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Introduction

• How can an agent decide the next action? A single percept might not be enough.


• Agents can have preferences.


• Preferences lead to the quantitative concept of utility.


• How to specify an utility function.


• How to calculate an utility function.
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The St. Petersburg Paradox

Consider the following gambling game (“St. Petersburg Game”):

A (fair) coin is tossed: if it lands on head, you win 2$, if tail you loose.

If the coin is tossed again and lands on head, you win 2$ and so on…

The expected win is therefore:





Problem: how much should the casino’ ask for playing, given the fact that you 
could win a potentially infinite amount of money?


Moreover: how much are you willing to pay?

E =
1
2

× 2 +
1
4

× 4 + . . . = 1 + 1 + . . . = ∞
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The St. Petersburg Paradox
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A Solution?

• From a mathematical point of view there is no problem: the average win is infinite. 
It makes sense to accept an infinitesimal probability to win an infinite sum!


• In fact, the paradox highlight a decision problem. Some people will be willing to 
risk a large sum for a potential high gain, other ones will be happy with modest 
wins.


• These considerations brought mathematicians, economists, sociologists,… to 
develop the idea of (marginal) utility.


• Basic idea: a price or an amount of money is not the same for everybody. 1000$ is 
a lot for a “poor” person and “nothing” for a very rich person. The price/value is 
not everything but is related to the utility of the object/money for a certain person.
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Developing Utility Functions
The utility should have a “saturation” property: its growth should diminish as function 
of the value/price of the considered good (for example).

Early examples of utility functions were ln(x) and  .x

ln(x)

x
lim
x→∞

du
dx

= 0Possible condition:
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Decisions under uncertainty

- Consider an agent that must take a decision and considers an action a.

- We assign a probability to each possible current state s: P(s).


- The probability that an action a makes the agent transition from the state s to s’ is


 


- We are interested in the outcome of the action: P(Result(a)=s’)

- The previous probabilities are related by


P(s′￼|s, a)

P(Result(a) = s′￼) = ∑
s

P(s)P(s′￼|s, a)



Luca Doria, KPH Mainz Introduction to AI 8

Maximum Expected Utility (MEU)
The simplest form of decision is the one concerned with immediate outcomes in an 
episodic environment.


The preferences of an agent are encoded in an utility function U(s) which associates a 
number at each state, expressing how desirable it is.


The expected utility EU(a) is the average utility of the possible outcomes:





The principle of maximum expected utility expresses the fact that an agent chooses:


EU(a) = ∑
s′￼

P(Result(a) = s′￼)U(s′￼)

action = argmaxaEU(a)
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Meaning of MEU
The MEU is a way to encode a prescription of an “intelligent” agent.

This principle just formalises the concept, but it is not constrictive.

Constructing the probability distribution P(s) over all the states of the world requires:


- Perception

- Learning

- Knowledge representation (e.g. a logic)

- Inference rules


The same is true for U(s’) which is function of the outcomes s’.

Remember the performance measures? U is a form of them.
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Rational Preferences

The MEU is just one possibility and we have to better formalise what a 
preference means.


Notation:

 : A is preferred over B,

 : indifferent between A and B,

 : A is preferred over B or the agent is indifferent.


A,B,… can be thought as  “lotteries” L where each possible outcome Si can 
happen with a certain probability pi such that


L = {p1,S1 ; p2,S2 ; … ; pn, Sn}

A ≻ B
A ∼ B
A ⪰ B



Luca Doria, KPH Mainz Introduction to AI 11

Axioms (1)

Orderability: the agent must choose thus exactly one of those holds:  

, , or  .


Transitivity: ( ) ( ) 


Continuity: . 

If B is between two choices then there exists a probability for which the agent is 
indifferent in choosing B or A with prob. p or C with prob. 1-p .


A ≻ B A ∼ B A ⪰ B

A ≻ B ∧ B ≻ C ⇒A ≻ C

A ≻ B ≻ C ⇒ ∃p[p, A; 1 − p, C] ∼ B
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Axioms (2)
Substitutability:   (Holds also for ).


