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Structural Phase Transition: 

In a crystalline solid distortions may occur when 
thermodynamical variables are changed. A consequence of 
such distortions is a change of symmetry at discrete values 
of these variables. 
 
Thermodynamical variables: 
 temperature [T],  
 pressure [p],  
 chemical composition (molar fraction) [X]. 

Definition 

 Two regions a and b in the thermodynamical space differ by  
the sets of symmetry elements. 
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Thermodynamical Principles 

An isotropic, homogeneous substance is  
specified by the Gibbs Potential (Gibbs’ Free Energy): 

G = U – TS + pV 

Consider a system with the variables: p, T, Nj 

  Nj : number of molecules of the species j. 

G (p, T, Nj)
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Thermodynamical Principles 

For the system with the variables: p, T, Nj 

we get: 

Consider a homogeneous and isotropic substance 
which  consists of two components A and B (e.g. solid solution).  

There are two phases a and b, which are described in the  
variables T, p, X. 

Asumption: 

= chemical potential of the molecule of type i iN
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Thermodynamical Principles 

The transition from one state to the other can be described in  
a phase diagram (e. g. with p=const.): 
 
 T – X diagram (if p=const.): 

Reversible change from state  
 a to state b. Two different  
ways of transition from  
state a to state b are observed. 

A general observation: 
There are two border lines,  
which separate the region of 
 the pure phases a and b from 
a region a + b.  
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Thermodynamical Principles 
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a mole fraction partial derivative 
of the chemical potential 
of phase a of component A 

ba SSS D = molar entropy difference 
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The boarder lines in this diagram are described by 
the Gibbs – Konovalow Equation.  



Thermodynamical Principles 

Discussion: 

Transition from state a to state b.  

In phase a a small nucleus with symmetry b is formed. It 
grows at the expense of a. 
 

Since DX  O  DS  O  

Remember: 
The mechanism of the phase transition, if DS  O, is nucleation  
and growth.  
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Thermodynamical Principles 

b) 
Continuous and reversible change from state a to 
state b with DX = O at the phase boundary. 

However, a discontinuous change of symmetry.  
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phase  boundary 



Thermodynamical Principles 

Discussion: 

Remember: 
The mechanism of the phase transition is a continuous  
change in entropy and volume. 
 

At the transition from state a to state b.  
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Since DX = O  DS = O  

A similar discussion in a p – X diagram (if T=const.): 

If DX = O  DV = O  
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 G – T diagram (if p,X=const.): 

Discussion of the Gibbs Potential 

Gb- GaDGba 

DGba = 0 

stable 

DGba > 0 

DGba < 0 

At the transition from state a to state b:   

DG=0 

We discuss a phase transition when T is varied. 

Tt 

Tt= transition temperature 



Discussion of the Gibbs Potential 

What is common to both forms of a phase transition: 
The Gibbs potential is a continuous function. 

Ga< Gb a phase is stable 

Gb< Ga b phase is stable 

In a G – p diagram : 

DV  O  V
p
G 


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DG=0 At Tt: 

At Tt: S
T
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DS  O 

This is a transition of type a) 



Discussion of the Gibbs Potential 

Properties of the G – T diagram (if p,X=const.): 

We expand G(T) in a series about the point Tt: 
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Discussion of the Gibbs Potential 

We discuss now the case b) DS = O, DV = O  
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a phase is stable 
for T<Tt and T> Tt 

This is no phase transition !!  
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Discussion of the Gibbs Potential 

Solution: symmetry a is not possible above Tt  

At T=Tt: 
DS=0 means the curves 
have the same slope but 
different curvatures 



Classification 

 1. Order phase transition (after Ehrenfest) 

      At the temperature  Tt :    
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Mechanism:   nucleation and growth 

Typical property: thermal hysteresis 

useful properties:   
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b=compressibility 

a=thermal expansion 
      coefficient 
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Example 

Atomic Force Microscope (AFM) picture of the transition 
of Polydiethylsiloxane (PDES) at T = –6 °C 



