
© Laurent / Adobe Stock

Introduction to Artificial Intelligence

3: Solving by Searching

Luca Doria, KPH Mainz

Luca Doria, KPH Mainz Introduction to AI 2

Problem-Solving Agents

• Agents can better solve problems by planning ahead.

• Planning might imply looking for possible solutions —> Search Problem.

• A search can be informed or uninformed.

Goal-based agents:

- problem described as a state-space and goal(s).

- Goal can be reaching a specific state thought appropriate actions.

- Search a specific action sequence and execute the actions.

Luca Doria, KPH Mainz Introduction to AI 3

A Search Problem

Vancouver
Calgary

Edmonton

Saskatoon

Regina

Winnipeg
Sudbury

Ottawa

Toronto

Montreal

Quebec City

Halifax

Whitehorse Yellowknife

14
00km

24
00

km

970km

30
0k

m

760km
570km

780km

520km

1600km

400km
40

0k
m

480km
200km

26
0k

m

1200km

Luca Doria, KPH Mainz Introduction to AI 4

Problem Specification

V C

E S

R W S O

T
M

Q

H

W Ye
1

2

9

3

7 5
7

5

1

4 4
4 2

2

1

Specifications for the Canada Trip case:

A set of states (the cities and their distances)

The initial state (initial city)

A set of goal states (final city, final city with shorter trip, …)

Actions: ACTION(Ottawa) = {toSudbury, toToronto, toMontreal}

A transition model: RESULT(state,action)=state —> e.g.: RESULT(Ottawa,toMontreal)=Montreal

An action-cost function ACTION-COST(state, action,state)—>

 e.g. ACTION-COST(Ottawa,toMontreal,Montreal)=200

Specifications for the “vacuum-cleaner problem”:

Set of states: Where is the VC, is(are) the square(s) dirty?

Initial state, Set of goal states: all the squares must be clean.

Actions: MoveDX, MoveDS, on, off

Action cost: e.g. 1.

Luca Doria, KPH Mainz Introduction to AI 5

The State-Space Graph
R
L

L L

L

R R

R

L

L

L

R L
R

SS

S S

S S

S S

8 states = (2 cells)x(L dirty?)x(R dirty?) = 2x2x2. For an n-cells problem: nx2n states.

The state space can become quickly very large!

The environment is
completely observable:
search a direct path.

Luca Doria, KPH Mainz Introduction to AI 6

Another Example Given by D. Knuth (1964)

The state-space can be even infinite!

Problem: starting from the integer number 4, reach a certain integer x using the
factorial, floor, and square_root operations only.

Initial state: 4.

State space: all the positive real numbers.

Actions: Apply sqrt(), floor(), factorial().

Transition model: as defined by the allowed mathematical operations.

Goal: x.

Action cost: 1.

Knuth’s example: starting from 4, the shortest path to 5 is: (!)

<latexit sha1_base64="kAnFI09wIvf2sAZcfO/kZwIU8cY=">AAACL3icdVDLSgMxFM34tr5GXbpJLUK7KTNSHxtBFMSlgn1Ap5RMmmlDM5MxuSOUoX/kxl9xI6KIW//CTNuFtnog4XDOvSTn+LHgGhzn1ZqbX1hcWl5Zza2tb2xu2ds7NS0TRVmVSiFVwyeaCR6xKnAQrBErRkJfsLrfv8z8+gNTmsvoDgYxa4WkG/GAUwJGattXXkigp8I0EFKqoSdYAEXs6XsF6X93sZIv5YcZPMW7PSidHbXtglN2RsCzxJ2QAprgpm0/ex1Jk5BFQAXRuuk6MbRSooBTwYY5L9EsJrRPuqxpaERCplvpKO8QHxilgwOpzIkAj9SfGykJtR6EvpnM0ulpLxP/8poJBKetlEdxAiyi44eCRGCQOCsPd7hiFMTAEEIVN3/FtEcUoWAqzpkS3OnIs6R2WHaPy85tpXB+MaljBe2hfVRELjpB5+ga3aAqougRPaM39G49WS/Wh/U5Hp2zJju76Besr2+heass</latexit>

floor

0

BB@

vuut
srqp

(4!)!