Monotonicity: 

Two lotteries have two possible outcomes (A or B).

If A is preferred, then the agent must prefer the lottery where A has the highest 
probability. 


A ∼ B ⇒ [p, A; 1 − p, C] ∼ [p, B; 1 − p, C] ≻

A ≻ B ⇒ (p > q ⇔ [p, A; 1 − p, B]) ≻ [q, A; 1 − q, B]
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Axioms (3)
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Decomposability: 




Compound lotteries can be reduced to simpler ones with the laws of probability.

Two consecutive lotteries are compressed in a single (equivalent) one.

[p, A; 1 − p, [q, B; 1 − q . C]] ∼ [p, A; (1 − p)q, B; (1 − p)(1 − q), C]
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Utility
The previous axioms were about preferences.

From them, we can derive the utility concept: a map from lotteries to numbers.

Theorem (Existence of an Utility Function)

If the agent’s preferences obey the previous axioms, then there exists a function U 
such that U(A)>U(B) iff A B and U(A)=U(B) iff A B.≻ ∼

Theorem (Expected utility of a lottery)

The utility of a lottery is the sum of the probability of each outcome times the utility 
of that outcome:


U([p1, S1; . . . ; pn, Sn]) = ∑
i

piU(Si)

Theorem (Unicity)

The utility function is not unique: U′￼(S) = aU(S) + b
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Utility: the money case

You won 1000EUR but the game offers you to flip a coin:

- Tail: you loose what you have.

- Head: you get 3000EUR.


In principle the expected win is:

0EURx0.5 + 3000EURx0.5 = 1500EUR > 1000EUR, so you should accept to flip.


What is the “rational” choice you have to make?
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Utility: the money case

If Sn is the state where we possess a total of nEUR and Sk is the event where 
we have a current wealth of kEUR, in terms of expected utility functions we 
have:


EU(Accept to flip) =  0.5xU(Sk) + 0.5xU(Sk+3000)

                       EU(No flip)            =  U(Sk+1000)


To decide what to do, we have to specify U.

Remember that U is not proportional to the amount of money, since the first 
sum will look very important to you, while adding more money will be less 
and less important.

The question can be: are you a risk-averse or a risk-seeking agent?
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Utility: the money case

In one of the first empirical studies (in the 
1960s), it emerged that for money, the utility 
function is very close to a logarithm (as the 
intuition of Bernoulli hundreds of years 
before).

Example: in an empirical study, the utility 
function of a specific person was consistent 
with:


U(Sk+n) = -263.3 + 22.09 log (n+150.000). 


with -150.000$<n<800.000$
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Figure 16�2 4HE UTILITY OF MONEY� �A	 %MPIRICAL DATA FOR -R� "EARD OVER A LIMITED RANGE�
�B	 ! TYPICAL CURVE FOR THE FULL RANGE�

STATE Sk+1,000,000� 4HEN THE RATIONAL ACTION WOULD BE TO DECLINE� BECAUSE THE EXPECTED UTILITY
OF ACCEPTING IS ONLY � �LESS THAN THE � FOR DECLINING	� /N THE OTHER HAND� A BILLIONAIRE WOULD
MOST LIKELY HAVE A UTILITY FUNCTION THAT IS LOCALLY LINEAR OVER THE RANGE OF A FEW MILLION MORE�
AND THUS WOULD ACCEPT THE GAMBLE�

)N A PIONEERING STUDY OF ACTUAL UTILITY FUNCTIONS� 'RAYSON �����	 FOUND THAT THE UTILITY OF
MONEY WAS ALMOST EXACTLY PROPORTIONAL TO THE logarithm OF THE AMOUNT� �4HIS IDEA WAS lRST
SUGGESTED BY "ERNOULLI �����	� SEE %XERCISE �����	 /NE PARTICULAR UTILITY CURVE� FOR A CERTAIN
-R� "EARD� IS SHOWN IN &IGURE �����A	� 4HE DATA OBTAINED FOR -R� "EARD�S PREFERENCES ARE
CONSISTENT WITH A UTILITY FUNCTION