Classification 

 2. Order phase transition (after Ehrenfest) 

      At the temperature  Tt :    
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b=compressibility 

a=thermal expansion 
      coefficient 

Mechanism:   continuous phase transition 

Typical property: Landau theory applies 



Introduction to 2. order phase transition 

 Properties of a 2. order phase transition: 

A continuous change of the structure at the phase boundary, 
but a discontinuous change of the symmetry.  
At the phase boundary both structures become indistinguishable 

The phase transition occurs without the co-existence of two phases. 
i.e. no nucleation and growth 

Typical mechanisms: 
•Order – Disorder processes 
•Displacive deformations 



Examples: 

Introduction to 2. order phase transition 

a)   The ß – ß‘ transition of CuZn. 

At low temperatures: 
CsCl-type, cubic P-lattice. 

At higher temperatures: 
statistical occupation of both sites  
by Cu and Zn, cubic I-lattice. 

Degree of order is given by an order parameter: 
 

h=2qCu-1 
 

qCu= fraction of (000)-sites occupied by Cu-atoms 



Introduction to 2. order phase transition 

qCu =1  h=1    complete order  P-lattice  

qCu =0.5  h=0    complete disorder I-lattice 

We can see the essential properties: 
 (i) A continuous variation of h between 0.......1 
 (ii) A discontinuous change of translational symmetry 
        at the transformation temperature. 
 (ii) No co-existence of two phases. 

This is a typical example of an order – disorder transformation. 



Introduction to 2. order phase transition 

b)   The transition of VS. 
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This is a typical example of a displacive transformation. 

Order parameter = shift of Vanadium 
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b)   The transition of VS. 

Introduction to 2. order phase transition 

The NiAs-type is only stable with a deficiency of Vanadium. 



Comments  

Quenching from a temperature 
above Tt for a 1. order phase  
transition. 
 
 (i) The b phase might be metastable 
       below Tt. 
(ii) Or a nucleus of phase a is formed. 
 
(iii) No state between the curves  
        is possible 
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Comments  

Quenching from a temperature 
above Tt for a 2. order phase  
transition. 
 
 (i) The b phase cannot be quenched 
       below Tt for a displacive  
       transformation. 
(ii) The b phase can be quenched 
       below Tt for a order – disorder 
       (diffusive) transformation. 
(iii) Any state between the curves  
        is possible 

Last comment: The continuous variation of h or the lack of a  
thermal hysteresis are indicative for a 2. order phase transition 

However, the experimental verification of these criteria might be  
difficult !! 
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Gibbs Potential and Landau theory 

 Consider G = G(T, p, X): 

 Each equilibrium state in a is characterized by heq  0,  
each equilibrium state in b is characterized by heq  0 
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 Consider G  as a power series expansion of h : 
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Gibbs potential and Landau theory 

.......)(
4320  hhhh CBAGG ( A > 0 and C > 0 ) 

G-G0 

h h1 

Here: 
h1=0 stable state 

h2 0 metastable state 
(or vice versa) 

A > 0 
C > 0 
B  0 

h2 

h2 
4AC=B2 

Here: 
h1=0 stable state 

h2 0 stable state 
co-existence of two 
stable states 

All coefficients are functions of T, p, X. 



 General case:  
 h1=0 (i.e. b) is the stable state and h2 0 (i.e. a ) is a metastable state 

or 

 h1=0 (i.e. b) is the metastable state and h2 0 (i.e. a ) is a stable state 

Gibbs potential and Landau theory 

 Result: 

Special case: 4AC=B2 

 h1=0 (i.e. b) is the stable state and h2 0 (i.e. a ) is a stable state 

 coexistence of a and b. 

This is the case of a 1. order phase transition ! 
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G-G0 

h 



Gibbs potential and Landau theory 

Consequence:  
 For a 2. order phase transition, B must be identical zero, 
 it must vanish by symmetry, B0. 
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Landau theory 

The symmetry group of the b state be G0  

the density be ro (h=0).  
At the transformation to the a phase symmetry is lost,  
the density be r (h0) .  
 
