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Introduction

e Machine learning 1s getting a lot of attention since some years
e Many applications, many different methods
e Since you will have specialised classes about that:

- We will just give an introduction to this field

- Some historical developments

- Early methods which lead to the present ones
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Overview

e Intelligent agents can improve their performance through learning.
e [f the agent 1s a computer: machine learning.

e Supervised learning:
the agent observes input-output pairs (examples) and learns from them.
e Unsupervised learning:
the agent learns patterns just observing input examples.
e Reinforcement learning:
the agent learns through rewards (or “punishments”!) what 1s correct or not.

e Tasks:
- Classification
- Regression
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Classification

General Classification Problem:
Given a dimension N input vector of features X, find a function f such that

f:RY > CcN4

where the output 1s 1n a subset C of the integer numbers.

C are the “classes” (e.g. 0, 1, 2, 3, ...) into which the input vectors can be
divided (classified).

A special common case 1s boolean classification, where the output of 1 1s
restricted to two numbers (the mnput belongs to a class or not, e.g. 0,1).

N

In some cases, f : R — R and the output can be seen as the probability of
belonging to a class (or not).
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Classitication: Decision Trees

(AAB)V-C
A sequence of 0-1 decisions can be

A
represented as a propositional logic
sentence. true false

Every sentence can be viewed as a
decision tree.

B B
true/ ¥1se true/ ylse
The nodes correspond to “attributes”. b S b S h
true / \fa,lsetrue / \falsdzrue / \falsd:rue / \false

true false true false true false true false

Warning: In general, trees become
exponentially large.
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Russell&Norvig

Example

Alt | Bar | Fri | Hun| Pat | Price| Rain| Res | Type Est WillWait
X1 Yes | No| No | Yes | Some | $3$ | No | Yes | French | 0-10 | y, = Yes
X5 Yes | No | No | Yes | Full $ No | No Thai | 30-60 | ys = No
X3 No | Yes | No | No | Some $ No | No | Burger | 0-10 | y3 = Yes
X4 Yes | No | Yes | Yes | Full $ Yes | No Thai | 10-30 || y4 = Yes
X5 Yes | No | Yes | No | Full | $%% | No | Yes | French | > 60 V5 = No
X6 No | Yes | No | Yes | Some | $$ | Yes | Yes | Italian | 0-10 || Yyg = Yes
X7 No | Yes | No | No | None $ Yes | No | Burger | 0-10 Y7 = No
Xg No | No| No | Yes | Some| $$ | Yes | Yes Thai 0—10 || ysg = Yes
Xg No | Yes | Yes | No | Full $ Yes | No | Burger | > 60 Y9 = No
X10 Yes | Yes | Yes | Yes | Full | $$$ | No | Yes | Italian | 10-30 || Y10 = No
X11 No | No | No | No | None $ No | No Thai 0—10 || Y11 = No
X1 Yes | Yes | Yes | Yes | Full $ No | No | Burger | 30-60 || Y12 = Yes
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Decisions

A decision splits the training dataset into classes.
Relative to the previous dataset, a decision over the Type attribute leads to:

Russell&Norvig

WillWait = Yes 1 3 4 6 8 12
WillWait = No HEHKE I [
Type?
Fremrger
1 6 4 8 3 12

5 i HIiil |H[E

Split again each leaf according to another attribute....
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Which attribute to use? Or: how to split?

: . 1 3 4 6 8 12
We split first according to Patrons:
found two cases where we can take a HH 9 J10f11

decision. Attributel | Patrons?

In the case (Patrons=Full) we cannot  None A\:ull

take a decision and split again based on 1 /8 6 8 4 12

Cp
Hungrys HHEIDL
: : : Yes Attribute2 | Hungry?
How can we decide which attribute to m e Iy
Decision reached Decision reached
use at each step? N(/\Yes
4 12

Russell&Norvig
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Entropy

We introduce the concept of entropy from information theory (C. Shannon, 1949).

We can associate an entropy to a random variable: the more information it contains,
the smaller 1s the entropy. Often the entropy 1s measured 1n bits of information.

