Mechanisms at Structural Phase Transitions

H. Böhm

Institut für Geowissenschaften Universität Mainz Germany

V. Kahlenberg, J. Kusz, O. Pawlig, M. Riester

Definition

Structural Phase Transition:

It occurs in a crystalline solid with a sudden change in symmetry because of a change of pressure and/or temperature.

A change of the symmetry is associated with the change of the structure.

classification

First order phase transitions.

at the temperature T_c : $\Delta S \neq 0$

 $\Delta V \neq 0$

Mechanisms:

nucleation and growth,

range of coexisting phases

characteristic features:

thermal hysteresis

classification

Second order phase transitions.

at the temperature
$$T_c$$
: $\Delta S = O$

$$\Delta V = 0$$

Mechanisms:

continuous transition

<u>characteristic feature</u>:

no thermal hysteresis;

Landau Theory is applied

Sequence of phases

$$lpha$$
 - Phase C2/c

$$c_0(\alpha) = 2 c_0(\beta)$$
 $Tc = 233 °C$

$$\sqrt{I} \sim \eta = \eta_0 (T_c - T)^{\beta}$$
 $\eta = \text{order parameter}$

Superstructure reflection

Bi₂Ti₄O₁₁

Spontaneous strain

No thermal hysteresis: 2.nd order phase transition , coupling between η and the spontaneous strain

$\mathrm{Bi_{2}Ti_{4}O_{11}}$

structure : β-Phase

Interpretation in terms of the Landau Theory:

At Tc a continuous shift of the Bi-atoms begins off the mirror plane.

structure : α-Phase

Bi - Atome

Comment:

The transition is triggered by the ordering of the lone electron pair of Bi.

Example

Ca₂CoSi₂O₇

Sequence of phases:

Diffraction pattern at RT:

Ca₂CoSi₂O₇

Satellite-Intensity

Phase transition at about 500 K

No thermal hysteresis: 2.nd order phase transition

Ca₂CoSi₂O₇

Variation of the q-vector (incommensurate phase)

Phase transition between 155 K und 270 K

Thermal hysteresis:

1. order phase transition

continued Ca₂CoSi₂O₇

HT - Phase

Ca₂CoSi₂O₇

C - Phase

3.a

Ca₂CoSi₂O₇

IC - Phase

HRTEM picture at RT: Octagonal rings.

Van Heurk et al., 1992

Ca₂CoSi₂O₇

Relationship between the phases

C-Phase: An ordered superposition of octagonal rings.

IC-Phase: An arbitrary superposition of octagonal rings.

Mechanisms

Ca₂CoSi₂O₇

Satellite reflection

Bi₂Ti₄O₁₁

Superstructure reflection

Mechanisms

$(Ca_{1-x}Sr_x)_2MgSi_2O_7; x = 0.16$

Transformation temperature

Ca₂CoSi₂O₇

Relationship between the phases

C-Phase: An ordered superposition of octagonal rings.

IC-Phase: An arbitrary superposition of octagonal rings.

HT-Phase:
Domains of octagonal rings with short range order.

Bi₂Ti₄O₁₁

structure : β-Phase

<u>Interpretation:</u>

Above T_c the lone pair of Bi-atoms begins to order in domains with short range order.

structure : α -Phase

Bi - Atome

Long range order is attained at the transition point

Final question

What characterizes a continuous phase transition?

Answer:

The continuous increase of the range of order until long range order is achieved (not a continuous shift of atomic positions).