Introduction to Structural Phase Transitions

H. Böhm

V. Kahlenberg, J. Kusz, O. Pawlig, M. Riester

Definition

Structural Phase Transition:

In a crystalline solid distortions may occur when thermodynamical variables are changed. A consequence of such distortions is a change of symmetry at discrete values of these variables.

Thermodynamical variables: temperature [T], pressure [p], chemical composition (molar fraction) [X].

Two regions α and β in the thermodynamical space differ by the sets of symmetry elements.

An isotropic, homogeneous substance is specified by the **Gibbs Potential** (Gibbs' Free Energy):

G = U - TS + pV

Consider a system with the variables: p, T, N_j N_j : number of molecules of the species j.

G (p, T, N_j) $dG = \frac{\partial G}{\partial p} dp + \frac{\partial G}{\partial T} dT + \sum_{i} \frac{\partial G}{\partial N_{i}} dN_{i}$

$$\frac{\partial G}{\partial T} = -S \qquad \qquad \frac{\partial G}{\partial p} = V$$

For the system with the variables: p, T, $N_{\rm j}$ we get:

$$dG = Vdp - SdT + \sum_{i} \mu_{i} dN_{i}$$

 $\frac{\partial G}{\partial N_i} = \mu_i$ = chemical potential of the molecule of type i

Consider a homogeneous and isotropic substance which consists of two components **A** and **B** (e.g. solid solution).

Asumption:

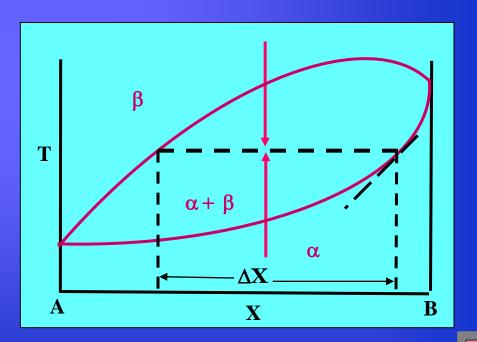
There are two phases α and β , which are described in the variables T, p, X.

The transition from one state to the other can be described in a phase diagram (e. g. with p=const.):

 \Rightarrow T – X diagram (if p=const.):

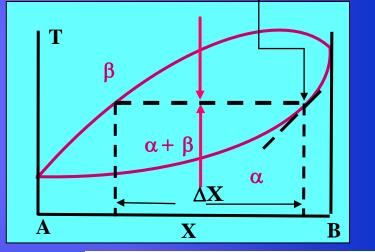
Reversible change from state α to state β . Two different ways of transition from state α to state β are observed.

a) <u>A general observation</u>: There are two border lines, which separate the region of the pure phases α and β from a region $\alpha + \beta$.

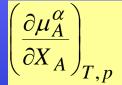


The boarder lines in this diagram are described by the **Gibbs – Konovalow Equation**.

$$\begin{bmatrix} \left(\frac{\partial \mu_A^{\alpha}}{\partial X_A}\right)_{T,p} + \left(\frac{\partial \mu_B^{\alpha}}{\partial X_B}\right)_{T,p} \end{bmatrix} \Delta X$$
$$\frac{\partial T}{\partial X^{\alpha}}\Big|_p = -\frac{1}{\Delta S + (S_A^{\alpha} - S_B^{\alpha}) \Delta X}$$



$$\frac{\partial T}{\partial X^{\alpha}}\Big|_{p} = boarder line of state \alpha$$



mole fraction partial derivative of the chemical potential of phase α of component A

 $slope = \frac{\partial x}{\partial X^{\alpha}}$

 S_A^{α} = partial molar entropy of component A

$$\Delta S = S^{\alpha} - S^{\beta}$$
 = molar entropy difference

Discussion:

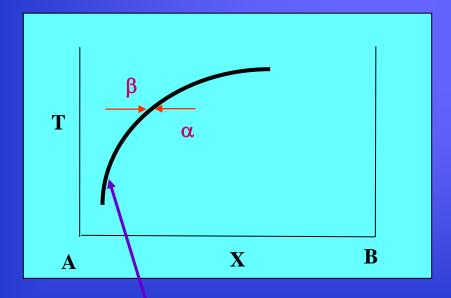
Transition from state α to state β . In phase α a small nucleus with symmetry β is formed. It grows at the expense of α .

Since $\Delta X \neq O \implies \Delta S \neq O$

$$\frac{\left[\left(\frac{\partial \mu_A^{\alpha}}{\partial X_A}\right)_{T,p} + \left(\frac{\partial \mu_B^{\alpha}}{\partial X_B}\right)_{T,p}\right]\Delta X}{\frac{\partial T}{\partial X^{\alpha}}\Big|_p = -\frac{1}{\Delta S + (S_A^{\alpha} - S_B^{\alpha})\Delta X}$$

<u>Remember</u>: The mechanism of the phase transition, if $\Delta S \neq O$, is nucleation and growth.

Continuous and reversible change from state α to state β with $\Delta X = O$ at the phase boundary. However, a discontinuous change of symmetry.

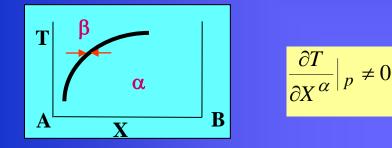


b)

phase boundary

Discussion:

At the transition from state α to state β .



$$\begin{bmatrix} \left(\frac{\partial \mu_A^{\alpha}}{\partial X_A}\right)_{T,p} + \left(\frac{\partial \mu_B^{\alpha}}{\partial X_B}\right)_{T,p} \end{bmatrix} \Delta X$$
$$\frac{\partial T}{\partial X^{\alpha}}\Big|_p = -\frac{1}{\Delta S + (S_A^{\alpha} - S_B^{\alpha}) \Delta X}$$

Since $\Delta X = O \implies \Delta S = O$

A similar discussion in a **p** – **X diagram** (if T=const.):

If $\Delta X = O \Longrightarrow \Delta V = O$

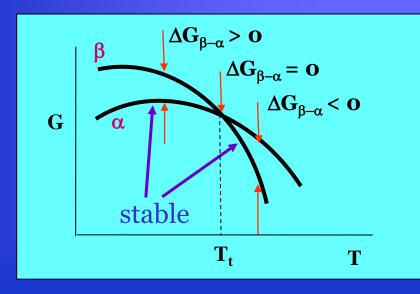
<u>Remember</u>: The mechanism of the phase transition is a continuous change in entropy and volume.

We discuss a phase transition when T is varied.

 \Rightarrow G – T diagram (if p,X=const.):

 \mathbf{G}_{β} - \mathbf{G}_{α} = $\Delta \mathbf{G}_{\beta-\alpha}$

At the transition from state α to state β :





T_t= transition temperature

What is common to both forms of a phase transition: The Gibbs potential is a continuous function.

α phase is stable

At T_t:

 $\mathbf{G}_{\beta} < \mathbf{G}_{\alpha}$

β phase is stable

At T_t : $\frac{\partial G}{\partial T} = -S$ $\Delta S \neq O$ <u>This is a transition of type a</u>) In a **G** – **p** diagram :

We expand G(T) in a series about the point T_t :

$$G(T) = G(T_t) + \frac{\partial G}{\partial T}\Big|_{T=T_t} (T - T_t) + \frac{1}{2} \frac{\partial^2 G}{\partial T^2}\Big|_{T=T_t} (T - T_t)^2 + \dots$$

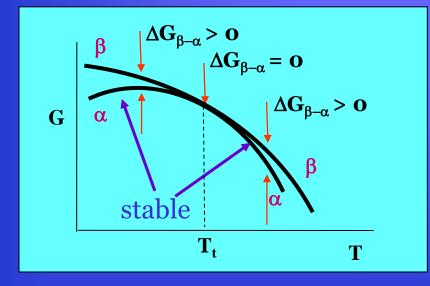
Using the relations:

$$\frac{\partial G}{\partial T} = -S \qquad \qquad \frac{\partial^2 G}{\partial T^2} = -\frac{\partial S}{\partial T} = -\frac{c_p}{T}$$

$$G(T) = G(T_t) - S(T_t)(T - T_t) - \frac{1}{2} \frac{c_p}{T_t} (T - T_t)^2 + \dots$$

We discuss now the case b) $\Delta S = O, \Delta V = O$

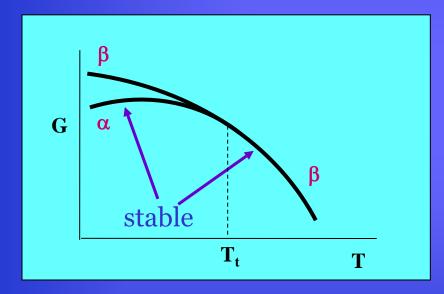
$$\Delta G(T) = G_{\alpha} - G_{\beta} - \frac{1}{2} \frac{\Delta c_{p}}{T_{t}} (T - T_{t})^{2} + \dots$$



α phase is stable for T<T_t and T> T_t

This is no phase transition !!