The density change at the phase transition is  
  Dr  r  ro 

From group theory it is known, that for each group G0 there  

exists a set of basis functions {Fi} which remain invariant under  
the symmetry operations of G0. 

Dr  ciFi 
 

Density  



basis functions {Fi} 

F1 = x2+y2 

F4 = yz 

F3 = xz 

F2 = x2- y2 

Example: P4 

1 41 42 43 

x -y -x y 

y x -y -x 

z z z z 

1 41 42 43 

F1 F1 F1 F1 

F2 F2 F2 F2 

F3 F4 F3 F4 

F4 F3 F4 F3 

{Fi} are transformed 
into itself. 
They form 3 groups  
which remain invariant: 
{F1}, {F2}, {F3,F4} 



First presumption: 
 
The symmetry group G of the state a is a subgroup of G0. 

 

Criteria as postulated by Landau:  

Landau theory 

The symmetry group G is a subgroup of G0 if the symmetry elements  

of G  are a subset of the symmetry elements of G0 ,  

i.e. the multiplication table of G0 contains the elements of G . 



Reminder: Group Theory 

1 mx my 2z 

1 1 mx my 2z 

mx mx 1 2z my 

my my 2z 1 mx 

2z 2z my mx 1 

G = m 

G0 = mm2 

Example 



The maximal non-isomorphic  subgroups G of the space group G0 

are divided into two types. 

 
I.  „translationengleiche“ or „t subgroups“ 

 
II. „klassengleiche“ or „k subgroups“ 

isomorphic means: they have the same abstract multiplication table 

Reminder: Group Theory 

The maximal non-isomorphic  subgroups G of the space group G0 

are listed in the „International Tables“ 



Example: P422 

If k0 is the order of G0 and k is the order of G ,  

then [i] = ko/k is the index of the subgroup 

G0 



Second presumption: 
 
The distortions at the phase transition correspond to a single 
irreducible representation of the group of the wave vector. 
 

Landau theory 

Two terms must be explained: 
 
 What is an irreducible  representation ? 

 
 What is the group of the wave vector ? 



Definition: 
t is a representation of of the group G,  if there exists an matrix 

operator t(g) for each element gG , so that for each 

multiplication 
   g1·g2=g3 

 
there is an equivalent multiplication 
 

   t(g1)·t(g2)=t(g3) 

 
If the matrix consists of small blocks on the diagonal, it is called 
irreducible. 
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Example: 4 
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The representations describe how the  
symmetry operators effect the basis functions 
 
The dimension of the irreducible representation 
corresponds to the number of basis functions 
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The phase transition occurs in the crystal space, however, it 
may become evident in the reciprocal space:                                        
by the appearance of superstructure reflections or satellite 
reflections. 

Therefore the symmetry elements must also leave the vector (so 
called wave vector k) invariant at which the transformation 
occurs. 

Wave vector 

The group of the wave vector not only leaves the structure 
invariant but also the wave vector. 

Note : The wave vector might be k=(0 0 0); the 
transition occurs at a main reflection. The group G0 

contains all symmetry elements of the  space 
group. 



Example: Pmm2 

Consider a simple orthorhombic structure: 

Atom A 

Atom B 

Order  Disorder 

k=1/2(a*+b*) 



Example: Pmm2 

1 mx 2x my 

t1 1 1 1 1 

t2 1 - 1 1 - 1 

t3 1 1 - 1 - 1 

t4 1 - 1 - 1 1 

Kovalev: Irreducible representations of space groups 
 t1 

 t2 

 t3 

 t4 
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Example:  m24P
1

Wave vector be k= (0, 0, 0) 
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Example Bi2Ti4O11  

 - phase 

C2/m 

b a  - phase 

C2/c 

c0(a) = 2 c0(b) 

Tc = 233 °C 

Sequence of phases 

I~h2 ~(Tc-T)2ß 

h   (Tc – T) b 

Temperature dependence of h: 

We find:   b=0.25 195 215 235 T °C 

Superstructure reflection 
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G0 = C2/m 



