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Definition

Structural Phase Transition:

In a crystalline solid distortions may occur when
thermodynamical variables are changed. A consequence of
such distortions is a change of symmetry at discrete values
of these variables.

Thermodynamical variables:
temperature [T],
pressure [pl,
chemical composition (molar fraction) [X].

Two regions o and B in the thermodynamical space differ by
the sets of symmetry elements.




Thermodynamical Principles

An isotropic, homogeneous substance is
specified by the Gibbs Potential (Gibbs’ Free Energy):

G=U-TS+pV

Consider a system with the variables: p, T, N;
N; : number of molecules of the species j.

G(p,T N))
dG =2 dp+5&dT +Z < dN,




Thermodynamical Principles

For the system with the variables: p, T, N;
we get:

dG =Vdp—SdT +2 dN,

g—,?h = Hi = chemical potential of the molecule of type i

Consider a homogeneous and isotropic substance
which consists of two components * and ' (e.g. solid solution).

There are two phases o and [¢, which are described in the
variables T, p, X.




Thermodynamical Principles

The transition from one state to the other can be described in
a phase diagram (e. g. with p=const.):

— T — X diagram (if p=const.):

Reversible change from state
o to state 3. Two different
ways of transition from

state o to state [} are observed.

a) A general observation:
There are two border lines,
which separate the region of
the pure phases o and 3 from
a region o + f3.




Thermodynamical Principles

The boarder lines in this diagram are described b
the Gibbs — Konovalow Equation. slope= 91

ox® p
(@tﬁj J{aﬂ%‘J AX
Knjrp \KXeJr,
or . _

OX*P T AS+(SL —SL) AX

= boarder line of state « mole fraction partial derivative
= of the chemical potential
of phase o of component A

S% = partial molar entropy of component ABBNAS = S* —§ A = molar entropy difference l



Thermodynamical Principles

Discussion:

Transition from state o to state f3.
In phase o a small nucleus with symmetry f3 is formed. It
grows at the expense of o.

Since A X0 = AS#0

OXp ) o \Xp )

oT

axapz

AS +(S% —Sg) AX

Remember:
The mechanism of the phase transition, if AS # O, is nucleation
and growth.




Thermodynamical Principles

b)

Continuous and reversible change from state o to
state 3 with AX = O at the phase boundary.
However, a discontinuous change of symmetry.

phase boundary




Thermodynamical Principles

Discussion:

At the transition from state o to state .

(aﬂﬁJ +£8ﬂ§‘j AX
OXp ) (g )

p~

ox%'P T AS+(S%—58) AX

Since AX=0=>AS=0

A similar discussion in a p — X diagram (if T=const.):
IfAX=0=>AV=0
Remember:

The mechanism of the phase transition is a continuous
change in entropy and volume.




Discussion of the Gibbs Potential

We discuss a phase transition when T is varied.

— G — T diagram (if p,X=const.):

At the transition from state o to state 3:

T,= transition temperature




Discussion of the Gibbs Potential

What is common to both forms of a phase transition:
The Gibbs potential is a continuous function.

o. phase is stable

Gp< G, B phase is stable

In a G — p diagram :

oG _y/
This is a transition of type a) AV #0




Discussion of the Gibbs Potential

Properties of the G — T diagram (if p,X=const.):

We expand G(T) in a series about the point T,:

Using the relations:

G _ _
or S




Discussion of the Gibbs Potential

We discuss now the case b) FREXONNALS

(an even function in T)

o phase is stable
for T<T, and T> T,

This is no phase transition !!




Discussion of the Gibbs Potential

Solution: symmetry a is not possible above T,

At T=T,:

AS=0 means the curves
have the same slope but
different curvatures




Classification

¢ 1. Order phase transition (after Ehrenfest)

At the temp useful properties:

AG(T > T;)=0

LE =—AS(T > T;) =0

Oy =AV(T > T)=0

C
62AG=_ p(T Tt)__/__o aZG _(6V)
P

B=compressibility

aT 2 T, opoT ~— | aT

a=thermal expansion
coefficient

Mechanism: nucleation and growth

Typical property: thermal hysteresis




Example

Atomic Force Microscope (AFM) picture of the transition
of Polydiethylsiloxane (PDES) at T = —6 °C




Classification

¢ 2. Order phase transition (after Ehrenfest)

At the temp useful properties:

AG(T > T;)=0
08G = _AS(T - T;)=0

ot B=compressibility
O =AV(T >T;)=0

2 C
aA§3=——'D(T —T)=0 8% _[oV
oT T opoT | oT ;

a=thermal expansion
coefficient

Mechanism: continuous phase transition

Typical property: Landau theory applies




Introduction to 2. order phase transition

Properties of a 2. order phase transition:

A continuous change of the structure at the phase boundary,
but a discontinuous change of the symmetry.
At the phase boundary both structures become indistinguishable

The phase transition occurs without the co-existence of two phases.
i.e. no nucleation and growth

Typical mechanisms:
«Order — Disorder processes
Displacive deformations




Introduction to 2. order phase transition

Examples:

a) The B — B‘ transition of CuZn.