<u>Solution</u>: symmetry α is not possible above T_t



At $T=T_t$: $\Delta S=0$ means the curves have the same slope but different curvatures

Classification

1. Order phase transition (after Ehrenfest)

At the temperature T_t :

$$\Delta G(T \to T_t) = 0$$

$$\frac{\partial \Delta G}{\partial T} = -\Delta S(T \to T_t) \neq 0$$

$$\frac{\partial \Delta G}{\partial p} = \Delta V(T \to T_t) \neq 0$$

$$\frac{\partial^2 \Delta G}{\partial T^2} = -\frac{c_p}{T_t}(T \to T_t) \neq 0$$

useful properties:

$$\frac{\partial^2 G}{\partial p^2} = \left(\frac{\partial V}{\partial p}\right)_T = -\beta V$$

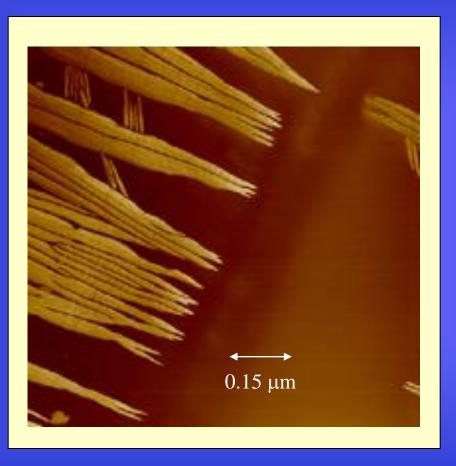
β=compressibility

$$\frac{\partial^2 G}{\partial p \partial T} = \left(\frac{\partial V}{\partial T}\right)_p = \alpha V$$

a=thermal expansion coefficient

<u>Mechanism</u>: <u>Typical property</u>: nucleation and growth thermal hysteresis

Example



Atomic Force Microscope (AFM) picture of the transition of Polydiethylsiloxane (PDES) at T = -6 °C

Classification

2. Order phase transition (after Ehrenfest)

At the temperature T_t :

$$\Delta G(T \to T_t) = 0$$

$$\frac{\partial \Delta G}{\partial T} = -\Delta S(T \to T_t) = 0$$

$$\frac{\partial \Delta G}{\partial p} = \Delta V(T \to T_t) = 0$$

$$\frac{\partial^2 \Delta G}{\partial T^2} = -\frac{c_p}{T_t}(T \to T_t) \neq 0$$

useful properties:

$$\frac{\partial^2 G}{\partial p^2} = \left(\frac{\partial V}{\partial p}\right)_T = -\beta V$$

β=compressibility

$$\frac{\partial^2 G}{\partial p \partial T} = \left(\frac{\partial V}{\partial T}\right)_p = \alpha V$$

α=thermal expansion coefficient

<u>Mechanism</u>: <u>Typical property</u>: continuous phase transition Landau theory applies

Properties of a 2. order phase transition:

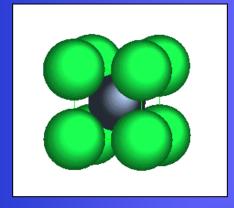
A continuous change of the <u>structure</u> at the phase boundary, but a discontinuous change of <u>the symmetry</u>. At the phase boundary both structures become indistinguishable

The phase transition occurs without the co-existence of two phases. i.e. <u>no</u> nucleation and growth

Typical mechanisms: •Order – Disorder processes •Displacive deformations

Examples:

a) The $\beta - \beta$ ' transition of CuZn.



At <u>low</u> temperatures: CsCl-type, cubic P-lattice.

At <u>higher</u> temperatures: statistical occupation of both sites by Cu and Zn, cubic I-lattice.

Degree of order is given by an **<u>order parameter</u>**:

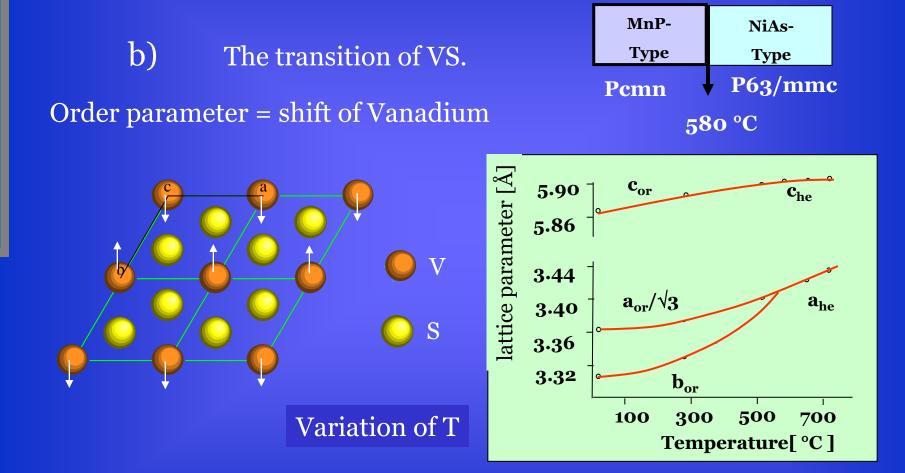
 $\eta = 2q_{Cu}-1$

 q_{Cu} = fraction of (000)-sites occupied by Cu-atoms

 $q_{Cu} = 1 \Rightarrow \eta = 1$ complete orderP-lattice $q_{Cu} = 0.5 \Rightarrow \eta = 0$ complete disorderI-lattice

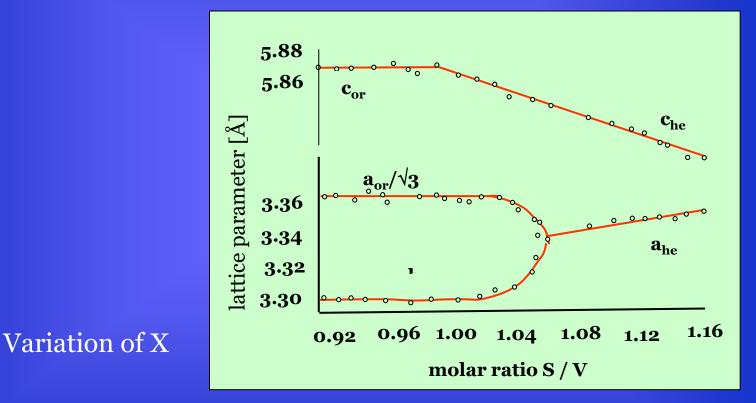
We can see the essential properties:
(i) A continuous variation of η between 0.....1
(ii) A discontinuous change of translational symmetry at the transformation temperature.
(ii) No co-existence of two phases.

This is a typical example of an order – disorder transformation.



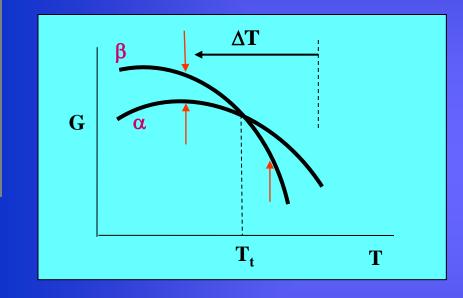
This is a typical example of a displacive transformation.

b) The transition of VS.



The NiAs-type is only stable with a deficiency of Vanadium.

Comments

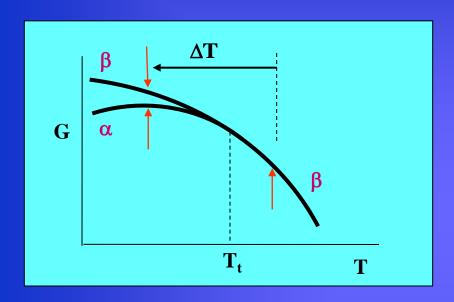


Quenching from a temperature above T_t for a 1. order phase transition.

