
© Laurent / Adobe Stock

Introduction to Artificial Intelligence
12b: Machine Learning

Luca Doria, KPH Mainz

Luca Doria, KPH Mainz Introduction to AI 2

Neural Networks
• Long history, with “ups” & “downs”:

• N. Rashevsky (1030s): likely the first works on neural learning

• McCullochs and Pitts (1943)

• M. Minsky and Papert : first working neural hardware (1951)

• The perceptron (F. Rosenblatt, 1957)

• First multi-layer networks: 1960s

• Book: Perceptrons by Minsky&Papert: 1 layer can only do linear separations!

• Starting from the 1960s: many “discoveries” of back propagation

• 1980s: multilayer networks are universal approximations (G. Cybenko’s theorem)

• 2000s: SVNs and Bayes networks shadowed NNs

• >2010s: deep learning revolution (+big data, +hardware)

Luca Doria, KPH Mainz Introduction to AI 3

The Perceptron
The Rosenblatt’s perceptron:

w1

w2

wn

….. ∑

Activation function

Threshold

Sum

z y

Learning (iterative algorithm):

“0”

“1”

: learning rateη

Luca Doria, KPH Mainz Introduction to AI 4

Example: XOR, a linearly non-separable problem

AND 0 1 OR 0 1 XOR 0 1

0 0 0 0 0 1 0 0 1

1 0 1 1 1 1 1 1 0

Luca Doria, KPH Mainz Introduction to AI 4

Example: XOR, a linearly non-separable problem

AND 0 1 OR 0 1 XOR 0 1

0 0 0 0 0 1 0 0 1

1 0 1 1 1 1 1 1 0

Luca Doria, KPH Mainz Introduction to AI 4

Example: XOR, a linearly non-separable problem

AND 0 1 OR 0 1 XOR 0 1

0 0 0 0 0 1 0 0 1

1 0 1 1 1 1 1 1 0

Luca Doria, KPH Mainz Introduction to AI 5

The Solution: Multi-Layer Perceptrons

w1

w2

wn

….. ∑

Activation function

Threshold

Sum

z y
Combine Perceptrons in
a layered structure: a
Neural Network.

Output Layer
Input Layer

Hidden Layer

Luca Doria, KPH Mainz Introduction to AI 6

Activation Functions
<latexit sha1_base64="lQLZZnt+Ps90CW1k3MEdgV7Ohak=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiCGJJRNSNUHTjsoJ9QBvLZDpph04ezEzEELPwV9y4UMStv+HOv3HaZqGtBy4czrmXe+9xI86ksqxvozA3v7C4VFwurayurW+Ym1sNGcaC0DoJeShaLpaUs4DWFVOctiJBse9y2nSHVyO/eU+FZGFwq5KIOj7uB8xjBCstdc2d5KLjCUxSO0ttdIjoXXr0kGVds2xVrDHQLLFzUoYcta751emFJPZpoAjHUrZtK1JOioVihNOs1IkljTAZ4j5taxpgn0onHd+foX2t9JAXCl2BQmP190SKfSkT39WdPlYDOe2NxP+8dqy8cydlQRQrGpDJIi/mSIVoFAbqMUGJ4okmmAimb0VkgHUcSkdW0iHY0y/PksZxxT6tWDcn5eplHkcRdmEPDsCGM6jCNdSgDgQe4Rle4c14Ml6Md+Nj0low8plt+APj8wfVRJVX</latexit>

y =
1

1 + e�x

<latexit sha1_base64="zr9XAOP3URV7yK5zgzbFcUs4hVU=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoMQL2FXRL0IQS8eI5gHZEOYnUySIbOzy0yvGJb8hhcPinj1Z7z5N06SPWhiQUNR1U13VxBLYdB1v53cyura+kZ+s7C1vbO7V9w/aJgo0YzXWSQj3Qqo4VIoXkeBkrdizWkYSN4MRrdTv/nItRGResBxzDshHSjRF4yilfwxuSY+UjUsP512iyW34s5AlomXkRJkqHWLX34vYknIFTJJjWl7boydlGoUTPJJwU8Mjykb0QFvW6poyE0nnd08ISdW6ZF+pG0pJDP190RKQ2PGYWA7Q4pDs+hNxf+8doL9q04qVJwgV2y+qJ9IghGZBkB6QnOGcmwJZVrYWwkbUk0Z2pgKNgRv8eVl0jireBcV9/68VL3J4sjDERxDGTy4hCrcQQ3qwCCGZ3iFNydxXpx352PemnOymUP4A+fzB5UrkL0=</latexit>

y = tanh(x)