At low temperatures:
CsCl-type, cubic P-lattice.

At higher temperatures:
statistical occupation of both sites
by Cu and Zn, cubic I-lattice.

Degree of order is given by an order parameter:

N=2qc,"1

dc,= fraction of (000)-sites occupied by Cu-atoms



Introduction to 2. order phase transition

dey =1 M=1 complete order P-lattice
ey =0-5 N=0 complete disorder I-lattice

We can see the essential properties:
(i) A continuous variation of n between o....... 1
(i1) A discontinuous change of translational symmetry
at the transformation temperature.
(i1) No co-existence of two phases.

This is a typical example of an order — disorder transformation.




Introduction to 2. order phase transition

b) The transition of VS.

: : Pcmn P63/mmc
Order parameter = shift of Vanadium 580 °C
i; ? ? °.<::. 5.90 Cor
‘ ‘ . . é 5.86
I% L ; ® Vv % 3.44
‘ ‘ 8 3.40 aor/'\lg
L L ®s £ 336
- ’ ’ 3.32 b

or

| |

100 300 500 700
Temperature| °C ]

Variation of T

This is a typical example of a displacive transformation.




Introduction to 2. order phase transition

b) The transition of VS.
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The NiAs-type is only stable with a deficiency of Vanadium.




Comments

Quenching from a temperature
above T, for a 1. order phase
transition.

(i) The p phase might be metastable
below T,.

(i1) Or a nucleus of phase « is formed.

(i11) No state between the curves
is possible




Comments

Quenching from a temperature
above T, for a 2. order phase
transition.

(i) The [ phase cannot be quenched
below T, for a displacive
transformation.

(i1) The p phase can be quenched
below T, for a order — disorder
(diffusive) transformation.

(ii1) Any state between the curves
is possible

Last comment: The continuous variation of n or the lack of a
thermal hysteresis are indicative for a 2. order phase transition

However, the experimental verification of these criteria might be l
difficult !!



Gibbs Potential and Landau theory

Consider G = G(T, p, X):

Each equilibrium state in o is characterized by n,,# 0,
each equilibrium state in [} is characterized by n.,= 0

Consider G as a power series expansion of 1 :

G(n) — +an+ A772 + 8773 +C774 +

For each equilibrium state G(n., ) has a minimum, it must hold:

oG -
on | M="eq.

Since G—G‘ Y and 82—%‘%0 >0
an |1=0 on

for the equilibrium state of (3, it must hold:

o = Ol A > 0




Gibbs potential and Landau theory

G()=G’ +An°+Bnp>+Cp” + (A>0andC>o0)

Here:

n,=0 stable state

N, #0 metastable state
Or vice versa

Here:
M;=0 stable state

N, #0 stable state
co-existence of two
stable states

All coefficients are functions of T, p, X.




Gibbs potential and Landau theory

Result:

General case:

n,=0 (i.e. ) is the stable state and n, #0 (i.e. ) is a metastable state
or

n,;=0 (i.e. ) is the metastable state and n, #0 (i.e. ) is a stable state

Special case: 4AC=B?
Nn,=0 (i.e. ) is the stable state and n, #0 (i.e. ) is a stable state

coexistence of and

@ This is the case of a 1. order phase transition !




Gibbs potential and Landau theory

Consequence:
For a 2. order phase transition, B must be identical zero,
it must vanish by symmetry, B=o.

A=p(T-T)



Landau theory

Density

The symmetry group of the state be G°

the density be p° (n=0).

At the transformation to the phase symmetry is lost,
the density be p (n#0) .

The density change at the phase transition is
Ap=p—p°

From group theory it is known, that for each group G there

exists a set of basis functions {®;} which remain invariant under
the symmetry operations of G°

Ap = Zci(I)i l



Example: P4

1 4 4

X -y X Yy

y X -y X

Z Z Z Z
1 4% 2SN
o, O, O, @
CI)2 _(D2 (D2 _CI)2
o, -d, -, O,
o, @, -0, -0

basis functions {®i}

D, = x2+y?
D, = x2-y?
O, =xz
b, =yz

{®.} are transformed
into itself.