Examples:
1) A random variable which returns always the same value must have entropy = 0
2) A fair coin has entropy = 1bit (the information 1s only one: head or tail).

Definition:
If a random variable R has values rk with probability P(rk), the entropy H 1s
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Entropy

Particular case: Entropy for a boolean variable:

H=—-plog,p— (1 —-p)log,(1—p)
Example: fair coin:

H=-0.510g,0.5 -0.510g,0.5 = —-10g,0.5 = 1 bit

[f a training set contains P positive cases and N negative cases, the (estimated)
probability of a positive case 1s pen = P/(P+N) and thus the entropy 1s:

H = H(prn)
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Information Gain (1)

e The result of a test on a random variable will result in some acquired knowledge
and this leads to an entropy reduction.

e [f an attribute A has d different values, the training set 1s divided 1n subsets Ex each
of which has probability pk = Pix/(Px+Nk), where P and N are like before the
positive and negative cases, respectively.

e [f we follow the k-branch of the tree, then the entropy of the dataset in the node 1s
H=H(px) while the entropy of the whole dataset 1s H=H(p).

e A randomly chosen example from the dataset has a probability (Px+Nxk)/(P+N) to
belong to the subset Ex.
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Information Gain (2)

We define the information gain as:

+n
Pk kH Pk

k k

/ l keVal(D) l
Dataset . . \
Entropy relative Probability of a randomly chosen
to the attribute A example. Or: probability to be in Entropy of the
Ex. Or: proportion of examples in subset Ex
A with value k.

The IG quantifies the reduction of entropy (or the information gain) for each choice
of the attribute value (or: splitting the dataset according to A).
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Information Gain (3)

Example from the restaurant choice (see before):

1 3 4 6 8 12

HEHEKE D
Patrons?
’ 'Noﬁémun
Gain(Patrons) = 1 ZH(O) 4H(4) 6H(2) 0.54 bit ; . |11 /8 |6 (8 4 12
ain(Patrons) = 1 — |— — — ~ U. 1S '
12 12 12 ; : BEEHHD
E ': Yes Hungry?
Nc/\Yes
Splitting the sample according to Patrons will lead to a 0.54 4 12
bits of information gain. If you repeat the calculation for Type, - HE HI
you will get zero (check!). —> Patrons is a better variable to Russell&Norvig

use first (maximum information gain).

Luca Doria, KPH Mainz Introduction to Al



Training a Decision Tree

function DECISION-TREE-LEARNING(exzamples, attributes, parent_examples) returns
a tree Selects most common

output value among an
examples set, breaking
ties randomly.

if ezamples 1s empty then return PLURALITY-VALUE(parent_examples)
else if all examples have the same classification then return the classification
else if attributes 1s empty then return PLURALITY-VALUE(examples)
else
A «—argmax, ¢ giributes IMPORTANCE(a, examples) Max Gain
tree «— a new decision tree with root test A
for each value vi. of A do
exs «— {@ : &€ examples and e,A = v}
subtree «— DECISION-TREE-LEARNING(ezxs, attributes — A, examples) Recursion
add a branch to tree with label (A = ;) and subtree subtree
return tree

The output of the training will be a sequence of splittings induced by a sequence of attributes, chosen with the
criterium of maximum information gain. Ideally, the tree resulting from the training should be the smallest one. In 1ts
generality, the problem 1s intractable, but with the previous heuristics (splitting first with attributes giving the
maximum information gain), a good result can be found.
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Training a Decision Tree
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Output Example

Patrons?

None Some Full

No
No Yes

No

French ltalian Thal Burger

“No FiSat?
No Yes

Yes

No Yes
Russell&Norvig
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Fitting

General problem: find a function which fits data points (the “examples™).
Example: linear fit:

0{ a=0.0342 * %S
| b=09993 . ,./’,9/:: . - Zi yi Zi xiz — Zi X Zi xiyi
B NY;x?— (Tix)7
=k 'gjﬂ.
of ’;fg;”f/ ' b N ixiyi—)iXi) Vi
5 - ///’ ¢ B - 2 2
N ,;*.o o® y—aX+b N ZZ xl — (ZZ xl)
6 Sl 1'0 1l5 2'0 2‘5 3'0

X

Problem: did we choose the correct function?
Is the function too simple or too complex?
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Overfitting

1) Jx)
A Linerar Fit A 5th-deg. polynomial
O © ” O - R
O O
O O
O © Q.~O
b X

In the left-case, the line seems to describe the points.