1

CCA = 5

Luca Doria, KPH Mainz Introduction to AI 7

Another Example: the 8-Puzzle

Chapter 3: Solving Problems by Searching

Example: The 8-Puzzle

States: Description of the location of each of the eight tiles and (for
e�ciency) the blank square.

Initial State: Initial configuration of the puzzle.

Actions (transition model defined accordingly): Moving the blank left, right,
up, or down.

Goal Test: Does the state match the configuration on the right (or any other
configuration)?

Path Costs: Each step costs 1 unit (path costs corresponds to its length).

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 16 / 46

- States: 8 tiles + blank square

- Initial state: initial configuration of the puzzle

- Actions: moving the blank N,S,E,W

- Goal test: does the present configuration match the “Goal State”?

- Cost function: 1 unit (equal to the move length)

Luca Doria, KPH Mainz Introduction to AI 8

Notation

-Node expansion: generating all the successor nodes considering the
available actions.

-Frontier: set of all nodes available for expansion.

-Search Strategy: defines which node is expanded next.

-Tree-based Search: some states can repeat, leading to infinite loops. To
avoid this, graph searches keep a set of already visited nodes

(the “explored set”).

Luca Doria, KPH Mainz Introduction to AI 9

function TREE-SEARCH(problem) returns a solution or failure

initialise the frontier using the initial state of the problem

loop do:

if the frontier is empty, then failure

 choose a leaf node and remove it from the frontier

if the node contains a goal state, then return corresponding solution.

 expand the chosen node, adding the resulting nodes to the frontier.

function GRAPH-SEARCH(problem) returns a solution or failure

initialise the frontier using the initial state of the problem

initialise the explored set to be empty

loop do:

if the frontier is empty, then failure

 choose a leaf node and remove it from the frontier

if the node contains a goal state, then return corresponding solution.

 add the node to the explored set

 expand the chosen node, adding the resulting nodes to the

 frontier only if not in the frontier or explored set.

Searches on trees and graphs

Luca Doria, KPH Mainz Introduction to AI 10

Searches on trees and graphs
A search tree can be superimposed to the state space.

Example from the Canada trip: a journey from Edmonton to Toronto:

Edmonton

Calgary Saskatoon Yellowknife

Vancouver Regina

Whitehorse Winnipeg

Sudbury

Toronto

Winnipeg

Sudbury

Ottawa Toronto

Edmonton

Toronto

Search tree and state space are two different things!

Luca Doria, KPH Mainz Introduction to AI 11

Characterization of Search Strategies
-Completeness: Is it guaranteed that the strategy will find a solution (if it exists)?

-Time Complexity: How long does it take for finding the solution?

-Space Complexity: How much memory does the search strategy require?

-Optimality: Does the strategy find the “best” solution (with lowest path cost)?

-Problem describing quantities:

- b: branching factor

- d: depth of the shallowest goal node

- m: maximum length of any path in the state space.

Luca Doria, KPH Mainz Introduction to AI 12

Uninformed Search Strategies
How to navigate the state space and find the appropriate action?

The simples strategy is a through search.

Uninformed (or blind) search strategies have no idea about where the target might be
and their only chance of finding it is to perform an exhaustive search.

Examples: breadth-first, depth-first, inform cost search, bidirectional search, iterative-
deepening search,.. .

In contrast with informed or heuristic approaches.

Luca Doria, KPH Mainz Introduction to AI 13

Uninformed Search Strategies
Two basic uninformed algorithms for traversing (searching) trees and graphs:

- Breadth-first search: In BFS, start from a node and explore all of its neighbours at the current
depth level before moving on to the nodes at the next depth level.