(i) The β phase might be metastable below T_t.
(ii) Or a nucleus of phase α is formed.

(iii) No state between the curves is possible

Comments



Quenching from a temperature above T_t for a 2. order phase transition.

(i) The β phase cannot be quenched below T_t for a displacive transformation.
(ii) The β phase can be quenched below T_t for a order – disorder (diffusive) transformation.
(iii) Any state between the curves is possible

<u>Last comment</u>: The continuous variation of η or the lack of a thermal hysteresis are indicative for a 2. order phase transition

However, the experimental verification of these criteria might be difficult !!

Gibbs Potential and Landau theory

Consider G = G(T, p, X):

Each equilibrium state in α is characterized by $\eta_{eq} \neq 0$, each equilibrium state in β is characterized by $\eta_{eq} = 0$ Consider G as a power series expansion of η :

$$G(\eta) = G^0 + \alpha \eta + A \eta^2 + B \eta^3 + C \eta^4 + \dots$$

For each equilibrium state $G(\eta_{eq.})$ has a minimum, it must hold:

$$\frac{\partial G}{\partial \eta}\Big|_{\eta=\eta_{eq.}} = \mathbf{0}$$

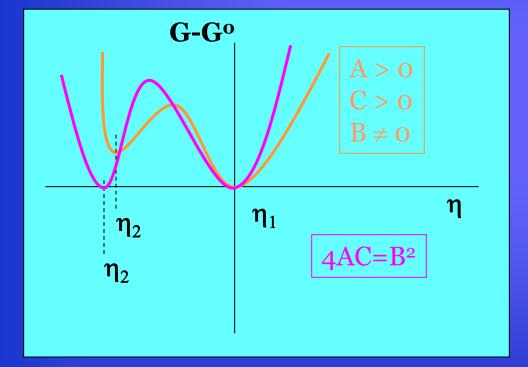
Since $\frac{\partial G}{\partial \eta}\Big|_{\eta=\mathbf{0}} = \mathbf{0}$ and $\frac{\partial^2 G}{\partial \eta^2}\Big|_{\eta=\mathbf{0}} > \mathbf{0}$

for the equilibrium state of β , it must hold:

 $\alpha = 0 \qquad A > 0$

Gibbs potential and Landau theory

$$G(\eta) = G^0 + A \eta^2 + B \eta^3 + C \eta^4 + \dots$$



Here:

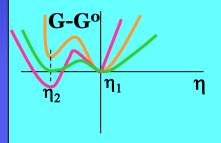
η₁=0 stable state
η₂ ≠0 metastable state
(or vice versa)

<u>Here:</u> $\eta_1=0$ stable state $\eta_2 \neq 0$ stable state co-existence of two stable states

All coefficients are functions of T, p, X.

Gibbs potential and Landau theory

Result:



<u>General</u> case: $\eta_1 = 0$ (i.e. β) is the stable state and $\eta_2 \neq 0$ (i.e. α) is a metastable state or $\eta_1 = 0$ (i.e. β) is the metastable state and $\eta_2 \neq 0$ (i.e. α) is a stable state

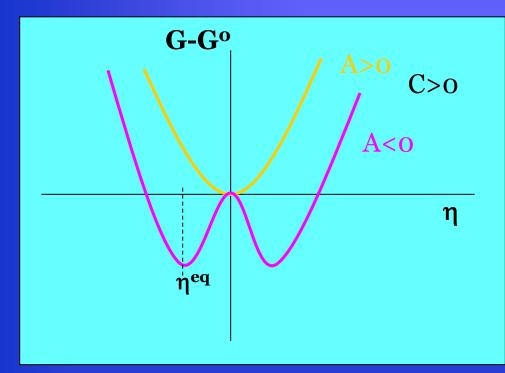
<u>Special</u> case: 4AC=B²
 η₁=0 (i.e. β) is the stable state <u>and</u> η₂ ≠0 (i.e. α) is a stable state
 ⇒ coexistence of α and β.

This is the case of a 1. order phase transition !

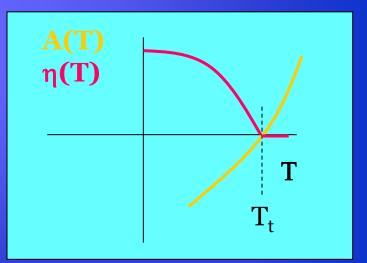
Gibbs potential and Landau theory

Consequence:

For a 2. order phase transition, B must be identical zero, it must vanish <u>by symmetry</u>, B≡0.



$$G(\eta) = G^0 + A \eta^2 + C \eta^4 + \dots$$



 $A = \mu(T - T_t)$

Landau theory

Density

The symmetry group of the β state be G^0 the density be ρ^o ($\eta=o$). At the transformation to the α phase symmetry is <u>lost</u>, the density be ρ ($\eta\neq o$).

The density change at the phase transition is $\Delta\rho=\rho-\rho^{\rm o}$

From group theory it is known, that for each group \mathcal{G}^{o} there exists a set of basis functions $\{\Phi_i\}$ which remain invariant under the symmetry operations of \mathcal{G}^{o} .

$$\Delta \rho = \Sigma \mathbf{c}_i \Phi_i$$

Example: P4

basis functions
$$\{\Phi i\}$$

$$\Phi_1 = x^2 + y^2$$
$$\Phi_2 = x^2 - y^2$$
$$\Phi_3 = xz$$
$$\Phi_4 = yz$$

 $\begin{array}{l} \{\Phi_i\} \text{ are transformed} \\ \text{into itself.} \\ \\ \text{They form 3 groups} \\ \text{which remain invariant:} \\ \{\Phi_1\}, \{\Phi_2\}, \{\Phi_3, \Phi_4\} \end{array}$

Criteria as postulated by Landau:

First presumption:

The symmetry group G of the state **a** is a subgroup of G^0 .

The symmetry group G is a subgroup of G^0 if the symmetry elements of G are a subset of the symmetry elements of G^0 , i.e. the multiplication table of G^0 contains the elements of G.

Reminder: Group Theory

Example

 $G^0 = mm2$ G = m

	1	m _x	m _y	2_{z}
1	1	m _x	m _y	2 _z
m _x	m _x	1	2 _z	m _y
m _y	m _y	2 _z	1	m _x
2 _z	2 _z	m _y	m _x	1

Reminder: Group Theory

The maximal non-isomorphic subgroups \mathcal{G} of the space group \mathcal{G}^{0} are divided into two types.

- I. "translationengleiche" or "*t* subgroups"
- II. "klassengleiche" or "*k* subgroups"

isomorphic means: they have the same abstract multiplication table

The maximal non-isomorphic subgroups G of the space group G^0 are listed in the "International Tables"

Example: P422

														G ⁰
CON	NTIN	UEI	D								No.	89		P422
	nerato itions		selected	(1);	t	(1,0,0); t(0,1,0);	t (0,0,1);	(2);	(3);	(5)			
Multi	Multiplicity, Wyckoff letter,				С	oordinates						Reflection conditions		
	p	1 (1) x,y,z 5) x̄,y,z̄	((2) (6)	x, y, z x, y, z	(3) \bar{y}, x, z (7) y, x, \bar{z}	$\begin{array}{c} (4) y, \bar{x} \\ (8) \bar{y}, \bar{x} \end{array}$, Z , Z				General: no conditions	
						_								
	Maximal non-isomorphic subgroups													
	I	[2]	P411(. P221(. P212(P 2 2	2)	1;2	; 5; 6							
	IIa IIb	noi [2]		(c '=	2 c)	;[2]C	$422_1 (a'=2)$	a , b '= 2 b)	(P 42	12);[2	2]F42	2 (a '=	$= 2\boldsymbol{a}, \boldsymbol{b}' = 2\boldsymbol{b}, \boldsymbol{c}' = 2\boldsymbol{c})$	(1422)

If k^o is the order of \mathcal{G}^o and k is the order of \mathcal{G} , then $[\mathbf{i}] = k^o/k$ is the index of the subgroup

Landau theory

Second presumption:

The distortions at the phase transition correspond to a single irreducible representation of the group of the wave vector.

Two terms must be explained:

- > What is an irreducible representation ?
- > What is the group of the wave vector ?