U(Sk+n) = −263.31 + 22.09 log(n + 150, 000)

FOR THE RANGE BETWEEN n = −$150, 000 AND n = $800, 000�
7E SHOULD NOT ASSUME THAT THIS IS THE DElNITIVE UTILITY FUNCTION FOR MONETARY VALUE� BUT

IT IS LIKELY THAT MOST PEOPLE HAVE A UTILITY FUNCTION THAT IS CONCAVE FOR POSITIVE WEALTH� 'OING
INTO DEBT IS BAD� BUT PREFERENCES BETWEEN DIFFERENT LEVELS OF DEBT CAN DISPLAY A REVERSAL OF
THE CONCAVITY ASSOCIATED WITH POSITIVE WEALTH� &OR EXAMPLE� SOMEONE ALREADY ����������� IN
DEBT MIGHT WELL ACCEPT A GAMBLE ON A FAIR COIN WITH A GAIN OF ����������� FOR HEADS AND A
LOSS OF ����������� FOR TAILS�� 4HIS YIELDS THE 3
SHAPED CURVE SHOWN IN &IGURE �����B	�

)F WE RESTRICT OUR ATTENTION TO THE POSITIVE PART OF THE CURVES� WHERE THE SLOPE IS DECREAS

ING� THEN FOR ANY LOTTERY L� THE UTILITY OF BEING FACED WITH THAT LOTTERY IS LESS THAN THE UTILITY OF
BEING HANDED THE EXPECTED MONETARY VALUE OF THE LOTTERY AS A SURE THING�

U(L) < U(SEMV (L)) .

4HAT IS� AGENTS WITH CURVES OF THIS SHAPE ARE risk-averse� THEY PREFER A SURE THING WITH ARISK-AVERSE

PAYOFF THAT IS LESS THAN THE EXPECTED MONETARY VALUE OF A GAMBLE� /N THE OTHER HAND� IN THE
hDESPERATEv REGION AT LARGE NEGATIVE WEALTH IN &IGURE �����B	� THE BEHAVIOR IS risk-seeking�RISK-SEEKING

5 3UCH BEHAVIOR MIGHT BE CALLED DESPERATE� BUT IT IS RATIONAL IF ONE IS ALREADY IN A DESPERATE SITUATION�

from Russell&Norvig

Risk-averse:

the slope is decreasing 

Risk-seeking
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Relation to Insurance

Empirically, people prefer to gain 400EUR than gamble between 0 and 1000EUR.

The expected monetary value (EMV) of the gamble is 0x0.5+1000x0.5 = 500EUR.


The difference:


EMV - 400EUR = 100EUR


is called insurance premium.

The fact that the premium is positive, is the basis of the insurance industry: most 
people prefers to pay a small price but avoid large losses (car or house insurance…)
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Sequential Decision Problems
Sequential Decision Problems (1)

1 2 3

1

2

3

− 1

+ 1

4

START

Beginning in the start state the agent must choose an action at each
time step.

The interaction with the environment terminates if the agent reaches
one of the goal states (4,3) (reward of +1) or (4,2) (reward -1). Each
other location has a reward of -.04.

In each location the available actions are Up, Down, Left , Right .

(University of Freiburg) Foundations of AI July 4, 2017 12 / 32

Model example:


From the START square, the agent must choose 
an action (e.g. direction) at each time step.


The process terminates if one of the goal states  
(with the associated rewards) is reached.


In each square, the available actions are up, 
down, left, right. from Russell&Norvig
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Sequential Decision Problems

Two versions of the problem:


Deterministic: 

the intended direction is always taken, except when 
directed against a wall. 


Stochastic: 

the intended direction is taken with 0.8 probability, while 
with 0.1 probability it takes the one of the two orthogonal 
directions wrt the intended one.

Sequential Decision Problems (2)

Deterministic version: All actions always lead to the next square in the
selected direction, except that moving into a wall results in no change in
position.

Stochastic version: Each action achieves the intended e↵ect with
probability 0.8, but the rest of the time, the agent moves at right angles
to the intended direction.

