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Introduction

e How can an agent decide the next action? A single percept might not be enough.
e Agents can have preferences.

e Preferences lead to the quantitative concept of utility.

e How to specify an utility function.

e How to calculate an utility function.
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The St. Petersburg Paradox

Consider the following gambling game (“St. Petersburg Game™):

A (fair) coin 1s tossed: 1f it lands on head, you win 29, 1f tail you loose.
If the coin is tossed again and lands on head, you win 2$ and so on...
The expected win 1s therefore:

1 1
E=—X24+—X4+...=14+1+4...=00
2 4

Problem: how much should the casino’ ask for playing, given the fact that you
could win a potentially infinite amount of money?

Moreover: how much are you willing to pay?
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The St. Petersburg Paradox
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A Solution?

e From a mathematical point of view there 1s no problem: the average win 1s infinite.
It makes sense to accept an infinitesimal probability to win an infinite sum!

e In fact, the paradox highlight a decision problem. Some people will be willing to
risk a large sum for a potential high gain, other ones will be happy with modest
wins.

e These considerations brought mathematicians, economists, sociologists,... to
develop the 1dea of (marginal) utility.

e Basic idea: a price or an amount of money 1s not the same for everybody. 10008$ is
a lot for a “poor” person and “nothing” for a very rich person. The price/value 1s
not everything but 1s related to the utility of the object/money for a certain person.
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Developing Utility Functions

The utility should have a “saturation” property: its growth should diminish as function
of the value/price of the considered good (for example).

Early examples of utility functions were In(x) and \/)_c .
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Decisions under uncertainty

- Consider an agent that must take a decision and considers an action a.
- We assign a probability to each possible current state s: P(s).

- The probability that an action a makes the agent transition from the state s to s’ 1s
P(s'|s,a)

- We are interested 1n the outcome of the action: P(Result(a)=s’)
- The previous probabilities are related by

P(Result(a) = s") = 2 P(s)P(s'| s, a)
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Maximum Expected Utility (MEU)

The simplest form of decision 1s the one concerned with immediate outcomes 1n an
episodic environment.

The preferences of an agent are encoded 1n an utility function U(s) which associates a
number at each state, expressing how desirable 1t 1s.

The expected utility EU(a) 1s the average utility of the possible outcomes:

EU(a) = ) P(Result(a) = s")U(s
R
The principle of maximum expected utility expresses the fact that an agent chooses:

action = argmax, EU(a)
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Meaning of MEU

The MEU 1s a way to encode a prescription of an “intelligent” agent.

This principle just formalises the concept, but 1t 1s not constrictive.

Constructing the probability distribution P(s) over all the states of the world requires:

- Perception
- Learning
- Knowledge representation (e.g. a logic)

- Inference rules

The same 1s true for U(s’) which 1s function of the outcomes s’.

Remember the performance measures? U 1s a form of them.
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Rational Prefterences

The MEU 1s just one possibility and we have to better formalise what a
preference means.

Notation:
A > B : A s preferred over B,

A ~ B : indifferent between A and B,
A > B : A s preferred over B or the agent 1s indifferent.

A,B,... can be thought as “‘lotteries” L where each possible outcome S; can
happen with a certain probability pi such that

L=1{p1,S1;p2,52; ... ; Pn, Sn}
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Axioms (1)

Orderability: the agent must choose thus exactly one of those holds:
A>B,A~B orA>B.

Transitivity: (A > B)A(B > O)=A > C
Continuity: A > B > C = dp|p,A;1 —p,C] ~ B.

If B 1s between two choices then there exists a probability for which the agent 1s
indifferent 1n choosing B or A with prob. p or C with prob. 1-p .

Luca Doria, KPH Mainz Introduction to Al



Axioms (2)

Substitutability: A ~ B = [p,A;1 —p,C|] ~ |p,B; 1 — p, C] (Holds also for >).