<latexit sha1_base64="QuD5FDtYf0ov7lTpZ/OfeMEU9Io=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpRERL0IRS8eK9gPaEPZbDft0s0m7m5KQ+jv8OJBEa/+GG/+G7dtDtr6YODx3gwz87yIM6Vt+9vKrayurW/kNwtb2zu7e8X9g4YKY0lonYQ8lC0PK8qZoHXNNKetSFIceJw2veHd1G+OqFQsFI86iagb4L5gPiNYG8lN0A3qBHhcts/Gp91iya7YM6Bl4mSkBBlq3eJXpxeSOKBCE46Vajt2pN0US80Ip5NCJ1Y0wmSI+7RtqMABVW46O3qCTozSQ34oTQmNZurviRQHSiWBZzoDrAdq0ZuK/3ntWPvXbspEFGsqyHyRH3OkQzRNAPWYpETzxBBMJDO3IjLAEhNtciqYEJzFl5dJ47ziXFbsh4tS9TaLIw9HcAxlcOAKqnAPNagDgSd4hld4s0bWi/Vufcxbc1Y2cwh/YH3+AK8XkL4=</latexit>

y = max(0, x)
<latexit sha1_base64="PAOT9ivvVL1+/H5lbm86D0i+/4s=">AAACDHicbVDLSsNAFJ34rPVVdenmYhHqpiQiKoJSdOOygn1AE8pkOmmHTiZhZiItoR/gxl9x40IRt36AO//GaZuFtt7V4Ty49x4/5kxp2/62FhaXlldWc2v59Y3Nre3Czm5dRYkktEYiHsmmjxXlTNCaZprTZiwpDn1OG37/Zqw3HqhULBL3ehhTL8RdwQJGsDZUu1AcwiW4KQzgCmxwR3ABpQG4JgYu5nEPw+DIuOyyPRmYB04Giiibarvw5XYikoRUaMKxUi3HjrWXYqkZ4XSUdxNFY0z6uEtbBgocUuWlk2dGcGiYDgTmgCASGibs70SKQ6WGoW+cIdY9NauNyf+0VqKDcy9lIk40FWS6KEg46AjGzUCHSUo0HxqAiWTmViA9LDHRpr+8KcGZfXke1I/LzmnZvjspVq6zOnJoHx2gEnLQGaqgW1RFNUTQI3pGr+jNerJerHfrY2pdsLLMHvoz1ucPrreYQA==</latexit>

y = {x > 0} : (x _ ↵x)

<latexit sha1_base64="3QXCUN0H6L37weQci3IAPxt0C7E=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4ComIehGKXjxWsB/QhjLZbtqlm03c3RRK6e/w4kERr/4Yb/4bt20O2vpg4PHeDDPzwlRwbTzv21lZXVvf2CxsFbd3dvf2SweHdZ1kirIaTUSimiFqJrhkNcONYM1UMYxDwRrh4G7qN4ZMaZ7IRzNKWRBjT/KIUzRWCkgbRdpHckM81++Uyp7rzUCWiZ+TMuSodkpf7W5Cs5hJQwVq3fK91ARjVIZTwSbFdqZZinSAPdayVGLMdDCeHT0hp1bpkihRtqQhM/X3xBhjrUdxaDtjNH296E3F/7xWZqLrYMxlmhkm6XxRlAliEjJNgHS5YtSIkSVIFbe3EtpHhdTYnIo2BH/x5WVSP3f9S9d7uChXbvM4CnAMJ3AGPlxBBe6hCjWg8ATP8ApvztB5cd6dj3nripPPHMEfOJ8/aP6Qjw==</latexit>