0.8

0.10.1

(University of Freiburg) Foundations of AI July 4, 2017 13 / 32

intended direction

from Russell&Norvig
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Markov Decision Problem

Given a set of states, a Markov Decision Problem is defined by:


- Initial state S0

- Transition Model P(s,a,s’)

- Reward Function R(s)


P is the probability to reach the state s’ from the state s if the action a is taken.


Policy (s): A function mapping states to actions.


Optimal policy : optimises the future expected reward.

π

π*
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Optimal Policies

• If an agent has an optimal policy, he can use its current percept letting him 
know its current state s.


• Given the state, he executes the action 


• The last points realise a reflex agent.

π*(s)

Optimal Policies (1)

Given the optimal policy, the agent uses its current percept that tells it
its current state.

It then executes the action ⇡⇤(s).

We obtain a simple reflex agent that is computed from the information
used for a utility-based agent.

Optimal policy for stochastic
MDP with R(s) = �0.04:

–1

+1

1

2

3

1 2 3 4

(University of Freiburg) Foundations of AI July 4, 2017 15 / 32

Example: optimal policy 
for a reward R=-0.04 for 
each transition.

(Rewards sum up)

from Russell&Norvig
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Different Reward Models
Optimal Policies (2)

Optimal policy changes with choice of transition costs R(s).
How to compute optimal policies?

(University of Freiburg) Foundations of AI July 4, 2017 16 / 32

A move is so expensive 
that the agent head to 
whatever exit is the 
closest.

The reward for each 
move is so high that the 
agent prefers to keep 
moving and avoid exits.

from Russell&Norvig
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Finite and Infinite Horizons
• The performance of an agent is calculated with the sum of rewards for the states 

visited.


•  For determining an optimal policy we first calculate the utility of each state and 
then use the single state utilities for deciding the best action.


• The result will depend on whether we have a finite or infinite horizon problem.


• Utility function for state sequences: Uh([s0,s1,…,sn])


• Finite horizon: Uh([s0,s1,…,sN=k])=Uh([s0,s1,…,sN]) k>0


• Finite horizon problems are also called non-stationary, since there is a time 
dependence.


• Infinite horizon problems are instead stationary.

∀



Luca Doria, KPH Mainz Introduction to AI 25

Utility of State Sequences
In the case of stationary systems, we can define the utilities with:


- Additive rewards:

Uh([s0,s1,…,]) = R(s0) + R(s1) + R(s2) + …


- Discounted rewards:

Uh([s0,s1,…,]) = R(s0) + R(s1) + R(s2) + …


where  is the discount factor.

With discounted rewards the utility of an infinite sequence becomes finite: 


Uh([s0,s1,…,]) = 


Discount factors disfavour contributions too far ahead in the future.

γ γ2

γ ∈ [0,1)

∞

∑
t=0

γtR ≤
∞

∑
t=0

γtRmax =
±Rmax

1 − γ
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•The utility of a state depends on the utility of the states that follow.


•Let U (s) be the utility of a state s with policy .


•Let st be the state after executing  for t steps. The utility is:





•The true utility U(s) of a state s is 


•R(s) is the short-term reward for being in the state s


•U(s) is the long-term total reward from s, onwards.

π π

π

Uπ(s) = E [
∞

∑
t=0

γtR(st) |π, s0 = s]
Uπ*(s)

Utility of States
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Optimal Policy

π*s = argmaxπUπ(s)

Once we define the police corresponding to s as starting point, we can define 
the optimal one:

Starting from s, there are many possible recommendations (policies) for the 
next steps and this one is the best. 


Note: the discounted utility definition with an infinite horizon makes the 
optimal policy independent from the starting state, even if the action sequence 
can be different.


This is because after a while two different starting states will reach a common 
future state and from that point on, they will follow the same path.
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Optimal Policy

π*s = argmaxπUπ(s) = argmaxa∈A(s) ∑
s′￼

P(s′￼|s, a)U(s′￼)

Using the principle of maximum expected utility ( ):action = argmaxaEU(a)

which means, choose the action that maximises the expected utility of the 
subsequent state.
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The Bellman Equation

We defined the utility of a state as sum of (discounted) rewards onwards.

