
© Laurent / Adobe Stock

Introduction to Artificial Intelligence
4: Informed (Heuristic) Searches

Luca Doria, KPH Mainz

Luca Doria, KPH Mainz Introduction to AI

Uninformed Searches
Informed/heuristic searches: exploit the properties of a specific problem for
improving the search.

Uninformed search: fixed rule for expanding a node.

Informed search: evaluate if a node n has to be expanded calculating f(n)

The evaluation function f(n) is constructed as a cost estimate, so the node with the
lowest evaluation is expanded first. The choice of f determines the search strategy.

Many algorithms include a heuristic function h(n) which estimates the cheapest path
from n to the goal. The specification of h is the way we input our knowledge about
the problem into the search algorithm.

Luca Doria, KPH Mainz Introduction to AI 3

Heuristics
- The mathematician G. Polya (1887–1985) introduced the term in the context

of problem solving techniques.

- In AI it has two meanings:

1) Heuristics are methods which turn out to be fast but often incomplete for

 problem-solving.

2) Heuristics are methods that improve the search in the average case.

- In all cases heuristics are problem-specific.

- “heuristic”: from the Greek “heuriskein” which means “to find”, “to discover”.

 (Remember the famous “Eureka!” of Archimedes).

Luca Doria, KPH Mainz Introduction to AI

Best-First Search

Best-First search uses a single evaluation function f(n) for evaluating the cost of a
node n. It is a specific instance of TREE-SEARCH.

On the basis of the value of f, the node is pushed into a priority queue.

If f(n) makes always correct choices, there is no need to search!

General search problem:
function TREE-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of the problem

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state the return corresponding solution

expand the chosen node, adding the resulting nodes to the frontier.

Luca Doria, KPH Mainz Introduction to AI 5

Greedy Best-First Search
- Idea: estimate if it is good to expand a node estimating its path-cost to the goal.

- Define the heuristic function h(n) = estimated path-cost from n to the goal.

- h(n)=0 if n is the goal.

- In a best-first search, f(n)=h(n) : greedy search.

- Example from the “Canada trip” problem: h(n)=straight-line distance from n to the goal.

Luca Doria, KPH Mainz Introduction to AI 6

Greedy Best-First Search

Vancouver
Calgary

Edmonton

Saskatoon

Regina

Winnipeg
Sudbury

Ottawa

Toronto

Montreal

Quebec City

Halifax

Whitehorse Yellowknife

14
00km

24
00

km

970km

30
0k

m

760km
570km

780km

520km

1600km

400km
40

0k
m

480km
200km

26
0k

m

1200km

h = 2232kmh = 2723km

Luca Doria, KPH Mainz Introduction to AI 7

Greedy Best-First Search

- GBFS is incomplete in a sense very similar to Depth-First search (in the case of
infinite state spaces).

- The “greediness” of the algorithm might drive the search into a dead-end.

- The worst-case time and space complexity is O(|V|)

- A good heuristic function (applied to the right problem) can strongly reduce the
complexity of the average case, sometimes reaching O(bm).

- An example of improved heuristic function: A*-Search

Luca Doria, KPH Mainz Introduction to AI 8

A*-Search
<latexit sha1_base64="CS1tUgHqv14h/DdQdaEtSRofFf4=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBItQEcqMiLoRim5cVrAPaMeSSTNtaCYZkoxShv6HGxeKuPVf3Pk3pu0stPVALodz7uXenCDmTBvX/XZyS8srq2v59cLG5tb2TnF3r6FlogitE8mlagVYU84ErRtmOG3FiuIo4LQZDG8mfvORKs2kuDejmPoR7gsWMoKNlR7Csji+6ttyMrClWyy5FXcKtEi8jJQgQ61b/Or0JEkiKgzhWOu258bGT7EyjHA6LnQSTWNMhrhP25YKHFHtp9Orx+jIKj0USmWfMGiq/p5IcaT1KApsZ4TNQM97E/E/r52Y8NJPmYgTQwWZLQoTjoxEkwhQjylKDB9Zgoli9lZEBlhhYmxQBRuCN//lRdI4rXjnFffurFS9zuLIwwEcQhk8uIAq3EIN6kBAwTO8wpvz5Lw4787HrDXnZDP78AfO5w8C6ZDl</latexit>

f(n) = g(n) + h(n)Evaluation function:

path-cost from the start-node to node n

estimated cost of the cheapest
path from n to the goal

estimated cost of the

cheapest solution
through n

- A*-Search can both be optimal and complete (under certain assumptions, see next)