In the right case, the line generically describes the points but a more complex
function interpolates them.

Problem: are the points on a straight line + *“noise” or are they really coming from a
Sth-order polynomual.

If not, the Sth-order polynomial 1s just “learning noise”, or overfitting!
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Avoiding Overfitting in DTs

In general:

- Likelihood of overfitting increased with more attributes (parameters)
- Likelihood of overfitting decreases with more examples.

For DTs: Pruning Technique

- Eliminate a tree’s node 1f 1t splits the sample 1n subsets with similar proportions of
positives.

- This means a small Gain.

- How small?
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DT Pruning (1)

- Use a statistical significance test.

- Null hypothesis: the attribute 1s irrelevant and the gain 1s zero (for an infinite set).

- Can we reject statistically the null hypothesis?

- We would like to calculate the probability that under the null hypothesis a sample
with s1ze N=p+n exhibits the observed deviation from the expected distribution of
positive and negative examples.

- Expected positives and negatives:

. Py + 1y, . Py + 1y
p=p——r i =n—-—

p+n p+n

These are the expected numbers assuming the null hypothesis, 1.¢. 1irrelevance of
the attribute.
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DT Pruning (2)

For assessing the deviation from the hypothesis we can use the y* measure:

1=

2

1 Pr My

0.25

d A N2 A N2 2
— n,—n O — L.
i E;

l

0.20

The last variable 1s distributed following the

y* distribution with d-1 degrees of freedom
which can be wused for calculating the oo
significance.

0.15

Probability that the y? is
larger than the one found.

0.05

0.00
0 6.25
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DT Pruning (3)

Examp le 80 data points
Expected =
+ n 40
ﬁzppk £ =40 x — = 20...and so on..
p+n 30
_ 30 positive 10 positive B
Observed =40  <—— 10 negative 30 negative —> Observed =40

A2 AN
_ (30 — 20) N (10 — 20) _

)(j 10 d=2 —> Integrate a chi-square distribution for 1
20 20 degree of freedom. Integral = 3.8 < 10 : no puning.
If the integral were > 3.8: prune the node.
. (10=20 (30 —20) = P
= T o0

20 20
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Boosting: Boosted Decision Trees

Basic 1dea of boosting:
Examples that are wrongly classified by the current model are given more weight, so
another model will focus more on these hard cases.

A boosting algorithm: AdaBoost (Adaptive Boosting, Ensemble L.earning Algorithm)

1) Initialize Weights: Each observation in the training dataset 1s assigned an equal
weilght mitially.

2) Traimn a “weak learner” (small tree) on the weighted dataset.

3) Calculate error: total weight of the misclassified examples.

4) Compute the weight of the weak learner based on 1ts error (lower error, higher
weights)

5) Update weights: increase weights of misclassified examples.

6) Combine the weak learners: the model 1s a weighted sum of the learners.
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AdaBoost (more details)

- Assign weight wi to the 1-th example 1n the dataset.
- Train the weak learner h; on the weighted dataset (often a tree with 1 level).

- Calculate the error of the misclassified examples: e, = Z w; - I(y; # h(x,))

1 1 —e
- Weight for the weak learner: a; = 5 log ( t): low error — high weight
€t

- Update weights (BOOSTING): w/*! = wle®’ and normalise: w/*t' = w*!/( Z with

l

- Final model (weighted sum): H(x) = sign ( Z atht)
[
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Boosting Algorithms

e AdaBoost 1s powerful because effectively reduces bias and variance.

e |t can be sensitive to noisy data and outliers since these can receive very high

weights.

e Boosting can significantly improve the predictive accuracy of the model.
e Boosting can overfit, but in general 1t 1s more robust to overfitting compared to
other methods.

e Other boosting procedures exist (e.g. Gradient Boosting)
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Support Vector Machines

Before a suitable HW was available to train large neural networks (~2000s), support
vector machines enjoyed big popularity.