Representation

Definition:

 τ is a representation of of the group G, if there exists an matrix operator $\tau(g)$ for each element $g \in G$, so that for each multiplication

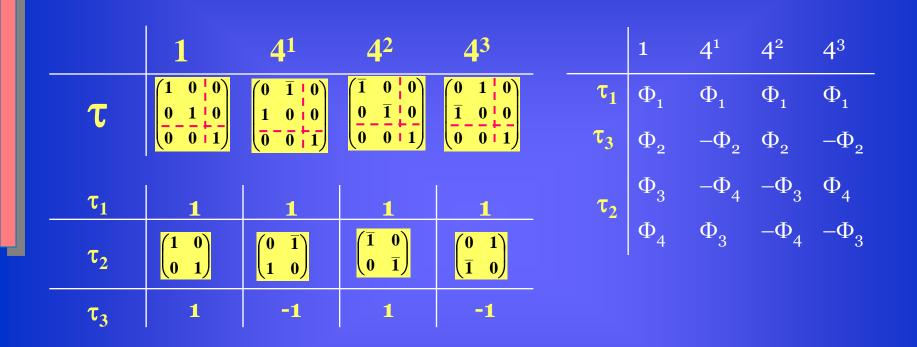
 $g_1 \cdot g_2 = g_3$

there is an equivalent multiplication

 $\tau(g_1) \cdot \tau(g_2) = \tau(g_3)$

If the matrix consists of small blocks on the diagonal, it is called irreducible.

$$\tau(A) = \begin{pmatrix} \tau_1(A) & 0 \\ 0 & \tau_2(A) \end{pmatrix}$$



The representations describe how the symmetry operators effect the basis functions

The dimension of the irreducible representation corresponds to the number of basis functions

e.g. $\begin{pmatrix} 0 & \overline{1} \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \Phi_3 \\ \Phi_4 \end{pmatrix} = \begin{pmatrix} -\Phi_4 \\ \Phi_3 \end{pmatrix}$

Wave vector

The phase transition occurs in the crystal space, however, it may become evident in the reciprocal space: by the appearance of superstructure reflections or satellite reflections.

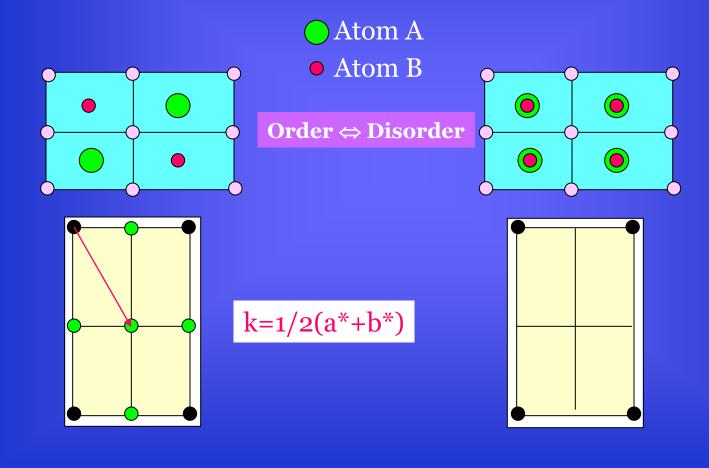
Therefore the symmetry elements must also leave the vector (so called <u>wave vector k</u>) invariant at which the transformation occurs.

The group of the wave vector not only leaves the structure invariant but also the wave vector.

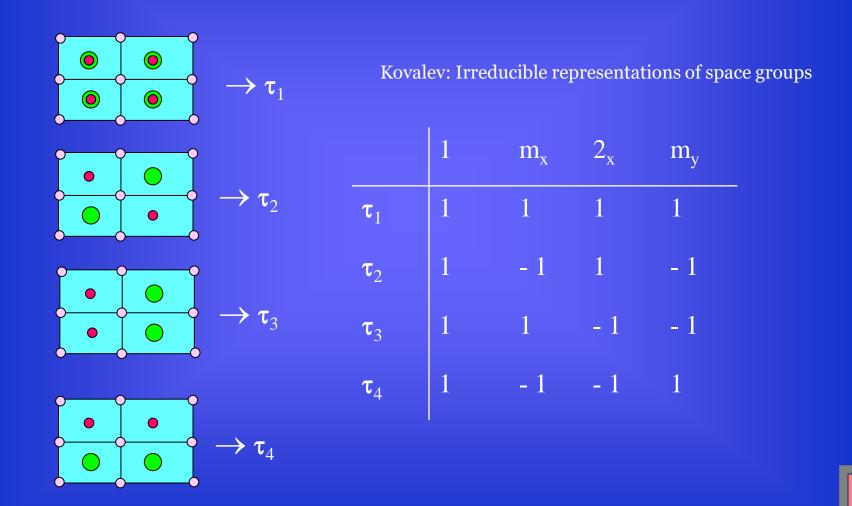
<u>Note</u> : The wave vector might be \mathbf{k} =(0 0 0); the transition occurs at a main reflection. The group \mathcal{G}^{0} contains all symmetry elements of the space group.

Example: Pmm2

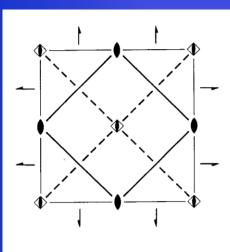
Consider a simple orthorhombic structure:

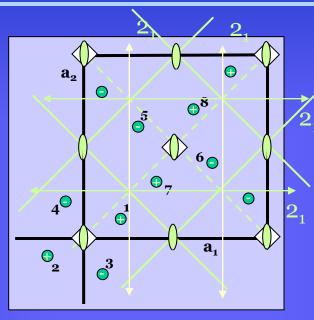


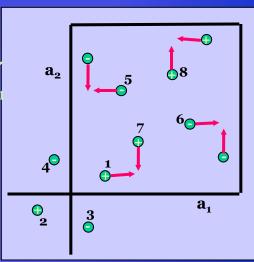
Example: Pmm2



Example: $P\overline{42}_{1}m$







Maximal non-isomorphic subgroups

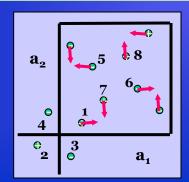
I	$[2]P\bar{4}11(P\bar{4})$	1; 2; 3; 4
	$[2]P22_{1}1(P2_{1}2_{1}2)$	1; 2; 5; 6
	[2]P21m(Cmm2)	1;2;7;8
IIa	none	
IIb	$[2] P \bar{4} 2_1 c (c'=2c)$	

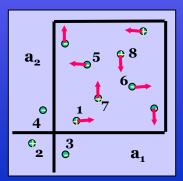
Example: $P42_1m$

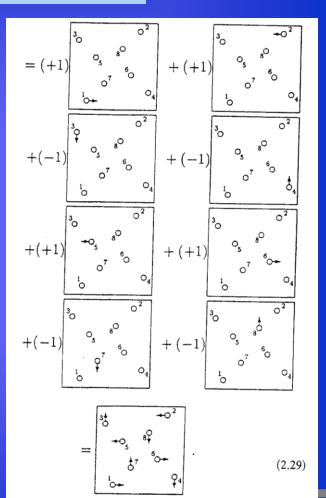
Wave vector be \mathbf{k} = (0, 0, 0)