- Depth-first search: DFS explores the tree/graph as deep as possible before backtracking.

Based on two basic data structures:

Queue (FIFO)
Stack (FILO)

enqueue (push) dequeue (pop)

poppush

Luca Doria, KPH Mainz Introduction to AI 14

Breadth-First Search

A

B C

D E F G

Queue

A

-A queue contains the list of the nodes to visit.

-The root node is initially introduced in a queue.

-The children nodes are introduced in the queue.

-The visited nodes are popped from the queue.

Luca Doria, KPH Mainz Introduction to AI 15

Breadth-First Search

A

B C

D E F G

C B
Queue

Luca Doria, KPH Mainz Introduction to AI 16

Breadth-First Search

A

B C

D E F G

Queue

F E D C

Luca Doria, KPH Mainz Introduction to AI 17

A

B C

D E F G

Queue

G F E D

Breadth-First Search

Luca Doria, KPH Mainz Introduction to AI 18

Breadth-First Search

-The search is complete

-The search is optimal if the cost is constant and positive

-Time complexity:

-b is the maximal branching factor

-maximal # of expanded nodes: T~b+b2+b3+…+bd ~ O(bd)

-Space complexity:

-every generated node is kept in memory

-Space needed for the frontier: O(bd).

Luca Doria, KPH Mainz Introduction to AI 19

Example
- Suppose we have a branching factor of 10.

- We can visit 106 nodes/second.

- Every node occupies 1kB of memory.

Depth Nodes Time Memory
2 110 11ms 107kB
4 11110 11ms 10.6MB
6 106 1.1s 1GB
8 108 2m 103GB
10 1010 3h 10TB
12 1012 13d 1PB
14 1014 3.5y 99PB
21 1021 >age universe 106EB

Luca Doria, KPH Mainz Introduction to AI 20

Uniform-Cost Search(*) (Dijkstra’s Algorithm)
If the cost for the possible actions are equal, breadth-first search finds the path with
the optimal costs.

If action costs are different, then uniform-cost can find the optimal solution.

Uniform-cost search expands the node with the lowest path cost g(n).

The data structure used for realising this search is the priority queue (heap).

Edsger W. Dijkstra

(1930-2002)

w
ik

ip
ed

ia

Another way to describe the algorithm is as “finding the shortest path between two points”.

In the graph terminology, we are looking for the shortest path on a weighted graph.

(*) “Uniform cost search” is the name used in the AI community for the general Dijkstra’s Algorithm

Luca Doria, KPH Mainz Introduction to AI 21

Uniform-Cost Search (Dijkstra’s Algorithm)

Vancouver
Calgary

Edmonton

Saskatoon

Regina

Winnipeg

Yellowknife

14
00km

970km

30
0k

m

760km
570km

780km

520km

Problem: shortest path from Regina to Yellowknife

Initialization:

g(Regina) = 0

g(other cities) = +∞

Expand “Regina” and put in the priority queue:

g(Winnipeg) = 570

g(Calgary) = 760

Go for the minimum cost: “Winnipeg”

Luca Doria, KPH Mainz Introduction to AI 22

Vancouver
Calgary

Edmonton

Saskatoon

Regina

Winnipeg

Yellowknife

14
00km

970km

30
0k

m

760km
570km

780km

520km

Problem: shortest path from Regina to Yellowknife

Expand Winnipeg:

g(Saskatoon) = 570 + 780 = 1350

Priority queue:

g(Calgary) = 760

g(Saskatoon) = 1350 (from Winnipeg)

Uniform-Cost Search (Dijkstra’s Algorithm)

Luca Doria, KPH Mainz Introduction to AI 23

Vancouver
Calgary

Edmonton

Saskatoon

Regina

Winnipeg

Yellowknife

14
00km

970km

30
0k

m

760km
570km

780km

520km

Problem: shortest path from Regina to Yellowknife

Expand Calgary:

g(Vancouver) = 760 + 970 = 1730

g(Edmonton) = 760 + 300 = 1060

Priority queue:

g(Edmonton) = 1060

g(Saskatoon) = 1350 (from Winnipeg)

….and so on (try to complete the search).