From this definition, we can state the relationship between the utility of a state 
and the utility of the neighbours:


          


This is the Bellman Equation (R. Bellman, 1957): the utility of a state s is the 
immediate reward R(s) for that state plus the expected discounted utility of the 
next state, assuming that the agent chooses the optimal action (the “max”).

U(s) = R(s) + γ max
a∈A(s) ∑

s′￼

P(s′￼|s, a)U(s′￼)
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In the case of this 4x3 state space,  (additive rewards case), R(s)=-0.04 for 
transitions in non-terminal states:

γ = 1

ExampleExample

The utilities of the states in our 4⇥ 3 world with � = 1 and R(s) = �0.04
for non-terminal states:

1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

(University of Freiburg) Foundations of AI July 4, 2017 20 / 32

from Russell&Norvig

- Note that  utilities are higher close to 
the +1 exit.


- The numbers are expectation values, 
thus also the 0.8/0.1 probabilities are 
taken into account.
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��� #HAPTER ��� -AKING #OMPLEX $ECISIONS

���� 6!,5% )4%2!4)/.

)N THIS SECTION� WE PRESENT AN ALGORITHM� CALLED value iteration� FOR CALCULATING AN OPTIMALVALUE ITERATION

POLICY� 4HE BASIC IDEA IS TO CALCULATE THE UTILITY OF EACH STATE AND THEN USE THE STATE UTILITIES TO
SELECT AN OPTIMAL ACTION IN EACH STATE�

17�2�1 The Bellman eTuation for utilities

3ECTION ������ DElNED THE UTILITY OF BEING IN A STATE AS THE EXPECTED SUM OF DISCOUNTED REWARDS
FROM THAT POINT ONWARDS� &ROM THIS� IT FOLLOWS THAT THERE IS A DIRECT RELATIONSHIP BETWEEN THE
UTILITY OF A STATE AND THE UTILITY OF ITS NEIGHBORS� the utility of a state is the immediate reward
for that state plus the e[pected discounted utility of the ne[t state, assuming that the agent
chooses the optimal action. 4HAT IS� THE UTILITY OF A STATE IS GIVEN BY

U(s) = R(s) + γ max
a∈A(s)

∑

s′

P (s
′ | s, a)U(s

′

) . �����	

4HIS IS CALLED THE Bellman eTuation� AFTER 2ICHARD "ELLMAN �����	� 4HE UTILITIES OF THEBELLMAN EQUATION

STATES�DElNED BY %QUATION �����	 AS THE EXPECTED UTILITY OF SUBSEQUENT STATE SEQUENCES�ARE
SOLUTIONS OF THE SET OF "ELLMAN EQUATIONS� )N FACT� THEY ARE THE uniTue SOLUTIONS� AS WE SHOW
IN 3ECTION �������

,ET US LOOK AT ONE OF THE "ELLMAN EQUATIONS FOR THE 4× 3 WORLD� 4HE EQUATION FOR THE
STATE ����	 IS

U(1, 1) = −0.04 + γ max[ 0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1), (Up)

0.9U(1, 1) + 0.1U(1, 2), (Left)

0.9U(1, 1) + 0.1U(2, 1), (Down)

0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1) ]. (Right)