Luca Doria, KPH Mainz Introduction to AI 9

A*-Search

Vancouver
Calgary

Edmonton

Saskatoon

Regina

Winnipeg
Sudbury

Ottawa

Toronto

Montreal

Quebec City

Halifax

Whitehorse Yellowknife

14
00km

24
00

km

970km

30
0k

m

760km
570km

780km

520km

1600km

400km
40

0k
m

480km

200km

26
0k

m

1200km

h = 2232kmh = 2723km

f(Saskatoon) = 520 + 2232 = 2753

f(Calgary) = 300 + 2723 = 3023

Luca Doria, KPH Mainz Introduction to AI 10

A*-Search Admissibility
The first condition we require for optimality is that h(n) be an admissible heuristic.

An admissible heuristic is one that never overestimates the cost to reach the goal:

h(n)<h*(n)

where h*(n) is the true minimal cost from n to the goal node. This is connected to the optimality
of the solution.

In the example before, we took h(n) as the straight-line distance to the goal, which is always
shorter or at most equal to the actual distance.

In underestimating the real cost, admissible heuristics can be regarded as “optimistic”.

If we instead overestimate the cost, this can “block” some ways which can contain the solution!

Luca Doria, KPH Mainz Introduction to AI 11

A*-Search Optimality
Proof of optimality (by contradiction, assuming admissibility):

Suppose the optimal path has cost C* but the algorithm returns C>C*.

Then a node n must be on the optimal path but it is unexpanded.

Denoting g*(n) the the cost of the optimal path from start to n,

and h*(n) the cost of the optimal path from n to the goal:

f(n) = g(n) + h(n) > C* otherwise n would have been expanded,

f(n) = g*(n) + h(n) because n is on the optimal path,

f(n) g*(n) + h*(n) because by admissibility, h(n) h*(n)

f(n) C* since by definition C*=g*(n)+h*(n) —> contradiction.

Conclusion: A* returns only optimal paths.

≤ ≤
≤

Luca Doria, KPH Mainz Introduction to AI 12

A* Consistency
The second condition is consistency (or monotonicity) and applies only to graph searches.

A heuristic h(n) is consistent if, for every node n and every successor n′ of n generated
by any action a, the estimated cost of reaching the goal from n is no greater than the
step cost of getting to n′ plus the estimated cost of reaching the goal from n′:

<latexit sha1_base64="SAM4R3UNoj9F8/cUaX9OYqxUymY=">AAACBHicbVDLSgNBEJyNrxhfqx5zGQySBEPYFVGPQS8eI5gHJEuYnXSSIbOz68ysEJYcvPgrXjwo4tWP8ObfOHkcNLGgoajqprvLjzhT2nG+rdTK6tr6Rnozs7W9s7tn7x/UVRhLCjUa8lA2faKAMwE1zTSHZiSBBD6Hhj+8nviNB5CKheJOjyLwAtIXrMco0Ubq2NlBQRRxm8M9pgVRIiWRL+ITbNR8sWPnnLIzBV4m7pzk0BzVjv3V7oY0DkBoyolSLdeJtJcQqRnlMM60YwURoUPSh5ahggSgvGT6xBgfG6WLe6E0JTSeqr8nEhIoNQp80xkQPVCL3kT8z2vFunfpJUxEsQZBZ4t6Mcc6xJNEcJdJoJqPDCFUMnMrpgMiCdUmt4wJwV18eZnUT8vuedm5PctVruZxpFEWHaECctEFqqAbVEU1RNEjekav6M16sl6sd+tj1pqy5jOH6A+szx+z/5Ts</latexit>

h(n)  c(n, a, n0) + h(n0)n

n’
c

Goal nearest to n

Triangle inequality

Means also that the cost never decreases (monotonicity)

Consistency is a stricter requirement than admissibility:

Consistency Admissibility

⇒
h(n’)

h(n)

A* with a consistent heuristic is also cost-optimal (finds the absolute best solution)

Luca Doria, KPH Mainz Introduction to AI 13

Consistency implies optimality
If h(n) is consistent, then the values of f(n) along any path are nondecreasing

This property is called monotonicity and it is equivalent to consistency.