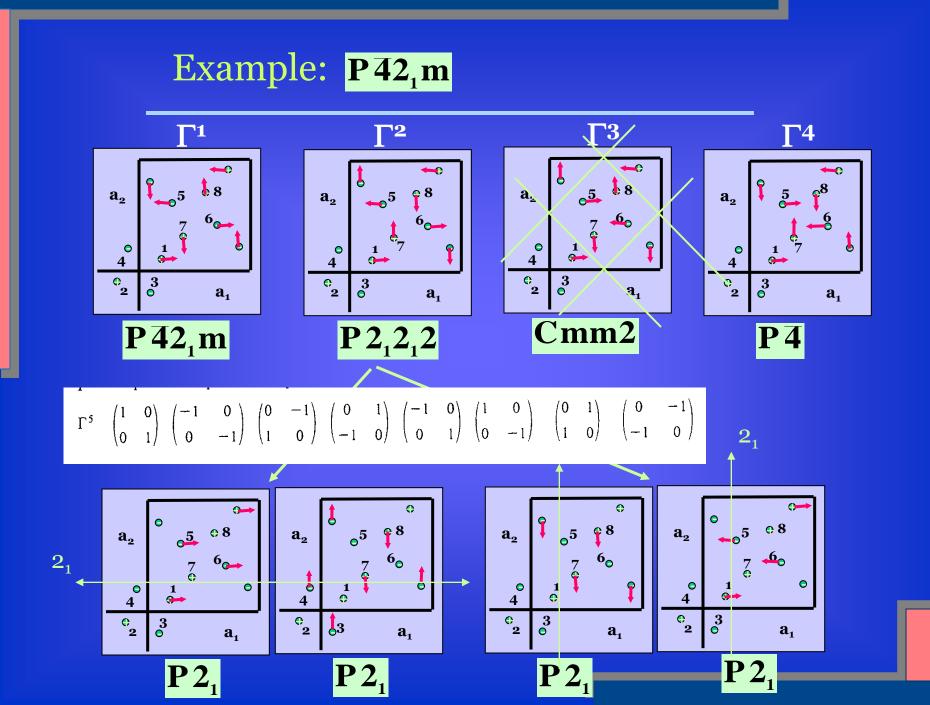
	Γ ^α (1)	$\Gamma^{\alpha}(2_z)$	$\Gamma^{\alpha}(\bar{4}_z)$	$\Gamma^{\alpha}(\bar{4}_z^3)$	$\Gamma^{\alpha}(2_{i,y})$	$\Gamma^{\alpha}(2_{1,x})$	$\Gamma^{\alpha}(m_{s,xy})$	$\Gamma^{\alpha}(n_{x\overline{y}})$	$G^{\alpha}(\bar{\eta})$
Γ^1	1	1	1	1	1	1	1	l	$P\bar{4}2_1m$
Γ^2	1	1	-1	-1	1	1	-1	-1	P21212
Г3		1		-1	-1	-1	I	1	Cmm2
Γ ⁴	1	1	1	1	-1	-1	- 1	- 1	Ρā
Γ۶	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	$P2_1^a$ Cm^b $P1^c$

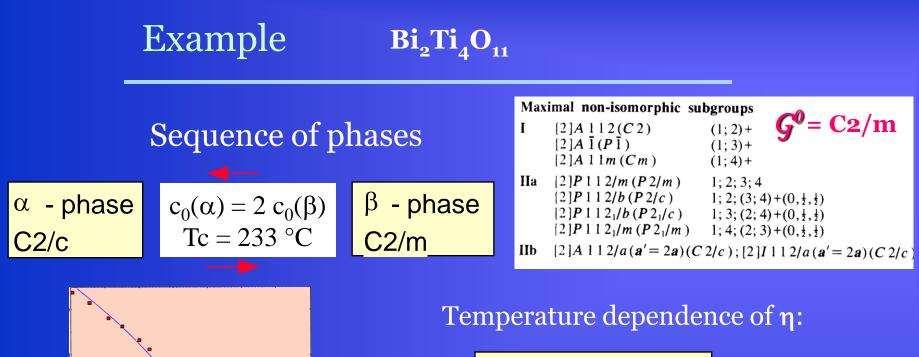
Projection operator:

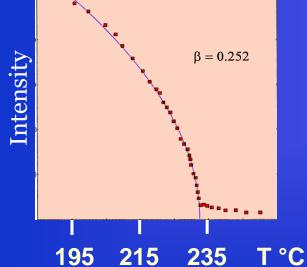










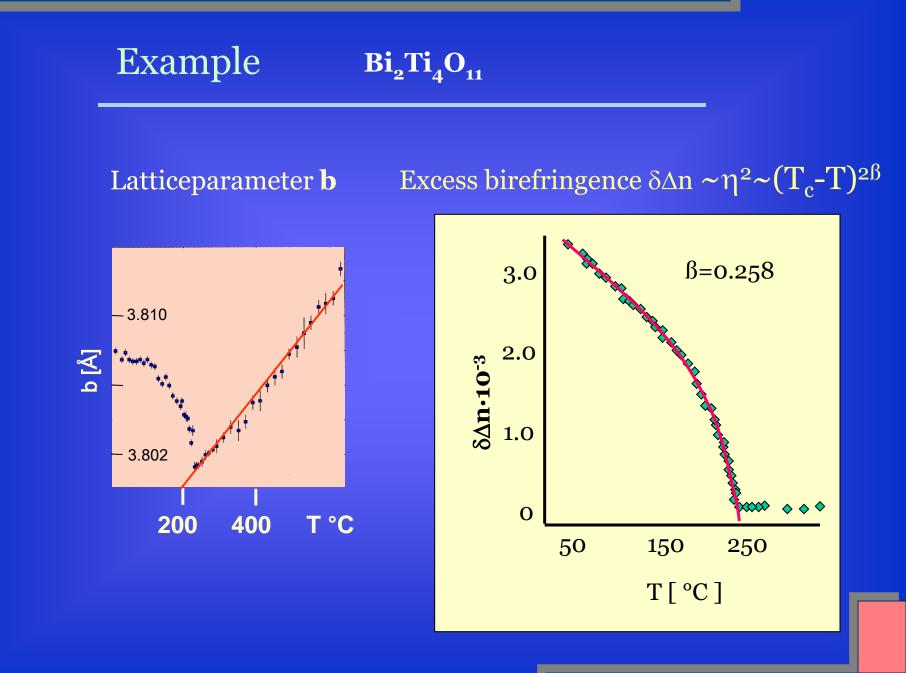


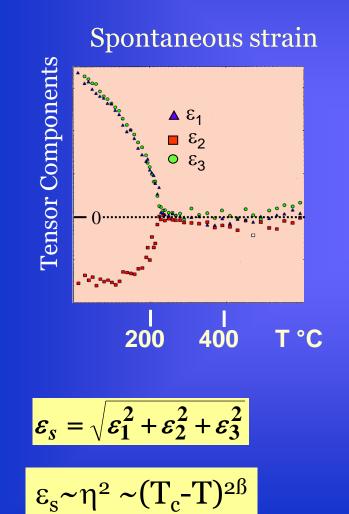
Superstructure reflection

$$I \sim \eta^2 \sim (T_c - T)^{2\beta}$$

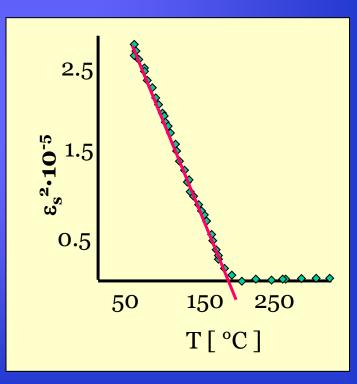
 $\eta = \mu (T_c - T)^{\beta}$

We find:
$$\beta = 0.25$$





For $\beta = 0.25$ $\varepsilon_s^2 \sim (T_c-T)$



We observe: $\Delta V = 0$ at the transition No thermal hysteresis: \Rightarrow Phase transition of 2. order

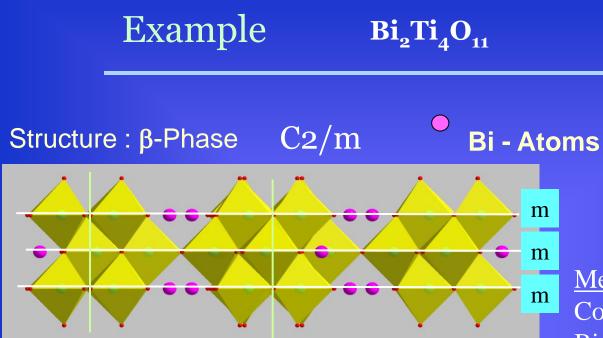
Gibbs potential :

 $\Delta G = (T_c - T)\eta^2 + B \eta^4$

Eε² : term for the elastic energy Dεη² : term for the coupling between η and ε B=0, if β =0.25, therefore a term with η⁶ is needed.

 $\Delta \textbf{C} \ \Delta \textbf{G} = (\textbf{T}_c\textbf{-}\textbf{T})\eta^2 + \textbf{C} \ \eta^6 + \textbf{D}\epsilon\eta^2 + \textbf{E} \ \epsilon^2$

η: primary order parameter \Rightarrow shift of the Bi-atoms ε: secondary order parameter \Rightarrow spontaneous strain



 C_2/c

Structure : α-Phase

Mechanism: Continuous shift of the Bi- atoms off the mirror plane

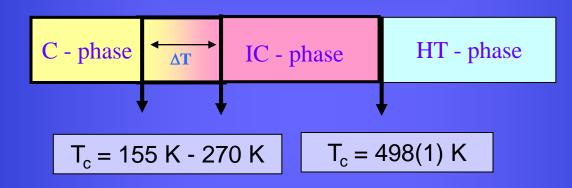
The phase transition is triggered by the "lone electron pair" of Bi.