Monotonicity: A > B=> (p>qg < [p,A;1 —p,B]) > [q,A; 1 — g, B]
Two lotteries have two possible outcomes (A or B).
If A 1s preferred, then the agent must prefer the lottery where A has the highest

probability.
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Axioms (3)

Decomposability:

Compound lotteries can be reduced to simpler ones with the laws of probability.
Two consecutive lotteries are compressed 1n a single (equivalent) one.

A
P

- U-pg 5

(1-p)(1-q) €
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Utility
The previous axioms were about preferences.
From them, we can derive the utility concept: a map from lotteries to numbers.

Theorem (Existence of an Utility Function)
If the agent’s preferences obey the previous axioms, then there exists a function U

such that U(A)>U(B) iff A>B and U(A)=U(B) iff A~B.

Theorem (Expected utility of a lottery)
The utility of a lottery 1s the sum of the probability of each outcome times the utility
of that outcome:

U([py, S - - P S = Y piUCS)

Theorem (Unicity)
The utility function 1s not unique: U'(S) = aU(S) + b
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Utility: the money case

You won 1000EUR but the game offers you to flip a coin:
- Tail: you loose what you have.

- Head: you get 3000EUR.

In principle the expected win 1s:
OEURx0.5 + 3000EURx0.5 = 1500EUR > 1000EUR, so you should accept to flip.

What 1s the “rational” choice you have to make?
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Utility: the money case

If Sy 1s the state where we possess a total of nEUR and Sk 1s the event where
we have a current wealth of KEUR, 1n terms of expected utility functions we
have:

EU(Accept to flip) = 0.5xU(Sk) + 0.5xU(Sk+3000)
EU(No flip) = U(Sk+1000)

To decide what to do, we have to specity U.
Remember that U 1s not proportional to the amount of money, since the first

sum will look very important to you, while adding more money will be less
and less important.

The question can be: are you a risk-averse or a risk-seeking agent?
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Utility: the money case

In one of the first empirical studies (in the U
1960s), 1t emerged that for money, the utility

function 1s very close to a logarithm (as the Risk.averse:

intuition of Bernoullt hundreds of years the slope is decreasing
before).

Example: in an empirical study, the utility |

function of a specific person was consistent A 5
Wlth -150,000 . 300,000

U(Skin) = -263.3 + 22.09 log (n+150.000).

Wlth -150 OOO$<H<800 OOO$ K from Russell&Norvig

Risk-seeking ,*
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Relation to Insurance

Empirically, people prefer to gain 400EUR than gamble between 0 and 1000EUR.
The expected monetary value (EMV) of the gamble 1s 0x0.5+1000x0.5 = S00EUR.

The difference:

EMYV - 400EUR = 100EUR

1s called insurance premium.
The fact that the premium 1s positive, 1s the basis of the insurance industry: most
people prefers to pay a small price but avoid large losses (car or house mnsurance...)
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Sequential Decision Problems

Model example:

From the START square, the agent must choose
an action (e.g. direction) at each time step.

The process terminates 1f one of the goal states
(with the associated rewards) 1s reached.

In each square, the available actions are up,
down, left, right.

from Russell&Norvig
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Sequential Decision Problems

Two versions of the problem:

Deterministic:
the intended direction 1s always taken, except when
directed against a wall.

Stochastic:

the intended direction 1s taken with 0.8 probability, while
with 0.1 probability it takes the one of the two orthogonal
directions wrt the intended one.
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Markov Decision Problem

Given a set of states, a Markov Decision Problem 1s defined by:

- Initial state So
- Transition Model P(s,a,s’)
- Reward Function R(s)

P 1s the probability to reach the state s’ from the state s 1f the action a 1s taken.
Policy z(s): A function mapping states to actions.

