

¹Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland ²Institut für Geowissenschaften/Mineralogie, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

Acknowledgment: The work is financially supported by the Materialwissenschaftliches Forschungszentrum der Johannes Gutenberg-Universität Mainz

Thermal expansion coefficient	nts at 10K.:	
	Er ₃ Ni	
$\alpha_{a} 10^{5} [K]^{-1}$	22.3	
$\alpha_{\rm h} 10^5 [{\rm K}]^{-1}$	18.7	
$\alpha_{c}^{c} 10^{5} [K]^{-1}$	-20.7	
Thermal expansion coefficient	nts at 300K.:	
	Er ₃ Ni	
$\alpha_{a} 10^{5} [K]^{-1}$	15.4	
$\alpha_{\rm h} 10^5 [{\rm K}]^{-1}$	13.1	
$\alpha_{c} 10^{5} [K]^{-1}$	1.2	
Neel temperature [3,4]:		
	Er ₃ Ni	
	10 [4]	

Temperature Dependence of Lattice Parameters for Er_3T (T=Ni, Rh, Ir) J. Kusz¹, H. Böhm², E. Talik¹

and the shortest bond length of Er-Er

Problem:

The three compounds Er₃Ni, Er₃Rh and Er₃Ir exhibit an anomalous, anisotropic behavior with temperature: • The lattice constant c increases with temperature in all of these compounds, which is in contrast to Gd_3T (with T=Ni, Rh, Ir) [2].

• All compounds of Er₃T (with T=transition metals) are expected to crystallize in the orthorhombic Fe₃C-type structure (after [1]) and in the SG Pnma. •To understand the anomalous behavior of the lattice

parameters we studied the structure of Er₃Ir at 150K, 200K and 300K by single crystal X-ray diffraction.

	150 K	200 K	300 K
	130 K	200 K	$\frac{300 \text{ K}}{2.925(1)}$
Er - Ir	2.821(1)	2.821(1)	2.825(1)
	2.728(1)	2.731(2)	2.731(1)
	2.834(2)	2.833(2)	2.833(1)
	2.911(1)	2.911(1)	2.908(1)
Er - Er	3.432(2)	3.436(2)	3.443(1)
	3.435(2)	3.436(2)	3.442(2)
	3.456(2)	3.458(2)	3.464(1)
	3.489(1)	3.489(1)	3.490(1)
	3.496(2)	3.501(2)	3.507(1)
	3.526(2)	3.525(2)	3.525(1)
	3.587(1)	3.590(1)	3.596(1)

Bond lengths at 3 different temperatures

Literature

[1] Landolt-Börnstein, Vol.III, 26 (Springer 1989) [2] J. Kusz et al., J. Appl. Cryst. in press. (2000) [3] E. Talik et al., J. Magn. Magn. Mater. 186, (1998), 33-40 [4] E. Talik et al., J. Magn Magn Mater. 157/158 (1996) 405-406