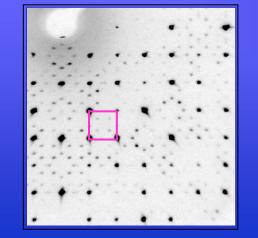
С

С

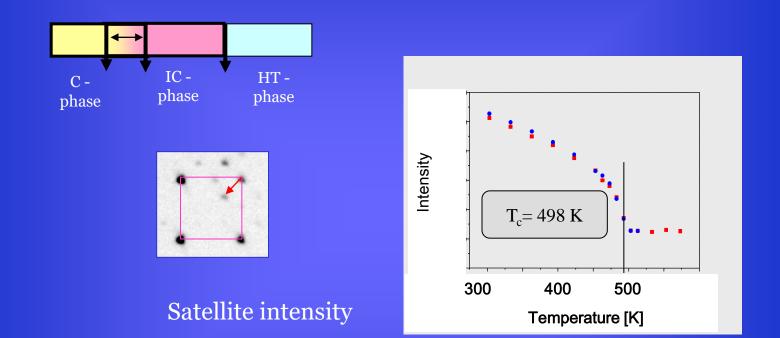
С

Sequence of phases:





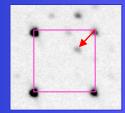
Diffraction pattern at RT:



Phase transition at ~500 K

No thermal hysteresis: \Rightarrow 2. order phase transition

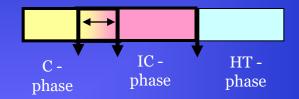
Example $Ca_2CoSi_2O_7$

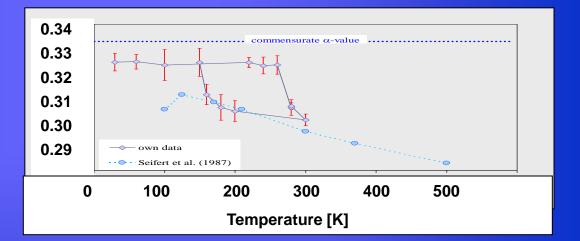


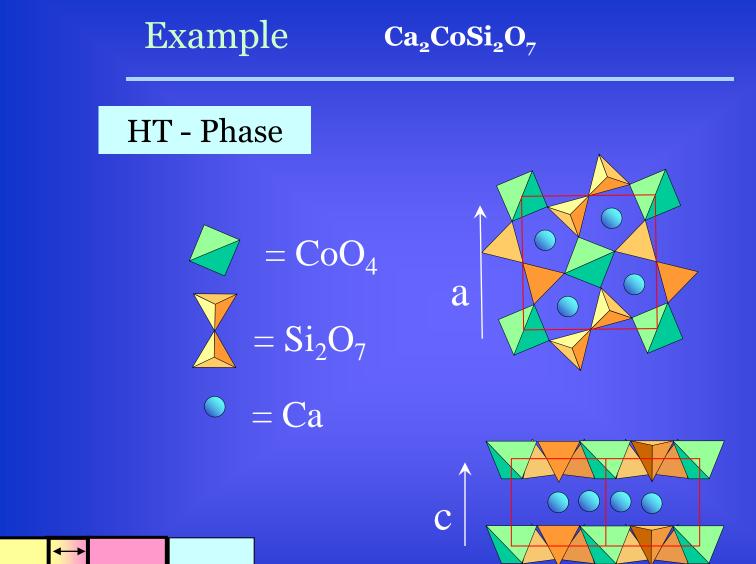
Variation of the q-Vector

Phase transition <u>between 155 K</u> and 270 K

Thermal hysteresis: \Rightarrow 1. order phase transition

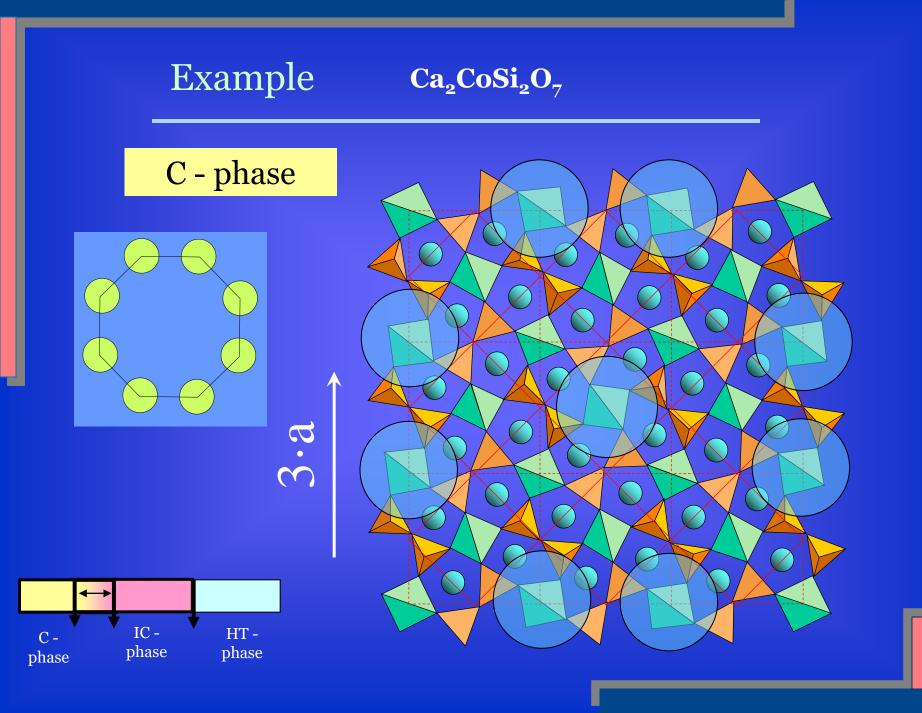


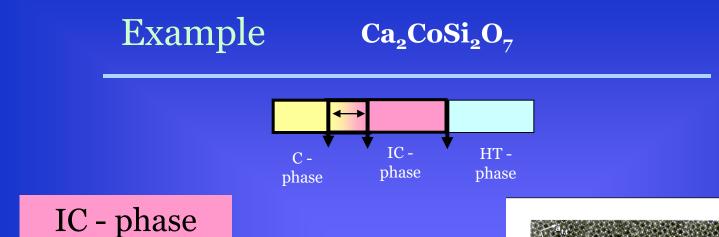




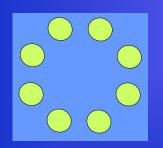
C -

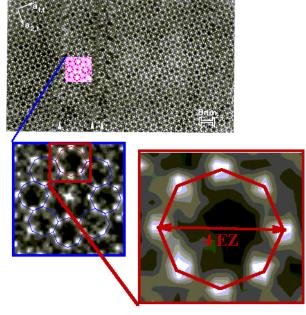
phase





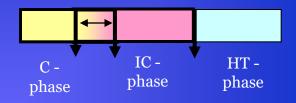
TEM studies at RT: pictures show octagonal rings.

