orthorhombic cell 

t 
The translation t is also 
 a lattice translation. 
However: It depends on the 
basis system, whether a 
centering will yield a new 
translation lattice 

Convention : 
The  face not containing the c basis vector  is 
called the C-face , the cell is called the C-cell, the 
lattice is called a C-lattice accordingly.  

Centering A-face B-face C-face Body 

center 

All faces 

centered 

Lattice A B C I F 

Position 
of  the 
center 

(0, 0, 0) 

(0, ½, ½) 

(0,  0, 0) 

 (½, 0, ½) 

(0,  0, 0) 

 (½,, ½,0) 

 

(0,  0, 0) 

 (½, ½, ½,) 

 

See 

A-,B-,C- 

face 



 

triklinic 

 

monoclinic 

 

orthorhombic 

 

tetragonal 

trigonal 

 

 

 

hexagonal 

 

cubic 

P         C       I         F 
The 7 primitive and  
the 7 centered lattices 
are called the  
14 Bravais lattices. 

Note: The primitive  

trigonal  lattice is called  
the R lattice, it  can also 
be described  in the  
hexagonal basis.  
 
The trigonal  primitive 
R- lattice in the hexagonal 
 setting is twofold centered, 
i. e. threefold primitive 



Space Groups 

The symmetry of a crystal structure is a combination  
of the lattice symmetry and of the symmetry  
derived from the point group symmetry. 
The space group symmetry characterized by the 
space group symbol. It has the general form: 
 

Lcccc 
L is the reference to the lattice type, cccc stands for  
the up to 4 point symmetry operation or the  
point symmetry operation coupled with translations  
(i. e.  glide planes or screw axes) 



Examples : 
Pccm 

ccm  is derived from the orthorhombic point group mmm, 
where two mirror planes have been replaced by two c glide 
planes. 
P  refers to the orthorhombic primitive lattice. 

Cmm2 

mm2  is the orthorhombic point group mm2, 
C  refers to the orthorhombic C-centered lattice. 

I4cm 

4cm  is derived from the tetragonal point group 4mm, 
where one mirror plane has been replaced by a c glide 
plane. 
I  refers to the tetragonal body centered lattice. 



X-ray Diffraction  

Since 1669 (Steno’s law) crystals have been studied 
based on their macroscopical properties. 
 
The detection of X-ray diffraction on crystals by  M. 
v. Laue and co-workers (1912) inaugurates a new era 
in this discipline: The determination of crystal 
structures. 
 



s0 s 
r 

0 

Amplitude of the scattered wave : 

A=exp(iF) 

 Path difference of a wave 

scattered at point r with respect to O : 

r(s-s0) 

The  phase angle is : 

F=2p r(s-s0) /l 

s  vector of the diffracted beam 

s0  vector of the incident beam 

(s-s0) /l = r*  

A = exp( 2pi r r*)  

 



Diffraction by a periodic structure. 

0 ruvw 

rj 
r 

Amplitude of the scattered wave : 

 

 
 r*)r  i2 exp(f A 0 p

r = ruvw+rj        ruvw = ua + vb + wc        rj = xja + yjb + zjc 

A = G • F 

G = lattice factor F = structure factor 

A=exp(2pi (ua+vb+wc)r*) f0j exp(2pi (rjr*)) 



Laue's approximation for N   
)h(G  

2
G

N2 

N=10 

N=3 (by factor 10) 

 

The lattice factor. 

 
N

wvu
wvuiG

,,
))(2exp( p

r*=(,,) 

point lattice   =  

reciprocal lattice 

r* = h, k, l = integer 



Laue's equations in vector notation 

( s-s0)/l = r*hkl = ha* +kb* +lc* 
 
In the basis (a*, b*, c*) 

s0/l s/l 

(s-s0)/l 

lattice plane ( h k l) 

r*hkl 



Three  properties of r*hkl 

1.  r*hkl is normal to a lattice plane (h, k, l) or a crystal face, respectively. 

      (h, k, l)  are the Miller indices, if they have no common denominator. 

2.  r*hkl represents the set of parallel lattice planes with the distance d 

       The length of r*hkl (also module or norm) : 
 

drhkl /1* 

3. If the indices have a common denominator n, r*hkl = (nh, nk, nl) 

      represents the set of fictitious parallel lattice planes with the  
      distance d/n 
      The length of r*hkl  is in this case: 
 
 dnrhkl /* 



The  basis (a*, b*, c*)  of r*hkl  : 

r*hkl  only has the integer values  (h, k, l) if the appropriate basis 
is chosen: 
 

     
V

ba
l

V

ac
k

V

cb
hrhkl








*

V = Volume of the parallelepiped (a, b, c)   

     acbcbabacV 

 
V

cb
a


*  

V

ac
b


*  

V

ba
c


*



c 

a d001 

a* 

c* 

c0
*=1/d001 

Example:  a monoclinic lattice 



Ewald's   interpretation 

Diffraction occurs in the direction of s if a 

point of the reciprocal lattice intersects 

the Ewald-sphere. 

Crystal at the centre M of a 

sphere with the radius 1/l.  

 

The origin of the reciprocal 

lattice is on the sphere with 

M-0 equal to s0/l.  

M 

r* 

0 

s0/l 

s/l 

(h k l) 



Bragg’s law 

l
 0

:
2

*
sin

srhkl
 dnrhkl /*  10 s

l nd sin2
Bragg interprets  the diffraction 
of  X-rays as a “reflection” on lattice 
planes.  

s0/l s/l 

(s-s0)/l 

lattice plane ( h k l) 

 

r*hkl 

  



Final comment: 

 

The concept of the reciprocal lattice and its application to   

the diffraction of X-rays not only holds for X-rays but also  

for all electromagnetic waves, e.g. electrons as well as  

neutrons. 