↵ = 0.1

Luca Doria, KPH Mainz Introduction to AI 7

Training a Multi-Layer Perceptron
Idea: reduce the prediction error of the NN

<latexit sha1_base64="J13PeEQK2FMJwXyRdjRiy1T24Ro=">AAACEHicbVA7T8MwGHTKq5RXgJHFokKUgSpBCBgrEBIDQ5HoQ2pC5LhOa9WJI9tBraL+BBb+CgsDCLEysvFvcNMMUDjJ8unu+2Tf+TGjUlnWl1GYm19YXCoul1ZW19Y3zM2tpuSJwKSBOeOi7SNJGI1IQ1HFSDsWBIU+Iy1/cDHxW/dESMqjWzWKiRuiXkQDipHSkmfuX0InFjxWHDoyCb0hdJpEKDiqDA8O0d21vjLBM8tW1coA/xI7J2WQo+6Zn06X4yQkkcIMSdmxrVi5KRKKYkbGJSeRJEZ4gHqko2mEQiLdNAs0hnta6cKAC30iBTP150aKQilHoa8nQ6T6ctabiP95nUQFZ25KozhRJMLTh4KEQR1/0g7sUkGwYiNNEBZU/xXiPhIIK91hSZdgz0b+S5pHVfukat0cl2vneR1FsAN2QQXY4BTUwBWogwbA4AE8gRfwajwaz8ab8T4dLRj5zjb4BePjG7emm8A=</latexit>

E /
X

x

ky(x)� aL(x)k

Layer L

x1

x2

x3

Layer L-1….

We can calculate the error on the output layer L and then adjust the NN weights
such that the error is minimised. How?

Luca Doria, KPH Mainz Introduction to AI 8

Backpropagation

• This algorithm was re-“discovered” several times in the past:

- P. Werbos (1974): maybe the first application to NNS

- D. Rumerlhart, G. Hinton, R. Williams (1986): Nature paper, heuristic

presentation

- G. Cybenko (1988,1989): mathematical proof that FFNNs are universal function

approximators.: “any continuous function on the unit cube can be uniformly

approximated by a one layer network with an arbitrary continuous sigmoidal

nonlinearity.”

- From the 1980s to the 1990s NN research grew by a factor > 100.

Luca Doria, KPH Mainz Introduction to AI 9

Backpropagation

• It is essentially based on the mathematical operation of derivative of composite

functions.

• The idea is to calculate the error on layer L and then proceed backwards

modifying the weights of layer L-1, then L-2, and so on for minimising the error.

• Two phases:

- Feed forward: propagate the input data forward calculate the NN output.

- Backpropagation: propagate the error backwards and minimise it.

Luca Doria, KPH Mainz Introduction to AI 10

Definitions

Commonly used error (root mean square):

Weights:

Neuron output:

Vectorization:

C =
1
N ∑

x

∥y(x) − aL(x)∥2

wl
jk

al
j = f (∑

k

wl
jka

l−1
k + bl

j)
al = f (wlal−1 + bl)

Layer

k-th neuron connecting with layer j

w3
23

argument of f: zl
j

Luca Doria, KPH Mainz Introduction to AI 11

Backpropagation Equations (1)
We have to calculate the derivative of the error with respect to the variables of the NN.

Ideally, the should start evaluating the change of C with respect to the last neurons’
outputs a, but it is algebraically easier to show the change with respect to z.

The change in error of the last layer L is:

δL
j =

∂C
∂zL

j
= ∑

k

∂C
∂aL

k

∂aL
k

∂zL
j

=
∂C
∂aL

j

∂aL
j

∂zL
j

=
∂C
∂aL

j
f′￼(zL

j) (Eq. 1)

- Einstein convention

- if k j this is zero, so put k=j≠

Derivative of the activation function.
C depends from a which depends from z

Luca Doria, KPH Mainz Introduction to AI 12

The error of the last layer can be directly calculated from the NN output. Now we
have to “backpropagate”, i.e. find the error for the other layers:

Backpropagation Equations (2)

δl
j =

∂C
∂zl

j
=

∂C
∂al+1

k

∂al+1
k

∂zl
j

=
∂zl+1

k

∂zl
j

δl+1
k =

∂
∂zl

j [∑
i

wl+1
kj al

j + bl+1
k] δl+1

k ⇒

⇒ δl
j = wl+1

kj δl+1
k f′￼(zl

j) (Eq. 2)

Luca Doria, KPH Mainz Introduction to AI 13

Backpropagation Equations (3)
With an analogous calculation, we can calculate the change of C with respect to the
bias factors b:

∂C
∂bl

j
= δl

j

Interestingly, this results equal to a quantity which we calculated already.