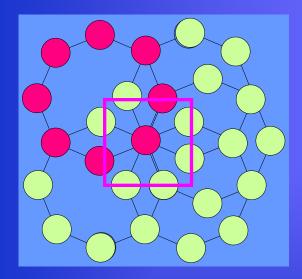




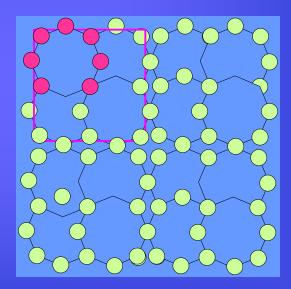
Van Heurk et al., 1992

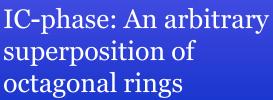
Relations between the structures

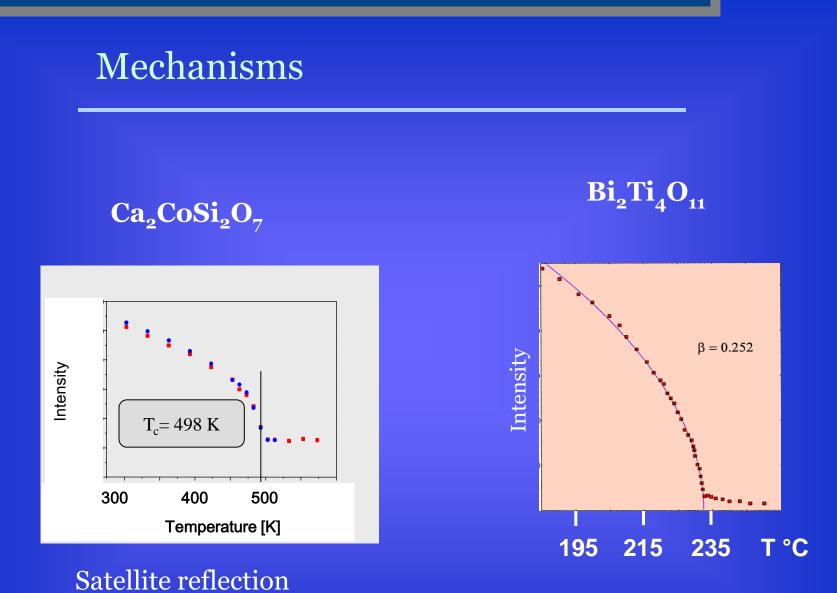




C-phase: An ordered superposition of octagonal rings.



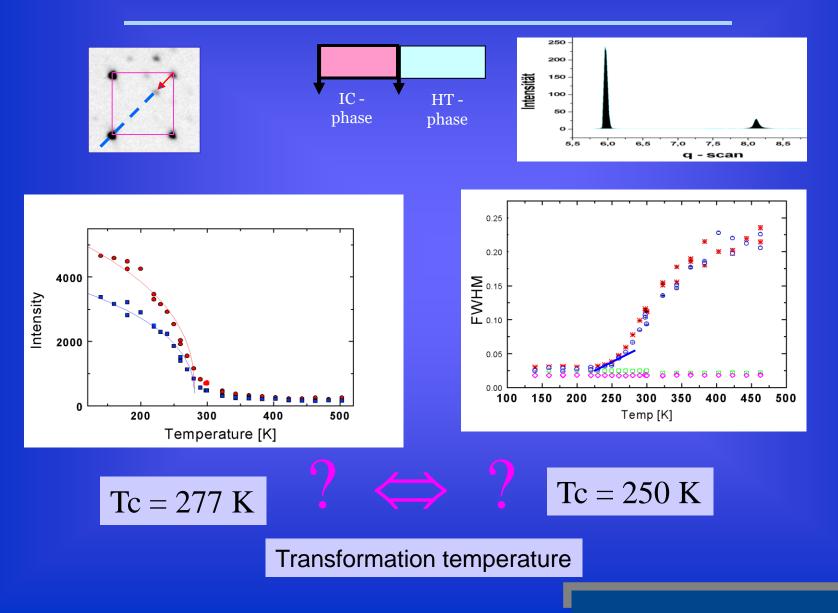




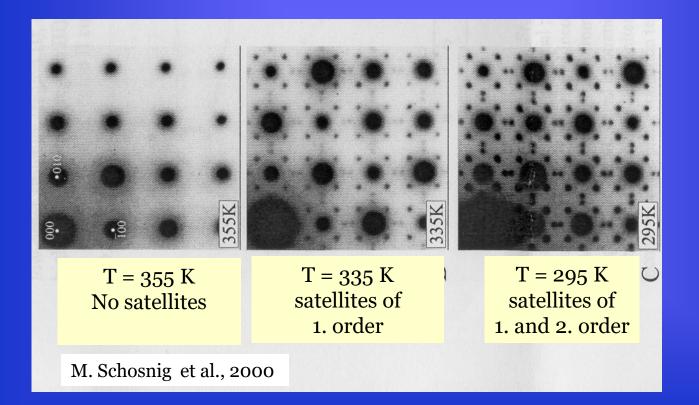
Superstructure reflection

Mechanisms

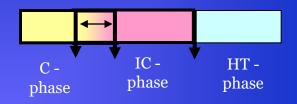
$(Ca_{1-x}Sr_{x})_{2}MgSi_{2}O_{7}; x = 0.16$

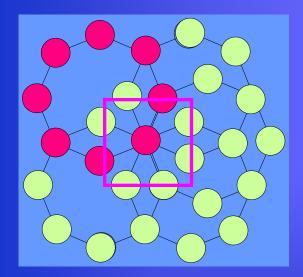


TEM, IC- and HT-phase: Electron diffraction on $(Ca_{1-x}Sr_x)_2MgSi_2O_7$.

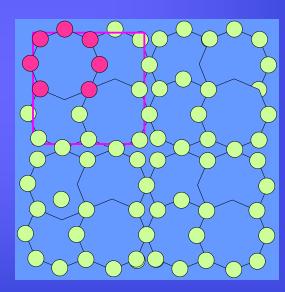


Relations between the structures

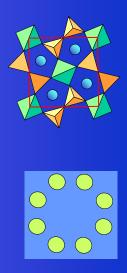


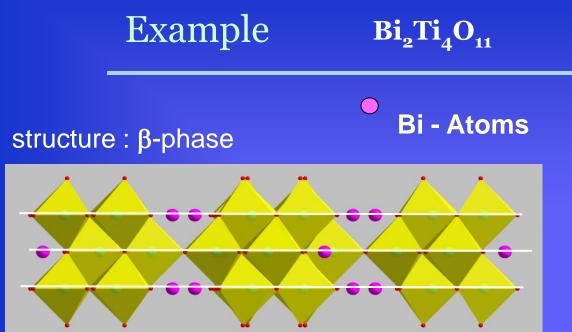


C-phase: An ordered superposition of octagonal rings.