Proof:

Suppose n′ is a successor of n; then g(n′) = g(n) + c(n, a, n′) for some action a, and we have

<latexit sha1_base64="BXIK4FUO3kQbb5WcwQcfLWdQVZM=">AAACInicbVDLSgMxFM3UV62vUZdugkXs0FJmRHwsCkU3LivYB7SlZNLMNDSTGZOMUEq/xY2/4saFoq4EP8a0HUVbLyScnHMPN/e4EaNS2faHkVpYXFpeSa9m1tY3NrfM7Z2aDGOBSRWHLBQNF0nCKCdVRRUjjUgQFLiM1N3+5Viv3xEhachv1CAi7QD5nHoUI6Wpjnnu5fihVfLHd773ja08zvECKvyQLZ/cwomgn1ZJm6yOmbWL9qTgPHASkAVJVTrmW6sb4jggXGGGpGw6dqTaQyQUxYyMMq1YkgjhPvJJU0OOAiLbw8mKI3igmS70QqEPV3DC/nYMUSDlIHB1Z4BUT85qY/I/rRkr76w9pDyKFeF4OsiLGVQhHOcFu1QQrNhAA4QF1X+FuIcEwkqnmtEhOLMrz4PaUdE5KdrXx9nyRRJHGuyBfZADDjgFZXAFKqAKMLgHj+AZvBgPxpPxarxPW1NG4tkFf8r4/AK4MZ5D</latexit>

f(n0) = g(n0) + h(n0) = g(n) + c(n, a, n0) + h(n0) � g(n) + h(n) = f(n)

This ensures:

-Once a node is expanded, we have already found its lowest-cost path. 

-No need to re-expand nodes (efficient). 

-A* will expand the goal node with the lowest cost first, ensuring optimality.

Luca Doria, KPH Mainz Introduction to AI 14

Example Heuristic Function: the 8-Puzzle

1 2

3 4 5

6 7 8

1 4

5 2 3

8 7 6

Slide the tiles from the current state to the goal state where tiles have increasing numbers.

Luca Doria, KPH Mainz Introduction to AI 15

Example Heuristic Function: the 8-Puzzle
The average moves for solving the puzzle is ~22

The branching factor of the search tree is ~3

An exhaustive search implies 322~3x1010 states on a tree.

The corresponding graph has 9!/2 = 181440(*) distinct states (For the 15-Puzzle, the states are >109!).

For using A∗-Search, we need a heuristic function that never overestimates the number of steps to the
goal. Two commonly used heuristics are:

h1 = # of misplaced tiles. Good because it is admissible (you do not misplace more…).

h2 = Sum of all the Manhattan distances to the goal. This is also admissible, since you can only

 move one step closer to the goal.

Neither of the heuristics overestimates the true cost for reaching the solution.

(*) Not all the configurations are
reachable from one state. “Parity
inversion” causes the factor /2 in
the number of states.

Luca Doria, KPH Mainz Introduction to AI 16

Assessing the Heuristics Performance
Effective Branching Factor

If an A* heuristics generates a total number of nodes N in reaching the solution which is found at
tree depth d, then the EBF b* is defined by

N + 1 = 1 + b* + (b*)2 + (b*)3 + … + (b*)d

which is the branching factor an uniform tree would have in order to contain N+1 nodes.

Nice property: b* is quite constant across problem instances, thus it can be estimated from a rather
small amount of cases.

The better the heuristics, the closer is b* to 1 (almost a “direct” path to the solution).

Effective Depth

O(bd) —> O(bd-k): the heuristics has the effect to reduce the tree depth by a factor bk.