Optimal policy 7*: optimises the future expected reward.
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Optimal Policies

e If an agent has an optimal policy, he can use 1its current percept letting him
know 1ts current state s.

e (1ven the state, he executes the action 7*(s)

e The last points realise a reflex agent. from Russcll&Norvig

3 = - - ‘+1‘

Example: optimal policy 2
for a reward R=-0.04 for
each transition. :
(Rewards sum up)

[ -1 ]
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Difterent Reward Models

R(s) < —1.6284 ~0.4278 < R(s) < —0.0850
+ 4= |=
~|=
A==

—0.0221 <R(s) <0 R(s) >0

from Russell&Norvig

A move 1S SO expensive
that the agent head to
whatever exit 1s the
closest.

The reward for each
move 1S so high that the
agent prefers to keep
moving and avoid exits.
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Finite and Infinite Horizons

e The performance of an agent 1s calculated with the sum of rewards for the states

visited.

e For determining an optimal policy we first calculate the utility of each state and
then use the single state utilities for deciding the best action.

e The result will depend on whether we have a finite or infinite horizon problem.

e Utility function for state sequences: Un([So0,S1,...,Sn])

e Finite horizon: Un([So,S1,...,SN=k])=Un([S0,S1,...,SN]) Vk>0

e Finite horizon problems are also called non-stationary, since there 1s a time
dependence.

e [nfinite horizon problems are instead stationary.
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Utility of State Sequences

In the case of stationary systems, we can define the utilities with:

- Additive rewards:
Un([s0,81,...,]) = R(s0) + R(s1) + R(s2) + ...

- Di1scounted rewards:
Un([S0,51,...,]) = R(s0) + yR(s1) + y°R(s2) + ...

where y € [0,1) 1s the discount factor. | |
With discounted rewards the utility of an infinite sequence becomes finite:

i Rmax

Uh([SO,Sl,. . 9]) — 2 ]/tR S Z }/tRmax —

=0 =0 L=y

Discount factors disfavour contributions too far ahead in the future.
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Utility of States

*The utility of a state depends on the utility of the states that follow.

*Let UZ(s) be the utility of a state s with policy 7.

et st be the state after executing z for t steps. The utility 1s:
U(s) = FE [Z Y'R(s) |, 50 = S]
=0

*The true utility U(s) of a state s is U” (s)
*R(s) 1s the short-term reward for being in the state s

*U(s) 1s the long-term total reward from s, onwards.
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Optimal Policy

Once we define the police corresponding to s as starting point, we can define
the optimal one:

* = argmax, U”"(s)

Starting from s, there are many possible recommendations (policies) for the
next steps and this one 1s the best.

Note: the discounted utility definition with an infinite horizon makes the

optimal policy independent from the starting state, even 1f the action sequence
can be different.

This 1s because after a while two different starting states will reach a common
future state and from that point on, they will follow the same path.
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Optimal Policy

Using the principle of maximum expected utility (action = argmax EU(a)):

ny = argmax, U"(s) = argmax,c, Z P(s’| s, a)U(s")
-

which means, choose the action that maximises the expected utility of the
subsequent state.
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The Bellman Equation

We defined the utility of a state as sum of (discounted) rewards onwards.

From this definition, we can state the relationship between the utility of a state
and the utility of the neighbours:

U(s) = R(s) + y max Z P(s'| s, a)U(s")

acA(s) R

This 1s the Bellman Equation (R. Bellman, 1957): the utility of a state s 1s the
immediate reward R(s) for that state plus the expected discounted utility of the
next state, assuming that the agent chooses the optimal action (the “max”™).
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Example

In the case of this 4x3 state space, y = 1 (additive rewards case), R(s)=-0.04 for
transitions in non-terminal states:

- Note that utilities are higher close to
3 0.868 | 0.918 the +1 exit.

- The numbers are expectation values,
2 | 0.762 0.660 thus also the 0.8/0.1 probabilities are

taken 1nto account.