7HEN WE PLUG IN THE NUMBERS FROM &IGURE ����� WE lND THAT Up IS THE BEST ACTION�

17�2�2 The value iteration algorithm

4HE "ELLMAN EQUATION IS THE BASIS OF THE VALUE ITERATION ALGORITHM FOR SOLVING -$0S� )F THERE
ARE n POSSIBLE STATES� THEN THERE ARE n "ELLMAN EQUATIONS� ONE FOR EACH STATE� 4HE n EQUATIONS
CONTAIN n UNKNOWNS�THE UTILITIES OF THE STATES� 3O WE WOULD LIKE TO SOLVE THESE SIMULTANEOUS
EQUATIONS TO lND THE UTILITIES� 4HERE IS ONE PROBLEM� THE EQUATIONS ARE nonlinear� BECAUSE THE
hmaxv OPERATOR IS NOT A LINEAR OPERATOR� 7HEREAS SYSTEMS OF LINEAR EQUATIONS CAN BE SOLVED
QUICKLY USING LINEAR ALGEBRA TECHNIQUES� SYSTEMS OF NONLINEAR EQUATIONS ARE MORE PROBLEMATIC�
/NE THING TO TRY IS AN iterative APPROACH� 7E START WITH ARBITRARY INITIAL VALUES FOR THE UTILITIES�
CALCULATE THE RIGHT
HAND SIDE OF THE EQUATION� AND PLUG IT INTO THE LEFT
HAND SIDE�THEREBY
UPDATING THE UTILITY OF EACH STATE FROM THE UTILITIES OF ITS NEIGHBORS� 7E REPEAT THIS UNTIL WE
REACH AN EQUILIBRIUM� ,ET Ui(s) BE THE UTILITY VALUE FOR STATE s AT THE iTH ITERATION� 4HE ITERATION
STEP� CALLED A Bellman update� LOOKS LIKE THIS�BELLMAN UPDATE

Ui+1(s)← R(s) + γ max
a∈A(s)

∑

s′

P (s
′ | s, a)Ui(s

′

) , �����	

Example

The utilities of the states in our 4⇥ 3 world with � = 1 and R(s) = �0.04
for non-terminal states:
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Example
How to calculate the utility of one state with the BE:

Bellman-Equation: Example

In our 4⇥ 3 world the equation for the state (1,1) is

U(1, 1) = �0.04 + �max{ 0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1), (Up)
0.9U(1, 1) + 0.1U(1, 2), (Left)
0.9U(1, 1) + 0.1U(2, 1), (Down)
0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1)} (Right)

= �0.04 + �max{ 0.8 · 0.762 + 0.1 · 0.655 + 0.1 · 0.705, (Up)
0.9 · 0.705 + 0.1 · 0.762, (Left)
0.9 · 0.705 + 0.1 · 0.655, (Down)
0.8 · 0.655 + 0.1 · 0.762 + 0.1 · 0.705} (Right)

= �0.04 + 1.0 ( 0.6096 + 0.0655 + 0.0705), (Up) = �0.04 + 0.7456 = 0.7056

Up is the optimal action in (1,1).
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How to solve the Bellman Equation?

• The Bellman equation refers to a single state, but in general we have n states.


• This means that there are n Bellman equations to solve.


• The BE is non-linear (max is a non-linear operator) and finding an analytical 

solution is generically not possible.


• Like in other cases of PDEs or non-linear equations, an iterative approach works.


Value Iteration Algorithm
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Value Iteration Algorithm

1. Start with arbitrary utility values.


2. Calculate 


3. Update all the utilities for each state (all the squares in our example)


4. Repeat until convergence.

R(s) + γ max
a∈A(s) ∑

s′￼

P(s′￼|s, a)U(s′￼)
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Value Iteration Algorithm3ECTION ����� 6ALUE )TERATION ���

function 6!,5%
)4%2!4)/.�mdp� ε	 returns A UTILITY FUNCTION
inputs� mdp� AN -$0 WITH STATES S � ACTIONS A(s)� TRANSITION MODEL P (s′ | s, a)�

REWARDS R(s)� DISCOUNT γ
ε� THE MAXIMUM ERROR ALLOWED IN THE UTILITY OF ANY STATE

local variables� U � U ′� VECTORS OF UTILITIES FOR STATES IN S � INITIALLY ZERO
δ� THE MAXIMUM CHANGE IN THE UTILITY OF ANY STATE IN AN ITERATION

repeat
U ←U ′� δ← �
for each STATE s in S do

U ′[s ]←R(s) + γ max
a∈A(s)