The last result, also obtained with a similar chain-derivatives calculation is

(Eq. 3)

∂C
∂wl

jk
= al−1

k δl
j (Eq. 4)

which is also dependent from known quantities.

Luca Doria, KPH Mainz Introduction to AI 14

Learning with Backpropagation
1) Feed-forward: ⃗x → a1

∀l zl = wlal−1 + bl

2) Backpropagation: δL = ∇aC ⊙ f′￼(zL)

δl = (wl+1)Tδl+1 ⊙ f′￼(zl)

∂C
∂wl

jk
= al−1

k δl
j

∂C
∂bl

j
= δl

j

3) Gradient descent

(or other opt. alg.)

∀l

∀l

∀l

∀l

wl → wl −
η
N ∑

x

δx,l (ax,l−1)T

bl → bl −
η
N ∑

x

δx,l

⊙ : Hadamard "element-wise" product

(Eq. 1) (Eq. 2)

(Eq. 3) (Eq. 4)

Luca Doria, KPH Mainz Introduction to AI 15

Example

A FFNN learning the function f(x,y)= ax3 + by3 + cxy

NN architecture: 2-64-64-1, Training points: 1000, epochs = 100, ReLu tr. functions.

Luca Doria, KPH Mainz Introduction to AI 16

Language Models
Main phases:

- Tokenization

- Embedding

- Attention mechanism

- (Recurrent, FF, …) Neural network

- Prediction

Different uses: e.g. translation, generation of content, …

Luca Doria, KPH Mainz Introduction to AI 17

Zipf’s Law, or why LMs are a difficult problem
Zipf’s Law (1935): the frequency of the n-th
most frequent word is inversely proportional to n:

The law has statistical nature and points to a “data
sparsity” problem: since NNs require large
training sets, some words will always appear with
low statistics.

Frequency ∝
1

Rank

Wikipedia

Luca Doria, KPH Mainz Introduction to AI 18

Tokenization
Tokenization is a fundamental preprocessing step in LLMs: the text is broken down
into smaller units called tokens. Tokens can be words, subwords, characters, or other
meaningful units. The tokenization method can significantly impact the performance
of LLMs.

Example from the Natural Language Toolkit (https://www.nltk.org/):

import nltk

sentence = "Please tell me how to tokenize this sentence."

tokens = nltk.word_tokenize(sentence)

print(tokens)

OUTPUT:

['Please', 'tell', 'me', 'how', 'to', 'tokenize', 'this', 'sentence', '.']

Another interesting resource: https://github.com/huggingface/transformers

Luca Doria, KPH Mainz Introduction to AI 19

Embedding

from gensim.models import Word2Vec

sentences = [["the", "cat", "climbed", "on", "the", "roof"]]

model = Word2Vec(sentences, vector_size=10, min_count=1)

vector = model.wv['cat'] # vector representation of "cat"

print(vector)

There are many methods for associating a number/vector to a word/token.

The simplest way is just to associate an integer to each word of a vocabulary.

Better algorithms (like Word2Vec for example) use (shallow) neural networks for
realising a very convenient mapping. An example from the gensim library:

The mapping is about linear in related words (“close” words have “close” vectors), so you can
realise code like:

vec(“New England Patriots”)-vec(“New England”)+vec(“Seattle”)=~vec(“Seattle Seahawks”)

Luca Doria, KPH Mainz Introduction to AI 20

Attention Mechanism
The attention mechanism allows the model to focus on different parts of the input
sequence when producing each element of the output sequence.