Advantages:

- Can work on non-linear separation problems

- Computationally simple and fast to train

- Avoid/reduce the multiple-minima problem typical of NNs.

Idea: margin maximisation
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Support Vector Machines

T9 Class 1 e In th.i]:s)lexample, a linear separation 1s
possible.

e We define the plane w - X = b

e Find the vector w that maximises the
margin.

e Commonly, the output of an SVM 1s
+1 or -1, corresponding to the two
classes:

Class 1: wx-b=+1 (Plane 1)
Class 2: wx-b=-1 (Plane 2)

/\\ p s Distance between the planes: 2/||w]| .
2 L adapted from: Wikipedia We would like to maximise it.
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Support Vector Machines

Starting point: decision function f(x) = wx + b

1

Minimization problem: vallgl 9 |w H2

yi(w-x; +b) > 1 forall:

1 -
“Soft-margin” case: qulgrgl 5 ||'wH2 +C zzzl §i

yi(w-z; +b) >1—-¢& foralls
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Support Vector Machines

Lagrangian formulation:

L(w,b,¢, a, B) = —Hw||2+02& Zaz[yz w-zi+b) — 1+&] - Zﬁz@
l
l Lagrange multipliers Lagrange multipliers

D <l

Constraints

Function to minimise
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Support Vector Machines

Minimization:
BL n mn
v W — Zaz‘yz‘fﬂi =0 = w= Zaz‘yz‘fci
w
i=1 i=1
OL -
B = 2o =
i=1
0L
:C_az_ﬁz: = az:C_/Bz
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Support Vector Machines

Substituting 1n the original lagrangian we get the dual representation:

1 n n n
L(w,b,f,a,ﬁ) — 5 (Z azyz$z) ) (Z ajy]'mj) — Zaz[y’L(w  Tj T b) — 1+ ‘gl]
i—1 j=1 i—1

1 n n

— 5 Z Z QY Y (:Bz . 33]-) — Z o7
i=1 j=1 l 1=1

Notice the dot-product: relevant for the “Kernel trick”, see next slides.
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Support Vector Machines

mn n T
S 1
Dual minimisation problem: max Z o > Z Z ;oYY (T - x;)
- i=1 j=1
with constraints: 0<q; <(C forallz

i a;y; =0
i—1

This 1s a quadratic optimisation problem: many algorithms exist for solving it.
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Support Vector Machines

T
Once the previous QOP 1s solved: W = Z QA Yi Ly
i=1

b= yr — Z Oéiyz'(ivz' ° ka)
i=1

Decision function: f(x) = sign (Z a;yi(x; - x) + b)
i—1
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Support Vector Machines

The “Kernel Trick™:

When the data are not linearly separable, we can transform 1t into an higher-
dimensional space applying a kernel to the input vectors. In the higher-dimensional

space, the data might be (better) separable.
Commonly used kernes are: el

o LinearKernel: K (z;,z;) = z; - x;

e Polynomial Kernel: K (z;, x;) = (z; - ¢; + l)d adapted from: wﬁ}ipéc
» Radial Basis Function (RBF) Kernel: K (z;, z,;) = exp(—/||z; — z;||?)

e Sigmoid Kernel: K (z;, z;) = tanh(az; - z; + c)
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Summary

Two machine learning algorithms: Decision trees and Support Vector Machines

e The notion of information gain and entropy can be used for decision trees.

e Branch pruning and boosting can significantly improve DTs.

e SVMs are efficient classifiers.

e Computationally affordable (with lIimits).

e Based on a well-known quadratic optimisation problem.

e Quite good for high-dimensional problems (many features).

e The application to a kernel 1nstead of a dot-product can generalize them to non-

linearly separable problems.
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