∑

s′

P (s′ | s, a) U [s′]

if |U ′[s ] − U [s]| > δ then δ← |U ′[s ] − U [s]|
until δ < ε(1− γ)/γ

return U

Figure 17�4 4HE VALUE ITERATION ALGORITHM FOR CALCULATING UTILITIES OF STATES� 4HE TERMINA

TION CONDITION IS FROM %QUATION �����	�
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Figure 17�5 �A	 'RAPH SHOWING THE EVOLUTION OF THE UTILITIES OF SELECTED STATES USING VALUE
ITERATION� �B	 4HE NUMBER OF VALUE ITERATIONS k REQUIRED TO GUARANTEE AN ERROR OF AT MOST
ε= c · RMAX� FOR DIFFERENT VALUES OF c� AS A FUNCTION OF THE DISCOUNT FACTOR γ�

WHERE THE UPDATE IS ASSUMED TO BE APPLIED SIMULTANEOUSLY TO ALL THE STATES AT EACH ITERATION�
)F WE APPLY THE "ELLMAN UPDATE INlNITELY OFTEN� WE ARE GUARANTEED TO REACH AN EQUILIBRIUM
�SEE 3ECTION ������	� IN WHICH CASE THE lNAL UTILITY VALUES MUST BE SOLUTIONS TO THE "ELLMAN
EQUATIONS� )N FACT� THEY ARE ALSO THE uniTue SOLUTIONS� AND THE CORRESPONDING POLICY �OBTAINED
USING %QUATION �����		 IS OPTIMAL� 4HE ALGORITHM� CALLED 6!,5%
)4%2!4)/.� IS SHOWN IN
&IGURE �����

7E CAN APPLY VALUE ITERATION TO THE 4× 3 WORLD IN &IGURE �����A	� 3TARTING WITH INITIAL
VALUES OF ZERO� THE UTILITIES EVOLVE AS SHOWN IN &IGURE �����A	� .OTICE HOW THE STATES AT DIFFER
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Convergence of the Algorithm (1)

Definition (Contraction): A function f is a contraction if  

Example: f(x) = x/2

∥f(x) − f(y)∥ ≤ k∥x − y∥

Theorem: Considering the Bellman equation, the operator 


B = 


is a contraction and  if we consider the norm 

R(s) + γ max
a∈A(s) ∑

s′￼

P(s′￼|s, a)U(s′￼)

∥BU − BU′￼∥ ≤ γ∥U − U′￼∥ ∥ ⋅ ∥ = max( ⋅ )

If we consider U and U’ as successive iterations of the value iteration algorithm, 
we can view  as the error in our estimate of U.

In other words, the error is reduced by a factor  after each iteration.

∥U − U′￼∥
γ
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Convergence of the Algorithm (2)

Remembering the result:   we can use the bound:


 


Now, if we iterate N times for reaching an error , we have:





The last formula is an estimate of the iterations needed to reach a certain error.

∞

∑
t=0

γtR ≤
∞

∑
t=0

γtRmax =
±Rmax

1 − γ

∥U0 − U∥ ≤
2Rmax

1 − γ
ϵ

γN 2Rmax

1 − γ
≤ ϵ ⇒ N = ⌈

log 2Rmax /ϵ(1 − γ)
log(1/γ)

⌉
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N = ⌈
log 2Rmax /ϵ(1 − γ)

log(1/γ)
⌉

Convergence of the Algorithm (3)

Exponentially fast convergence: 
weak dependence from  .


N grows very fast as .

A small  can be used, but this means 
a small horizon for the agent (the 
“future”): long-term effects can be 
missed.

Rmax /ϵ

γ → 1
γ
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from Russell&Norvig

Error required



Luca Doria, KPH Mainz Introduction to AI 38

Summary

• Rational agents can be designed using probability theory and utility theory.


• Agents take decisions according to the axioms of unity theory and employ an 

utility function.


• Sequential problems in uncertain environments (probability!) can be solved 

through the determination of a policy.


• The Bellman equation provides a way to calculate an optimal policy. It is related 

to dynamical programming.


• A solution of the BE is given through the value iteration algorithm.