They form 3 groups
which remain invariant:

10} AP} 19,,D, )




Landau theory

Criteria as postulated by Landau:

¢ | First presumption:

The symmetry group G of the state is a subgroup of G°.

The symmetry group Gis a subgroup of ¢°if the symmetry elements
of G are a subset of the symmetry elements of G?,
I.e. the multiplication table of g° contains the elements of ¢.




Reminder: Group Theory




Reminder: Group Theory

The maximal non-isomorphic subgroups G of the space group g°
are divided into two types.

I. Ltranslationengleiche® or ,,t subgroups™

II. ,klassengleiche® or ,k subgroups®

isomorphic means: they have the same abstract multiplication table

The maximal non-isomorphic subgroups G of the space group g
are listed in the ,International Tables®




Example: P422

CONTINUED

Generators selected (1); (1,0,0); ¢(0,1,0); ¢(0,0,1); (2); (3); (5

Positions

Multiplicity,

Coordinates Reflection conditions

Wyckoff letter,

Site symmetry

8§ p 1

General:

3) 7.x 4) no conditions

() x,y, (2) %,7.2 ,Z
x,¥,Z (7) y.x.Z (8)

(5) Ty (6)

Maximal non-isomorphic subgroups

I

(2]1P411(P4) 1;2;3;4
[21P221(P222) 12
[2]1P212(C222) 1;2;
none
[2]1P4,22(c'=2c);[2]C422,(a"=2a,b'=2b)(P42,2); [2]F422(a’=2a,b'=2b,c'=2¢c)(1422)

5,6
7,8

’

If k°is the order of G°and k is the order of G,
then [i] = k°/k is the index of the subgroup




Landau theory

Second presumption:

The distortions at the phase transition correspond to a single
irreducible representation of the group of the wave vector.

Two terms must be explained:
» What is an irreducible representation ?

» What is the group of the wave vector ?




Representation

Definition:
T is a representation of of the group ¢, if there exists an matrix

operator T(g) for each element ge G, so that for each
multiplication

81°8-=83
there is an equivalent multiplication

T(g,)T(8,)="T(g,)

If the matrix consists of small blocks on the diagonal, it is called
irreducible.

71(A) 0
0 72(A)

r(A)=(




Example: 4

1 4 4 43
T, ®, O O,
T
1:3 (I)2 _CD2 (1)2 _CD2
() -0, -0, O
ﬁcl 12 3) 4 3 4
o, @, -0, -0,
Ty
T3 1 -1 1 -1

The representations describe how the
symmetry operators effect the basis functions

The dimension of the irreducible representation
corresponds to the number of basis functions




Wave vector

The phase transition occurs in the crystal space, however, it
may become evident in the reciprocal space:

by the appearance of superstructure reflections or satellite
reflections.

Therefore the symmetry elements must also leave the vector (so
called wave vector k) invariant at which the transformation
occurs.

The group of the wave vector not only leaves the structure
invariant but also the wave vector.

Note : The wave vector might be k=(0 0 0); the
transition occurs at a main reflection. The group G°
contains all symmetry elements of the space
group.




Example: Pmm2

Consider a simple orthorhombic structure:

Atom A
. 'II




Example: Pmm2

Kovalev: Irreducible representations of space groups




Example:

Maximal non-isomorphic subgroups

I [2]P411(P4d)
2]P22,1(P2,2,2)
[2]P2Im(Cmm?2)

IIa none
Ib [2]P42,c(c’=2c)




Example:

Wave vector be k= (0, 0, 0)
1 2 3 4 5 6

TABLE I. Irreducible representations of space group P&2,m, wave vector k=(0,0,0), respectively, of

the assigned point group 42m.
re1) TI%(2) r<d, r«d@) T2, T o(m, ) Tz  G(W)

1 I 1 1 1 P32\m
1 I -1 P2,2,2
1 -1 I I Cmm?2
1 -1 P
‘ P2*

Cm®

PI®

Projection operator:

Pru(x)=2I*(g)v(gx)




M

1

42

Example: [g




Example Bi,Ti,0,,

Maximal non-isomorphic subgroups C /
I [2]JA112(C2) 1;2)+ §0= 2/m

Sequence of phases BT (D

(2]JA11Im(Cm) (L 4H+
Ma [2)P112/m(P2/m) 34

[2]P112/b(P2/c) (3;4)+(0,4,4)

(2]P112,/b(P2)/c) 1 (2,4)+(0,4,)

(21P112)/m(P2)/m) (2:3)+(0.,4,4)