Luca Doria, KPH Mainz Introduction to AI 17

8-Puzzle Heuristics Performance

d BFS A*(h1) A*(h2) BFS A*(h1) A*(h2)
6 128 24 19 2.01 1.42 1.34
8 368 48 31 1.91 1.40 1.30
10 1033 116 48 1.85 1.43 1.27
12 2672 279 84 1.80 1.45 1.28
14 6783 678 174 1.77 1.47 1.31
16 17270 1683 364 1.74 1.48 1.32
18 41558 4102 751 1.72 1.49 1.34
20 91493 9905 1318 1.69 1.50 1.34
22 175921 22955 2548 1.66 1.50 1.34
24 290082 53039 5733 1.62 1.50 1.36
26 395355 110372 10080 1.58 1.50 1.35
28 463234 202565 22055 1.53 1.49 1.36

Search Cost Effective Branching Factor

Which heuristic is better?
Average over 100 games.

Luca Doria, KPH Mainz Introduction to AI 18

Another Heuristics: Search with Landmarks
Some nodes of a search graph are visited more often, they are a sort of “hub” or “landmark”, using a
map terminology.

Idea: pre-calculate all the distances of all the nodes from the landmarks and store them in a table.

When a minimum-cost path is required, we exploit the knowledge of the distances from the closest
landmark and make an estimation using the triangular inequality.

landmarkSource

Target

a

b
c c > a-b (a>b)

c+a>b

c+b>a

Luca Doria, KPH Mainz Introduction to AI 19

Another Heuristics: Search with Landmarks

Vancouver
Calgary

Edmonton

Saskatoon

Regina

Winnipeg
Sudbury

Ottawa

Toronto

Montreal

Quebec City

Halifax

Whitehorse Yellowknife

14
00km

24
00

km

970km

30
0k

m

760km
570km

780km

520km

1600km

400km
40

0k
m

480km

200km

26
0k

m

1200km

LANDMARK

TARGET

Actually, X = 4980km

800km

4700km

X

X>4700-800=3900km

We use what we know (distances from a landmark)
and the triangular inequality to obtain an estimate of
the distance to a node.

Luca Doria, KPH Mainz Introduction to AI 20

Another Heuristics: Search with Landmarks
When the algorithm explores a node, it looks at its neighbours to add them to the frontier. This is
done evaluating the cost function f(n) = g(n) + h(n) to decide the order of which nodes to explore.
To estimate the cost it creates an abstract triangle between the node, the target, and the landmark
with pre-calculated distances.

The triangular inequality is used to estimate the distance that should be at least covered.

We draw an abstract triangle, but the sides are (were) calculated following the graph.

Landmarks encode the graph “topography” and use it as a distance estimator.

Luca Doria, KPH Mainz Introduction to AI 21

Further variants of A* search
A∗ in general needs exponential memory amounts.

In order to take care of this problem, some variants have been suggested:

• Iterative-deepening A∗:uses depth-first search with iteratively increasing depth : IDA∗

• Recursive Best First Search (RBFS): introduces a variable f-limit to keep track of the best
alternative path available from any ancestor of the current node. If current node exceeds this
limit, recursion unwinds back to the alternative path.

• other alternatives:

 - memory-bounded A∗ (MA∗)

 - simplified MA∗ (SMA∗). …. …. … …..

Luca Doria, KPH Mainz Introduction to AI 22

Summary so far

Uninformed Search Informed Search

Access only to problem definition

Build a search tree for finding the solution

Best-First search: eval.function for expanding nodes

Breadth-First search:

shallowest nodes first, complete, optimal, Exp(Space)

Uniform-Cost search: can be optimal

Depth-first search:

deepest node expanded first, not complete,

not optimal, but Lin(Space).

…

Heuristic function h(n) estimating the cost
of a solution from the node n.

Greedy best-first search

A* search

…

Luca Doria, KPH Mainz Introduction to AI 23

Searching in more complex spaces
Up to now the search was performed in:

- Fully observable (we have access to the full structure of the space)

- Deterministic (no randomness)

- Static (nothing in the space changes during the search)

Now we are going to abandon some of these features.

In doing so we will exploit the connection among two problems:

Search Optimisation

Luca Doria, KPH Mainz Introduction to AI 24

Local Search
In problems like the “map” one, often we would like to find not only a solution, but the best
one (e.g. the shortest path).

In some other problems, we do not need to keep track of our path, since only reaching the
solution is relevant.

One class of such algorithms is the local search one.

In local searches, the algorithm has only a partial (local) knowledge of the search space.

