Seminar on X-ray Diffraction

given at the Institute of Physics University of Silesia

Horst Böhm

1

Contents

- Basic theory on diffraction of X-rays
- Analysis of X-ray diffraction
 Fourier transform
 Convolution theorem
- X-ray diffraction of powder samples
- X-ray diffraction of single crystals
- Applications

Basic theory of diffraction

History

Two hypotheses by Max von Laue (1912):
•X-rays are waves
•Crystals have a 3-dimensional periodical structure

The original experiment

The first diffraction photograph on Coppersulfate

This was the proof of the two hypotheses

Interaction between X-rays and matter

Scattering of X-rays

X-rays are scattered by the the individual electrons

The envelope of all spherical waves is again a spherical wave

Scattering by a crystal

Example:

The crystal structure of Zircon - ZrSiO₄

X-rays scattered by the zirconium atoms (Atomic radii are not in scale) Analogue to Huygens Principle

Periodicity ⇒ Phase difference between scattered X-rays is constant ⇒ Constructive interference ⇒ Diffraction 5

Interpretation of the diffraction by Bragg

The incident and the diffracted wave have the same angle ϑ with respect to the crystal planes with the periodic distance **d**.

 \Rightarrow It looks like a Reflection.

Bragg's law

For constructive interference the condition must hold: The path difference between waves scattered by atoms from adjacent lattice planes (*h k l*) must be a multiple integer of λ .

 $2d_{hkl} \sin \vartheta = n$

Diffraction by a periodic structure.

Amplitude of the scattered wave :

 $A = \Sigma f_0 \exp(2\pi i r r^*)$

 $\mathbf{r} = \mathbf{r}_{uvw} + \mathbf{r}_j$ $\mathbf{r}_{uvw} = \mathbf{u}\mathbf{a} + \mathbf{v}\mathbf{b} + \mathbf{w}\mathbf{c}$ $\mathbf{r}_j = \mathbf{x}_j\mathbf{a} + \mathbf{y}_j\mathbf{b} + \mathbf{z}_j\mathbf{c}$

 $A = \Sigma \exp(2\pi i (ua^{(0)} + vb^{(-)} + wc^{(0)} r^{(0)}) f_{0j} \exp(2\pi i (r_j^{(0)} r^{(-)}))$ $A = G \cdot F$ $G = lattice factor \qquad F = structure factor$

Analysis of X-ray diffraction

Path difference of a wave scattered at point r with respect to 0 :

r(s-s₀)

The phase angle is:

2π r(s-s₀) /λ

(s-s₀) $/\lambda = r^*$

Amplitude of the scattered wave : A = exp(2πi r r*)

Diffraction by a periodic structure.

Amplitude of the scattered wave :

 $A = \Sigma f_0 \exp(2\pi i r r^*)$

 $\mathbf{r} = \mathbf{r}_{uvw} + \mathbf{r}_j$ $\mathbf{r}_{uvw} = \mathbf{u}\mathbf{a} + \mathbf{v}\mathbf{b} + \mathbf{w}\mathbf{c}$ $\mathbf{r}_j = \mathbf{x}_j\mathbf{a} + \mathbf{y}_j\mathbf{b} + \mathbf{z}_j\mathbf{c}$

$$A = \Sigma \exp(2\pi i (ua^{\omega} + vb^{\omega} + wc)r^{\omega})f_{0j} \exp(2\pi i (r_j r^{\omega}))$$

A = G • F

G = lattice factor F = structure factor

$$G = \sum_{k=1}^{N} \exp(\xi u + \eta v + \zeta w)$$

Laue's approximation for $N \rightarrow \infty$

r*=(ξ,η,ζ)

⇒r* = (point) lattice h, k, l = integer

Ewald's interpretation

Crystal at the centre M of a sphere with the radius $1/\lambda$. The origin of the reciprocal lattice is on the sphere with M-0 equal to s_0/λ .

Diffraction occurs in the direction of s if a point of the reciprocal lattice intersects the Ewald-sphere

Measurement of X-ray reflections

13

The structure factor for a density $\rho(x,y,z)$

$F(h,k,l) = \int \rho(x,y,z) \exp(2\pi i(hx_j + ky_j + lz_j)) dV$

The operator which transforms the density of the <u>crystal space</u> to the amplitude of the <u>reciprocal space</u> is the Fourier Transform

A lattice

A structure

Its transform

Information from the structure factor.

The structure factor is a complex quantity: It consists of <u>real</u> and <u>imaginary</u> part (or <u>magnitude</u> and <u>phase</u>)

graphic representation in the Gaussian plane: colour = phase brightness= magnitude

A motif and its Fourier Transform (example found in the internet) A motif and its Fourier Transform (example found in the internet)

A motif can be reconstructed from phase and magnitude

Phase problem:

In diffraction experiments only <u>intensities</u> are measured, i.e. the square of the <u>magnitude</u>. For reconstruction of the structure from diffraction data the more important part is not known : the phases

Convolution

The operator that produces the function f(x) * g(x) from two functions f(x) and g(x) is called a convolution

$$f(x) * g(x) = \int g(x - u)f(u)du$$

Consider for f(x) a special case

 $f(x)=\delta(x-h)$

This describes a point lattice Let g(x) be the electron density of a unit cell

density of the unit cell * lattice

e 📄 ⇒ 📄

1

0

 $f(x)=\delta(x-h)$

h=0, 1, 2...

2

g(**x**)

3

X

Convolution theorem.

$Ff(x) * g(x) = F(f(x)) \cdot F(g(x))$

The Fourier transform F of a convolution of two functions is equal to the product of their Fourier transforms.

The periodic structure is a convolution of a contents of a unit cell and a point lattice Their Fourier transform is the product of the lattice factor and the structure factor

Example: A train of 5 atoms is a convolution of one atom with 5 lattice points