1;
l;
1;
1;
(2]JA 112/a(a’=2a)(C2/c);(2)1112/a(a’=2a)(C2/c

Co() = 2 CoP)
Tc=233°C

2;
2;
3;
4;
)s

Temperature dependence of n:

I~n2 ~(T,-T)>5

195 215 235 T°C We find: p=0.25

Superstructure reflection l




Example Bi,Ti,0,,

)26

Latticeparameter b Excess birefringence §An ~12~(T,-T




Example Bi,Ti,0,,

Spontaneous strain

For 8=0.25
g2 ~(T.-T)

Tensor Components

150 * 250
T[°C]




Example Bi,Ti,0,,

We observe:
AV = 0 at the transition

No thermal hysteresis:
— Phase transition of 2. order

Gibbs potential :

AG = (T-T)n? + B n*

Ee? : term for the elastic energy
Den? : term for the coupling between n and ¢
B=0, if B=0.25, therefore a term with n° is needed.

ACAG = (T,-T)n?+Cn®+ Den? + E ¢?

n: primary order parameter =
¢ : secondary order parameter =




Example Bi,Ti,0,,

Structure : B-Phase C2/m * Bi - Atoms

Mechanism:
Continuous shift of the
Bi- atoms off the mirror plane

The phase transition is
triggered by the
,,lone electron pair* of Bi.




Example Ca,CoSi,0,

Sequence of phases:

T.=155K-270K T.=498(1) K

Diffraction pattern
at RT:




Example Ca,CoSi,0,

(O HT -
phase phase

]
C-

phase

>
=
7
c
3
2
c

Satellite intensity Temperature [K]

Phase transition at ~500 K

No thermal hysteresis:
= 2. order phase transition




Example

Ca,CoS1,0,

Variation of the g-Vector

Phase transition
between 155 K and 270 K

Thermal hysteresis:
= 1. order phase transition

IC- HT -
phase phase phase

=
C-

commensurate o-value

3 I I

I

—<>— own data

© - Seifert et al. (1987)

Temperature [K]




Example Ca,CoSi,0,

HT - Phase

599»

'A'A"A AN
ERVAL VAR /S

T VATA A AV




Example Ca,CoSi,0,

P‘\
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Example Ca,CoSi,0,

= B
C- IC - HT -
phase phase phase

IC - phase

TEM studies at RT:
pictures show octagonal rings.

Van Heurk et al., 1992




Example Ca,CoSi,0,

Relations between the structures C-,T

phase phase phase

C-phase: An ordered IC-phase: An arbitrary

superposition of superpositipn of
octagonal rings. octagonal rings




Mechanisms

Ca,CoSi,0,

Intensity

>
=

(2]

C

(O]
-

E

Temperature [K]
195 215 235 T°C

Satellite reflection .
Superstructure reflection




Mechanisms (Ca, Sr),MgSi,0.; x = 0.16

IC- HT -

Intensitt

Intensity

i"'.l""‘
oA

me
'Q.‘ 0.00

"8 nesanne 100 150 200 250 300 350 400 450
Temp [K]

300 400
Temperature [K]

Transformation temperature




Mechanisms

TEM, IC- and HT-phase: Electron diffraction
on (Ca _Sr,),MgSi,0, .

T=355K
No satellites satellites of satellites of
1. order 1. and 2. order

M. Schosnig et al., 2000




Example Ca,CoSi,0,

Relations between the structures C-,T

phase phase phase

C-phase: An ordered IC-phaseE An arbitrary
superposition of superp031t19n of
octagonal rings. octagonal rings




Example Bi,Ti,0,,

e
Bl - Atoms

structure : B-phase

Mechanism:
Continuous shift of the
Bi- atoms off the mirror plane

The phase transition is
triggered by the
,,lone electron pair* of Bi.




The transition of VS.

. . Pcmn _P63/mmc
Order parameter = shift of Vanadium 580 °C
o ?* f ? a,
ole 1/
A, - -
/ ° / ° / | 21,2 2y 22Xy -1 m, my, Cyy
[ L I N ) 1 1 1
f r r T, 1 1 1 1 B ] -1
al/
T, 1 1 1 -1 1 1 B -1
K=1/2(1,0,0) l\”
|\ T, 1 1 B -] -1 1 1
\ \a‘z* T R A R -1 1 -1
\ T 1 -1 1 -1 =1 1 -1 1
\ T, 1 -1 -1 1 1 = S N |
T 1 = S B | -1 1 1
a* v \
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Tg 1 -1 -1 1 -1 1 1 -1
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