Mechanisms at Structural Phase Transitions H. Böhm Institut für Geowissenschaften Universität Mainz Germany V. Kahlenberg, J. Kusz, O. Pawlig, M. Riester ### Definition ### **Structural Phase Transition:** It occurs in a crystalline solid with a sudden change in symmetry because of a change of pressure and/or temperature. A change of the symmetry is associated with the change of the structure. ### classification First order phase transitions. at the temperature T_c : $\Delta S \neq 0$ $\Delta V \neq 0$ #### Mechanisms: nucleation and growth, range of coexisting phases characteristic features: thermal hysteresis #### classification Second order phase transitions. at the temperature $$T_c$$: $\Delta S = O$ $$\Delta V = 0$$ #### Mechanisms: continuous transition <u>characteristic feature</u>: no thermal hysteresis; Landau Theory is applied ### Sequence of phases $$lpha$$ - Phase C2/c $$c_0(\alpha) = 2 c_0(\beta)$$ $Tc = 233 °C$ $$\sqrt{I} \sim \eta = \eta_0 (T_c - T)^{\beta}$$ $\eta = \text{order parameter}$ Superstructure reflection Bi₂Ti₄O₁₁ #### Spontaneous strain No thermal hysteresis: 2.nd order phase transition , coupling between η and the spontaneous strain # $\mathrm{Bi_{2}Ti_{4}O_{11}}$ structure : β-Phase Interpretation in terms of the Landau Theory: At Tc a continuous shift of the Bi-atoms begins off the mirror plane. structure : α-Phase **Bi - Atome** Comment: The transition is triggered by the ordering of the lone electron pair of Bi. # Example ### Ca₂CoSi₂O₇ #### Sequence of phases: Diffraction pattern at RT: ### Ca₂CoSi₂O₇ Satellite-Intensity Phase transition at about 500 K No thermal hysteresis: 2.nd order phase transition ### Ca₂CoSi₂O₇ Variation of the q-vector (incommensurate phase) Phase transition between 155 K und 270 K #### Thermal hysteresis: 1. order phase transition #### continued Ca₂CoSi₂O₇ ### HT - Phase ### Ca₂CoSi₂O₇ ### C - Phase 3.a ### Ca₂CoSi₂O₇ IC - Phase HRTEM picture at RT: Octagonal rings. Van Heurk et al., 1992 ### Ca₂CoSi₂O₇ Relationship between the phases C-Phase: An ordered superposition of octagonal rings. IC-Phase: An arbitrary superposition of octagonal rings. # Mechanisms Ca₂CoSi₂O₇ Satellite reflection Bi₂Ti₄O₁₁ Superstructure reflection ### Mechanisms ### $(Ca_{1-x}Sr_x)_2MgSi_2O_7; x = 0.16$ Transformation temperature ### Ca₂CoSi₂O₇ ### Relationship between the phases C-Phase: An ordered superposition of octagonal rings. IC-Phase: An arbitrary superposition of octagonal rings. HT-Phase: Domains of octagonal rings with short range order. # Bi₂Ti₄O₁₁ structure : β-Phase #### <u>Interpretation:</u> Above T_c the lone pair of Bi-atoms begins to order in domains with short range order. structure : α -Phase Bi - Atome Long range order is attained at the transition point # Final question What characterizes a continuous phase transition? #### Answer: The continuous increase of the range of order until long range order is achieved (not a continuous shift of atomic positions).