Important note: the algorithm checks for the goal only when it expands a node.

This means that when you reach Yellowknife from Edmonton the first time, you have still to check your queue.

Uniform-Cost Search (Dijkstra’s Algorithm)

Luca Doria, KPH Mainz Introduction to AI 24

Uniform-Cost Search (Dijkstra’s Algorithm)
function Dijkstra(graph, start):

 Initialize distances to all nodes as infinity

 Distance from start node to itself is 0

 priority_queue = [(0, start)]

 while priority_queue is not empty:

 current_distance, current_node = pop(priority_queue)

 if current_distance > distances[current_node]:

 continue

 for neighbour, weight in graph.current_node:

 distance = current_distance + weight

 if distance < distances[neighbour]:

 distances[neighbour] = distance

 push(priority_queue, (distance, neighbour))

 return distances

If current distance is larger, ignore

Check all neighbours of the current node

If shorter path found, update distance

Pop node with smaller distance

Luca Doria, KPH Mainz Introduction to AI 25

Depth-First Search

A

B C

D E F G

-A stack(*) contains the list of the nodes to visit.

-The root node is initially introduced in a stack.

-The children nodes are introduced in the stack.

-The visited nodes are popped from the stack.

A

Stack

(*) Note: given the use of a stack, it is
common to realise this search with recursion.

Luca Doria, KPH Mainz Introduction to AI 26

Depth-First Search

A

B C

D E F G B
C

Stack

Luca Doria, KPH Mainz Introduction to AI 27

Depth-First Search

A

B C

D E F G

D
E
F
C

Stack

Luca Doria, KPH Mainz Introduction to AI 28

Depth-First Search

A

B C

D E F G
G

Stack

Luca Doria, KPH Mainz Introduction to AI 29

Depth-First Search
- The solution is not, in general, optimal.

- Completeness is guaranteed only for graph-based searches and a finite state space.

- Time complexity:

- In a graph-based search, bounded by the size of the state space (can be infinite).

- In tree-based search, the algorithm might generate O(bm) nodes in the search tree
which can be larger that the state space size (m is the max. length of a path in the state
space).

- Space complexity:

- Tree-based search: needs to store only the nodes along the path from the root to the
leaf node. Once a node has been expanded, it can be removed from the memory as
soon as all its descendants have been fully explored. Therefore, the memory
requirement is only O(bm). This is the reason, why it is practically so relevant despite
all the other shortcomings.

- Graph-based search: in the worst case, all states need to be stored in the explored set
(no advantage over breadth-first).

Luca Doria, KPH Mainz Introduction to AI 30

Depth-Limited Search
Cut-off on the maximum reachable depth.

How to choose the cut-off:

- Choose maximum depth L = #nodes-1

- Choose the diameter d of the graph: maximum number of steps for

reaching any node from any other one (in the “Canada graph”, d=9).

Luca Doria, KPH Mainz Introduction to AI 31

Iterative-deepening Search
- Increase L by 1 starting from L=0 until a solution is found or Lmax is reached.

- Combines depth- and breadth-first searches benefits.

- Optimal and complete like BFS but less memory requirement O(bd).

- Time complexity slightly worse than BFS.

Luca Doria, KPH Mainz Introduction to AI 32

Chapter 3: Solving Problems by Searching

Example

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 41 / 46

Iterative-deepening Search

Luca Doria, KPH Mainz Introduction to AI 33

Iterative-deepening Search
Like BFS, IDS is optimal for problems where with same-cost actions and is complete for
acyclical state spaces or finite state spaces with checks for cycles.

IDS seems expensive, but repeating the expansion is cheap initially and grows with time.