In some cases, indeed only the local knowledge is available but the key advantages of these
algorithms are:

- the limited memory use

- the ability to explore very large spaces and find reasonable solutions.

Luca Doria, KPH Mainz Introduction to AI 25

Local Search

Example: 1-dimensional search space.

Red circle: current value of f. The algorithm does not know the global shape of the function
but only the “neighbourhood” and based on this local information must decide where to
“move” at the next step.

f(x)

x

f(x) : cost functionglobal max

local max

flat max
shoulder

Luca Doria, KPH Mainz Introduction to AI 26

Hill-Climbing Search
Simplest local search algorithms: move where f
increases.

In numerical maths terms, this is equivalent to a
gradient descend (ascend) algorithm and belongs to
the family of greedy algorithms.

function HILL-CLIMBING(problem) returns loc. max. state

current <— problem.INITIAL

while true do

neighbour <— highest value successor state of current

if VALUE(neighbor) <= VALUE(current) then return current

current <— neighbor

Luca Doria, KPH Mainz Introduction to AI 27

Hill-Climbing Search
Potential problems of the Hill-Climbing search:

Local maxima

Plateau

Ridges:

adapted from Wikipedia

Luca Doria, KPH Mainz Introduction to AI 28

Hill-Climbing Variants
In order to overcome some of the previous problems, variate of the HCA were proposed:

Stochastic Hill Climbing:

Among the maximising moves, it chooses one at random.

First-choice Hill Climbing:

Generates random moves until a better than the current state is found.

Random-restart Hill Climbing:

Applies HCA N-times, each time starting from a randomly chosen position.

Luca Doria, KPH Mainz Introduction to AI 29

Tabu Search
The (greedy) tabu search algorithm combines a hill-climbing search strategy with a heuristics to
avoid the stops at suboptimal points (local maxima/minima) and the occurrence of “cycles”.

This is obtained by using a list of forbidden moves (the tabu moves) derived from the recent
history of the search.

f(t-1)
f(t-2)
f(t-3)
…
…
…
…
…
…

f(t-N)

Memory (FIFO) of
“tabu”moves

with fixed length N

Luca Doria, KPH Mainz Introduction to AI 30

Reactive Tabu Search
RTS is a variant of RT where the length of the tabu list is not constant but it is “reactively” changed
depending from the status of the search. In particular, a “prohibition time” T is assigned to each move.

How to change?

- A too short T could not allow escaping local minima.

- A too long T could prevent reaching some solutions.

General working of the algorithm:

- Starts with a certain probation time T (time = # of moves).

- If a move belongs to a series of moves which keep repeating (a cycle) and T is already at its

maximum (a specified parameter Tmax), then a sequence of random jumps is performed for
escaping the cycle. The random steps are included in the tabu list.

- If a region was already visited, T is increased.

- If T was not increased since a while (according to a parameter), then T is reduced.

Luca Doria, KPH Mainz Introduction to AI 31

Reactive Tabu Search
Why RTS was proposed:

Limit cycles can be in principle avoided by a tabu search.

If the prohibition time is too short, you can get stuck in a cycle.

Other situation: chaotic orbits. The search is stuck in a region of space even without repetitions.

Luca Doria, KPH Mainz Introduction to AI 32

Simulated Annealing (3000 years-old idea!)

function SIMULATED-ANNEALING(problem,schedule) returns a solution state

current ← problem.INITIAL

for t=1 to ∞ do

T ←schedule(t)

if T = 0 then return current

next ← a randomly selected successor of current

∆E ← (next.VALUE - current.VALUE)

if ∆E > 0 then current ← next 1)

else current ← next only with probability e E/T. 2)Δ

Physics-inspired algorithm: heat a material to high temperatures and then
slowly cool it (“temper”). In this way, atoms/molecules relax in their
lowest energy state.

Ideas:

1) If a move is maximising, accept the move

2) If not, with exponentially low probability, accept the move even if not maximising.