IC-phase: An arbitrary superposition of octagonal rings

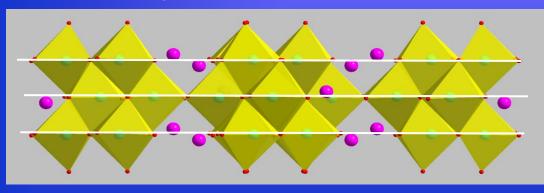


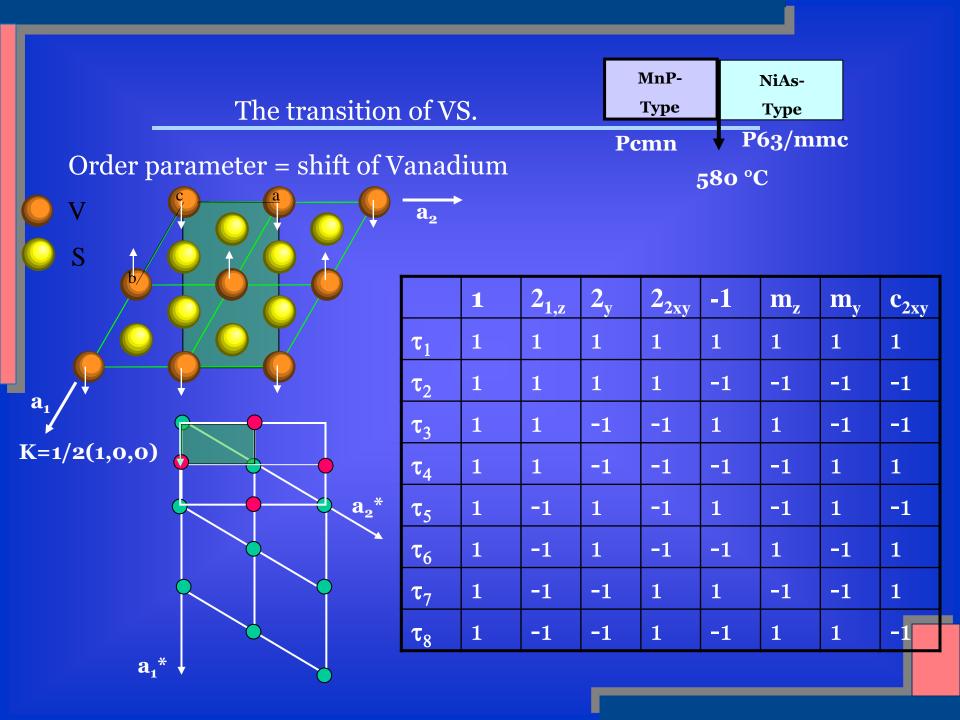


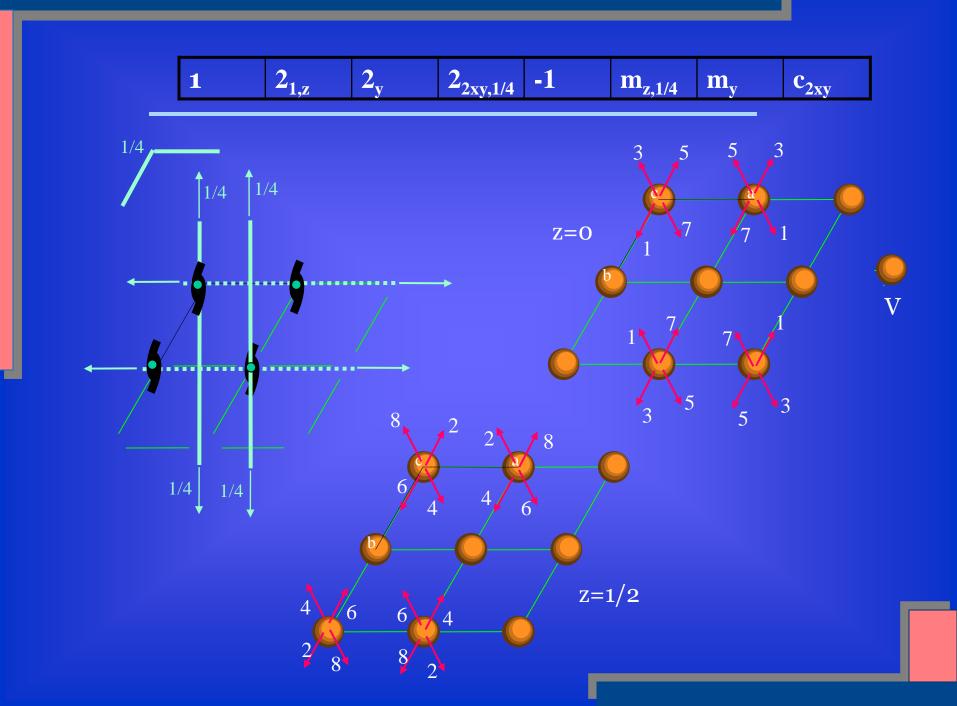
<u>Mechanism:</u> Continuous shift of the Bi- atoms off the mirror plane

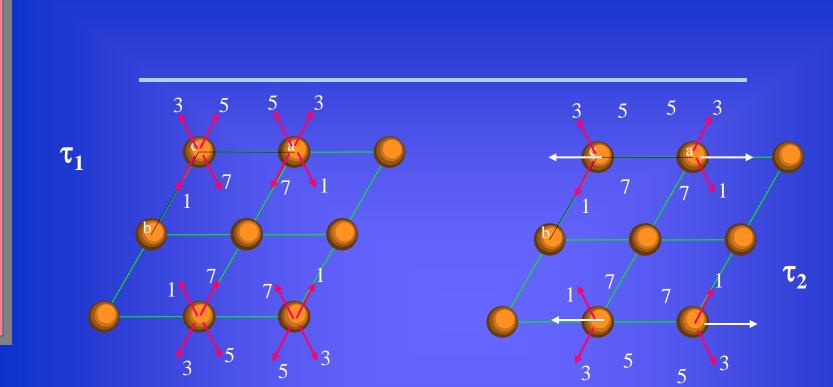
The phase transition is triggered by the "lone electron pair" of Bi.

structure : α-phase

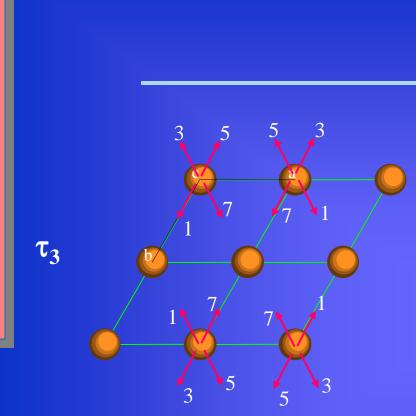


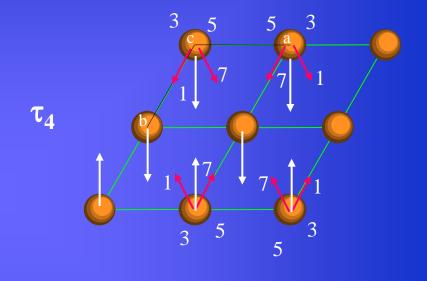




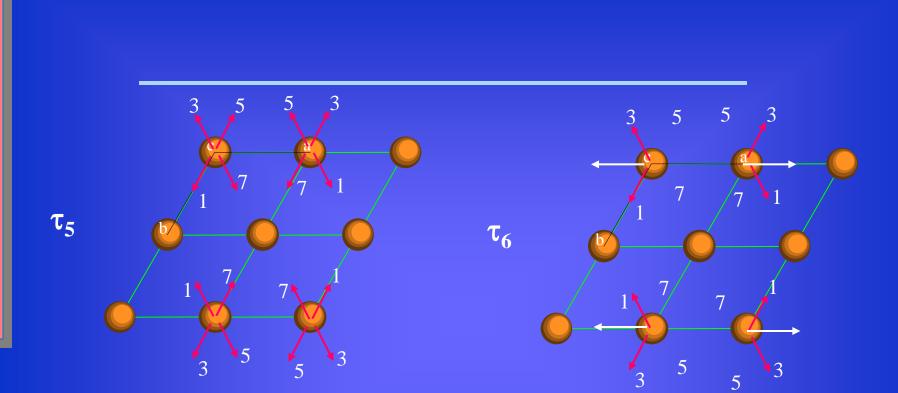


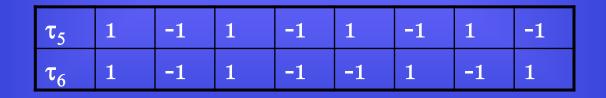
τ_1	1	1	1	1	1	1	1	1
τ_2								

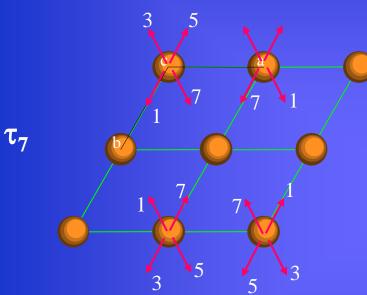


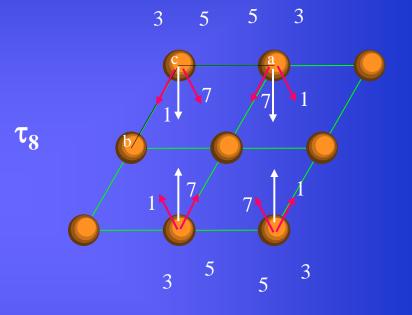


τ_3	1	1	-1	-1	1	1	-1	-1
τ_4	1	1	-1	-1	-1	-1	1	1

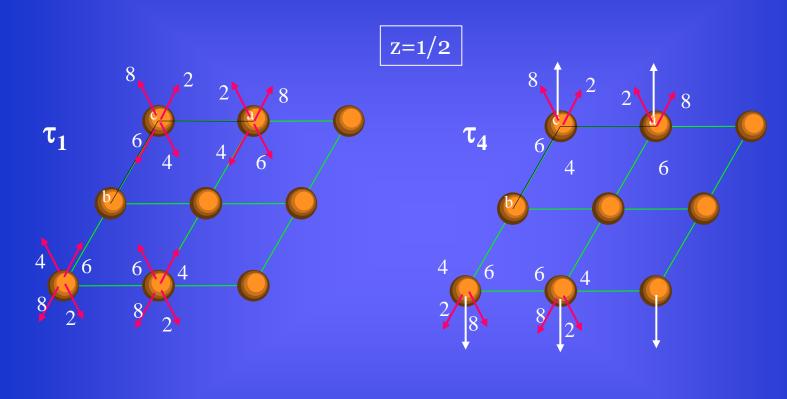








τ_7	1	-1	-1	1	1	-1	-1	1
τ_8	1	-1	-1	1	-1	1	1	-1



τ.	1	1	-1	-1	-1	-1	1	1
●4	-	4	4	-	<u> </u>	4	4	—