So the first node is repeated d times, the second nodes (d-1) times and so on:

Number of node expansions:

Iterative Deepening Search: (d)b+(d-1)b2+(d-2)b3+…+bd ~ O(bd)

Breadth-First Search: b+b2+…+bd-1+bd ~ O(bd)

Example (b=10, d=5):

N(BFS) = 10 + 100 + 1000 + 10000 + 100000 = 111110

N(IDS) = 50 + 400 + 3000 + 20000 + 100000 = 123450 ~ 11% higher

Luca Doria, KPH Mainz Introduction to AI 34

Iterative-deepening Search

•IDS is the preferred uninformed search strategy when the entire search space cannot fit
into the memory.

•If memory is enough, BFS can be used.

•Another option: hybrid approach:

- Use BFS until memory allows.

- Switch to IDS from the last frontier found by BFS.

Luca Doria, KPH Mainz Introduction to AI 35

IDS and DLS Algorithms
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution or failure

for depth=0 to infinity do

result <—- DEPTH-LIMITED-SEARCH(problem, depth)

if result != cutoff then return result

function DEPTH-LIMITED-SEARCH(problem, L) returns a node or failure or cutoff

frontier<—- a stack with NODE(problem, INITIAL) as element

result <—- failure

while not IS-EMPTY(frontier) do

node <—- POP(frontier)

if problem.IS-GOAL(node, state) then return node

if DEPTH(node) > L then

result <—- cutoff

else if not IS-CYCLE(node) do

 for each child in EXPAND(problem, node) do

 add child to frontier

return result

Luca Doria, KPH Mainz Introduction to AI 36

Bidirectional Search
- Simultaneously searches forward from the starting node and backwards from the goal node.

- Assume that the two paths will meet.

- Motivation: bd/2+bd/2 << bd

Example: b=10, d=10. Gain factor:

<latexit sha1_base64="qPv312LrXS8YvFmJ1zJSADGuXcE=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiAxVU5FgQWpgoWxSPQhNaFyXKe16jiR7SBVUX6AhV9hYQAhVnY2/ga3zQAtR7ry8Tn3yr7HjzlTGqFvq7C0vLK6VlwvbWxube/Yu3stFSWS0CaJeCQ7PlaUM0GbmmlOO7GkOPQ5bfuj64nffqBSsUjc6XFMvRAPBAsYwdpIPfvIDSQmqYPuTWVZWnVJP9LQ3GsZvIQ1VEEI9ezy9DSAi8TJSRnkaPTsL7cfkSSkQhOOleo6KNZeiqVmhNOs5CaKxpiM8IB2DRU4pMpLp9tk8NgofRhE0pTQcKr+nkhxqNQ49E1niPVQzXsT8T+vm+jgwkuZiBNNBZk9FCQc6ghOooF9JinRfGwIJpKZv0IyxCYebQIsmRCc+ZUXSatacc4q6Pa0XL/K4yiCA3AIToADzkEd3IAGaAICHsEzeAVv1pP1Yr1bH7PWgpXP7IM/sD5/ACJfmQQ=</latexit>

1010

2 · 105 = 50.000

The algorithm needs to keep track of two frontiers and two lists of reached nodes.

The two paths can be followed by different search strategies.

Luca Doria, KPH Mainz Introduction to AI 37

Chapter 3: Solving Problems by Searching

Comparison of Search Strategies

Note

Time complexity, space complexity, optimality, completeness

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 45 / 46

Comparison of the Search Strategies
For tree structures without repetition check

Luca Doria, KPH Mainz Introduction to AI 38

Summary

•Before an agent can start the search for a solution, a goal must be defined. The
goal must be used for formulating the problem.

•A problem consists in 5 parts: The state space, initial condition, actions, goal test
and, path costs.

•A search algorithm can in principle be used for solving any problem.

• Search algorithms are described on the basis of completeness, optimality, time
complexity, and space complexity.