1) Assume we have an input sequence with n elements, each represented as a
vector. Let’s denote these vectors as x1, x2, …

2) For each input vector xi the model computes three vectors:

- Query (Q)

- Key (K)

- Value (V)

These vectors are computed by multiplying the input vector xi by three weight
matrices: Qi = WQxi , Ki = WKxi , Vi = WVxi .

Luca Doria, KPH Mainz Introduction to AI 21

Attention Mechanism
Meaning of the vectors:

You can look at something you would like to understand from a book: this is the
query. You can look at “tags” in each paragraph of the book which could be relevant:
these are the keys. You can assign an attention score (see next slide) to each
paragraph for ranking how useful they were for you in understating the concept, or:
how well the key matches the question. You then read the content (the “value”) of the
most relevant paragraphs, paying more attention to the ones with higher scores.

More concretely: the query is a word at hand, the keys are the other words and the
value is assigned to each key. The value helps you in choosing the best next word.

Luca Doria, KPH Mainz Introduction to AI 22

4) Attention Scores: For each query vector Qi, the model computes a score against
each key vector Kj in the input sequence. This score determines how much attention
the model should pay to the corresponding value vector Vj when processing xi

The scores are computed using a similarity measure, often the dot product:

5) Softmax: The raw attention scores are then normalized using the softmax
function to convert them into probabilities:

score(Qi, Kj) = Qi ⋅ Kj

Attention Mechanism

Represents the attention weight that the model
assigns to the value vector Vj when producing
the output for the input xi .

Luca Doria, KPH Mainz Introduction to AI 23

Attention Mechanism
6) Weighted Sum: The output for each input xi is computed as a weighted sum of the
value vectors, where the weights are the attention scores:

This is the output of the attention
mechanism algorithm.

Luca Doria, KPH Mainz Introduction to AI 24

Attention Mechanism: Example
Consider the sentence: “I love AI”.

Let’s take the simple encoding: I=(1,0,0) ; “love”=(0,1,0) ; “AI” = (0,0,1) , or:

<latexit sha1_base64="/PGsw7UXTr/vtpOT1DshrIBW2Ak=">AAACc3icdVHBTttAEF0baCHQNlCJSw4dERrRQyO7QoULUlou9AYSAaQ4itabcbLKem3tjlEjKz/A5/XWv+il966DDy0pI4327ZuZN7szca6kpSD46flr6xsvXm5uNbZ3Xr1+09zdu7FZYQT2RaYycxdzi0pq7JMkhXe5QZ7GCm/j2XkVv71HY2Wmr2me4zDlEy0TKTg5atR8+A5nEClM6AiiGCdSl9wYPl+UYgHfIIpAZfdYnV+qW4R6XCdERk6m9OHZcuEEQuhAsHQnEHTCTg0cXFUaNdtBN1garIKwBm1W2+Wo+SMaZ6JIUZNQ3NpBGOQ0dKIkhcJFIyos5lzM+AQHDmqeoh2Wy5kt4L1jxpBkxrkmWLJ/V5Q8tXaexi4z5TS1T2MV+b/YoKDkdFhKnReEWjw2SgoFlEG1ABhLg4LU3AEujHRvBTHlhgtya2q4IYRPv7wKbj51w8/d4Oq43ftaj2OTtdgBO2IhO2E9dsEuWZ8J9svb99554P32W/6Bf/iY6nt1zVv2j/kf/wCnWbjJ</latexit>

x =

0

@
I

love
AI

1

A =

0

@
1 0 0
0 1 0
0 0 1

1

A

Assume some starting value for the weight matrices (to learn later):

Luca Doria, KPH Mainz Introduction to AI 25

Attention Mechanism: Example

Calculate the Q,K,V vectors:

Calculate the score for the word “I”

Do the same for “love” and “AI”.

Softmax the scores (renormalize) and calculate the weighted sum for each word.

Luca Doria, KPH Mainz Introduction to AI 26

Attention Mechanism: another viewpoint
We have a database D made of couples {ki,vi} = {key, value}.

Given a query q (a word/token), we can consult D and calculate:

Sometimes this operation is called pooling.