Example Bi2Ti4O11  

Excess birefringence dDn ~h2~(Tc-T)2ß 

50 150 250 
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Latticeparameter b 
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Example Bi2Ti4O11  
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s~h2 ~(Tc-T)2ß 
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  h: primary order parameter  shift of the Bi-atoms 

   : secondary order parameter  spontaneous strain 

DG = (Tc-T)h2 + B h4  

Example Bi2Ti4O11  

 We observe: 
 DV = 0 at the transition 
 No thermal hysteresis:  
  Phase transition of 2. order  

Gibbs potential : 

E2 : term for the elastic energy 
Dh2 : term for the coupling between h and  

B=0, if ß=0.25, therefore a term with h6 is needed. 

DG = (Tc-T)h2 + B h4 +Dh2 + E 2 DG = (Tc-T)h2 + C h6 + Dh2 + E 2 



Example Bi2Ti4O11  

Mechanism: 

Continuous shift of the  

Bi- atoms off the mirror plane 

 

The phase transition is  

triggered by the  

„lone electron pair“ of Bi. 

Structure : a-Phase 

Bi - Atoms Structure : b-Phase 

m 

m 
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C2/m 

C2/c 

c 

c 

c 



Ca2CoSi2O7  Example 

Sequence of phases: 

Tc = 498(1) K Tc = 155 K - 270 K 

HT - phase IC - phase C - phase DT 

Diffraction pattern  
at RT: 
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Ca2CoSi2O7  Example 

Phase transition at  ~500 K  

No thermal hysteresis:  
 2. order phase transition 

HT - 
phase 

IC - 
phase 

C - 
phase 



Ca2CoSi2O7  Example 

Variation of the q-Vector 
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Temperature [K] 

Phase transition  
between 155 K and 270 K  

Thermal hysteresis:  
 1. order phase transition 

HT - 
phase 

IC - 
phase 

C - 
phase 



c 

= CoO4 

= Si2O7 

= Ca 

a 

HT - 
phase 

IC - 
phase 

C - 
phase 

HT - Phase 

Ca2CoSi2O7  Example 



HT - 
phase 

IC - 
phase 

C - 
phase 

Ca2CoSi2O7  Example 

3
·a

 

C - phase 



Ca2CoSi2O7  Example 

Van Heurk et al., 1992  

TEM studies at RT: 
pictures show octagonal rings. 

HT - 
phase 

IC - 
phase 

C - 
phase 

IC - phase 



Ca2CoSi2O7  Example 

Relations between the structures 
HT - 

phase 

IC - 
phase 

C - 
phase 

IC-phase: An arbitrary  
superposition of  
octagonal rings 

C-phase: An ordered  
superposition of 
octagonal rings. 



Mechanisms 

Superstructure reflection 

Bi2Ti4O11  

Satellite reflection 
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Ca2CoSi2O7  
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(Ca1-xSrx)2MgSi2O7;  x = 0.16  

Tc = 277 K Tc = 250 K ?    ? 
Transformation temperature 

Mechanisms 

HT - 
phase 

IC - 
phase 



TEM,  IC- and HT-phase:  Electron diffraction  
   on (Ca1-xSrx)2MgSi2O7 . 

T = 355 K 
No satellites 

 

T = 335 K 
satellites of 

1. order 

T = 295 K 
satellites of 

1. and 2. order 

M. Schosnig  et al., 2000  

Mechanisms 



Ca2CoSi2O7  Example 

HT - 
phase 

IC - 
phase 

C - 
phase 

Relations between the structures 

IC-phase: An arbitrary  
superposition of  
octagonal rings 

C-phase: An ordered  
superposition of 
octagonal rings. 



structure : a-phase 

Bi - Atoms 
structure : b-phase 

Example Bi2Ti4O11  

Mechanism: 

Continuous shift of the  

Bi- atoms off the mirror plane 

 

The phase transition is  

triggered by the  

„lone electron pair“ of Bi. 



 The transition of VS. 
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