1 2 3 4
from Russell&Norvig
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Example

How to calculate the utility of one state with the BE:

U(1,1) = —0.04 + v max| 0.8U(1,2) + 0.1U(2,1) + 0.1U(1, 1),

(1,2) +0.1U(2,1)
O.9U(1,1) + O.lU(1,2), 5 =N
0.9U(1,1) + 0.1U(2,1),
0.8U/(2,1) 4+ 0.1U(1,2) + 0.1U(1,1)] .

= —0.04 + ymax{ 0.8 -0.762 + 0.1 - 0.655 4+ 0.1 - 0.705, 2 3
0.9-0.700 4+ 0.1 - 0.762,
0.9-0.705 4 0.1 - 0.695,

0.8 -0.655 + 0.1-0.762 + 0.1 - 0.705}

= —0.04 + 1.0 ( 0.6096 + 0.0655 + 0.0705)
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How to solve the Bellman Equation?

e The Bellman equation refers to a single state, but in general we have n states.

e This means that there are n Bellman equations to solve.

e The BE 1s non-linecar (max 1s a non-linear operator) and finding an analytical
solution 1s generically not possible.

e [ike 1n other cases of PDEs or non-linear equations, an iterative approach works.

—p Value Iteration Algorithm
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Value Iteration Algorithm

1. Start with arbitrary utility values.

2. Calculate R(s) + y max Z P(s'| s, a)U(s")

acA(s)
\)
3. Update all the utilities for each state (all the squares 1n our example)

4. Repeat until convergence.
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Value Iteration Algorithm

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states .S, actions A(s), transition model P(s’ | s, a),
rewards R(s), discount
e, the maximum error allowed 1n the utility of any state
local variables: U, U’, vectors of utilities for states in S, initially zero
0, the maximum change in the utility of any state in an iteration

repeat
U—U":6—0
for each state sin .S do

U'ls]<— R(s) + v m?{%c) P(s'|s,a) Uls’
a c S )

if | U'|s] — Uls|]| > dthend«— |U’[s| — Uls||
until § < €(1 — )/~
return U
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Convergence of the Algorithm (1)

Definition (Contraction): A function fis a contraction if |[f(x) — f(V)|| < k||x — ¥|]
Example: 1(x) = x/2

Theorem: Considering the Bellman equation, the operator

B = R(s) + y max Z P(s'|s,a)U(s")

acA(s) E

1S a contraction and ||BU — BU'|| < y||U — U'|| if we consider the norm || - || = max( - )

If we consider U and U’ as successive iterations of the value iteration algorithm,
we can view ||U — U'|| as the error 1n our estimate of U.

In other words, the error 1s reduced by a factor y after each 1teration.
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Convergence of the Algorithm (2)

Remembering the result: Z y'R < Z y! = ——— we can use the bound:

max

=0 =0 L=y

2R
Uy = Ull £ ——
I =y
Now, 1f we 1terate N times for reaching an error €, we have:

2R loe2R._ . [e(l —
}/N max <e > N = [ & max ( 7/)
1 —vy log(1/y)

The last formula 1s an estimate of the i1terations needed to reach a certain error.
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Convergence of the Algorithm (3)

log2R, ./e(1 —y)

N=[———"——7—] le+07
log(1/y) ¢ =0.0001
1e+06 . c=0.001 --------
Error required c=001 --------
. @ 100000 C = Ol ..................
Exponentially fast convergence: 3
3 10000
weak dependence from R, /€ . ”
-
S 1000
g
N grows very fastas y — 1. = 100
A small ¥ can be used, but this means 10
. from Russell&Norvi
a small horizon for the agent (the | o
“future”): long-term effects can be 0.50.550.60.650.70.750.80.850.90.95 1
missed. Discount factor Y
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Summary

e Rational agents can be designed using probability theory and utility theory.

e Agents take decisions according to the axioms of unity theory and employ an
utility function.

e Sequential problems 1n uncertain environments (probability!) can be solved
through the determination of a policy.

e The Bellman equation provides a way to calculate an optimal policy. It 1s related
to dynamical programming.

e A solution of the BE 1s given through the value iteration algorithm.
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