The weights are calculated with the softmax operation, which is always
differentiable and with a non-vanishing gradient, thus well adapted for learning
algorithms.

Note that if all the weights are zero but one, the attention operation is similar to a
DB query.

Attention(q, D) = ∑
i

α(q, ki)vi

α

Luca Doria, KPH Mainz Introduction to AI 27

Attention Mechanism visualised

…
..

…
..

…
..

Query q

Keys
Weights

Values

k1

k2

kn

v1

v2

vm

Attention

(Pooling)

…..
A(q,D)

α(q, k1)

α(q, k2)

α(q, kn)

Luca Doria, KPH Mainz Introduction to AI 28

Attention Mechanism: Another Example

Heute

esse

ich

pizza

Oggi io mangio pizza

Attention matrix for a NN translator

Query

Attention scores for the translation

Luca Doria, KPH Mainz Introduction to AI 29

Digression: Recurrent Neural Networks
RNNs are a type of NNs well suited for processing sequential data. Unlike FFNNs,
RNNs have connections forming directed cycles, allowing the persistence of a hidden
state that captures information about previous elements in the sequence. RNNs are
used in tasks like language modelling, automatic translation, and time series
prediction.

The output of an RNN layer depends from previous data, e.g.:

W

ht-1

Luca Doria, KPH Mainz Introduction to AI 30

Recurrent Neural Networks: Simple Example

Time sequence: sinus function.

1000 epochs training, 50 neurons.
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

Generate data: sinus function
data = np.linspace(0, 2 * np.pi, 100)
target = np.sin(data)

Reshape data for RNN input

data = data[:, np.newaxis]

target = target[:, np.newaxis]

Define the RNN model
model = tf.keras.Sequential([
 tf.keras.layers.SimpleRNN(50, input_shape=(1, 1)),
 tf.keras.layers.Dense(1)
])

model.compile(optimizer='adam', loss='mse')
history = model.fit(data, target, epochs=1000, verbose=1)
predicted = model.predict(data)

Luca Doria, KPH Mainz Introduction to AI 31

Recurrent Neural Networks: Simple Example

50 Epochs 1000 Epochs

RNNs converge slowly in general and suffer the “vanishing gradient” problem.

Luca Doria, KPH Mainz Introduction to AI 32

The Transformer Architecture
Self-attention mechanism: the attention is applied within a sentence. For each word
in the input sequence, self-attention computes attention scores based on how much
each word contributes to the representation of the current word.

Attention can “average out” some important information. This problem is alleviated
with multi-headed attention: the sentence is divided in M pieces and attention is
applied to each one. The results are concatenated instead of summed.

Positional encoding is added for imitating what a RNN can do (Transformers do not
use RNNs).

A FFNN is used after attention, mostly with ReLu layers and residual connections
for avoiding the vanishing gradient problem.

Luca Doria, KPH Mainz Introduction to AI 33

The Transformer Architecture

INPUT:

Explain me how a NN works

Tokenization

Embedding

Pos. Encoding
Attention

FFNN

Attention

FFNN
SoftMax
……

OUTPUT:

NNs are

important,

because…

Transformer Module Transformer Module

Luca Doria, KPH Mainz Introduction to AI 34

LLMs Summary (1)
Language models require many building blocks:

Tokenization, Embedding, Attention, (recurrent)
neural networks.

The exact architectures of popular LLMs are not
disclosed (also training set and fine-tuning methods).

A simple RNN is not enough: RNNs tend to give
more weight to the present data and forget about
previous (likely important) information: more
complex architectures and attention mechanisms are
required: Transformers (FFNN-based).

Modern LLMs use variants of the Transformer
model.

Luca Doria, KPH Mainz Introduction to AI 35

LLMs Summary (2)

Note how from the RNN paradigm, LLMs shifted to FFNNs+Attention.

RNNs constituted the first attempt at solving language-based problems, but they
ran into different issues:

- Process only 1 data at a time: hard to implement parallelism,

- Difficult to remember initial words,

- Difficult to relate distant words

- Last two problems only partially solved by LSTM networks.

Transformers solved the attention and speed problems at the same time.