Credit: HanBon Forge

Luca Doria, KPH Mainz Introduction to AI 33

Evolutionary (“Genetic”) Algorithms
Background of the heuristics:

- Theory of evolution (Charles Darwin, 1859)

- Probabilistic laws of evolution (Gregor Medel, 1866)

- Discovery of the DNA (Watson, Crick, 1953)

Notes:

1) We are going to use the ideas of evolution treating
strings as DNA strands which mutate, cross and copy.
This is only a partial analogy with biology: in reality
things are more complex. Genes in DNA not only
contain information but also processes, which our
strings do not.

2) There are many variants of evolutionary/genetic
algorithms. We will take a look at one of them.

Photo from CBS

Luca Doria, KPH Mainz Introduction to AI 34

Evolutionary Algorithms
Encoding:

In general, we have an optimisation task where we look for the maximum (minimum) of a
function f(x). We need to encode x in a string analogous to the ACGT strings in the DNA.

A common choice is Boolean encoding:

0 1 0 1 1 0 0 1x

Fitness function:

Every “individual” of the species (the strings) are evaluated according to a fitness function which
ranks them. The general idea is that “the fittest survives”.

The fitness function is exactly the function we would like to optimise, while the individuals are
candidate solutions (function values).

Luca Doria, KPH Mainz Introduction to AI 35

Evolutionary Algorithms
Crossover:

The individuals exchange genetic material (sub-strings), giving rise to a new “generation”.

This is done randomly selecting a “breaking point” (in general there could be N points).

0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1

0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1

1st generation

2nd generation

Mutation:

Cross-over might not be enough for discover some parts of the search space. Again, in analogy
with nature, we can flip a (or more) random bit(s) of the string with some probability.

breaking point

Luca Doria, KPH Mainz Introduction to AI 36

Evolutionary Algorithms
Sketch of the algorithm:

1) Define an initial population of strings

2) Evaluate the strings with the fitness function (find the “fittest” solution)

3) Apply cross-over, randomly generating the location of the crossing point

4) Apply random mutations with a certain probability (usually low)

5) Go to step 2 or stop if maximum # of iterations is reached or an acceptable solution is

found.

Pros & Cons:

- Genetic algorithms are quite aggressive on the solution space, since they probe it at many

places at the same time. A lot of solutions are generated and local minima can be avoided.

- Easily parallelized, gradient-less.

- Computational complexity grows fast for both, time and space.

- Convergence can be slow.

- Require fine-tuning of the parameters (population #, mutation probability, …)

Luca Doria, KPH Mainz Introduction to AI 37

Searching in Continuous Spaces
Optimisation in continuous spaces has a very long history and the starting point has been the

calculation of gradients: maxima and minima correspond to points where .

In the case we cannot calculate explicitly the derivative of the function, many variants of the
gradient descent algorithm exist where the space is discretised and derivatives are approximated
numerically:

∇f(x) = 0

<latexit sha1_base64="U0Iy7VdjV4cyrvwSR4MtSsf/wus=">AAACIHicbVDLSgMxFM34rPVVdekmWIRKocyIWDdC0Y3LCvYBnVLupJk2NJMZkoxYhvkUN/6KGxeK6E6/xvQhauuBCyfn3EvuPV7EmdK2/WEtLC4tr6xm1rLrG5tb27md3boKY0lojYQ8lE0PFOVM0JpmmtNmJCkEHqcNb3A58hu3VCoWihs9jGg7gJ5gPiOgjdTJlV0PZHKXdhJWdFJ8jn/eKS5iF3jUB1eAxwH7hW+THXVyebtkj4HniTMleTRFtZN7d7shiQMqNOGgVMuxI91OQGpGOE2zbqxoBGQAPdoyVEBAVTsZH5jiQ6N0sR9KU0Ljsfp7IoFAqWHgmc4AdF/NeiPxP68Va/+snTARxZoKMvnIjznWIR6lhbtMUqL50BAgkpldMemDBKJNplkTgjN78jypH5ec05J9fZKvXEzjyKB9dIAKyEFlVEFXqIpqiKB79Iie0Yv1YD1Zr9bbpHXBms7soT+wPr8AKkmi+A==</latexit>

x̄i+1 = x̄i + ↵rf(x̄i)

More advanced algorithms were developed for avoiding local
minima. A simple extension is the addition of the momentum
term:

<latexit sha1_base64="VbD4hvfCMa/cDgXPF4IhRRRU9Yk=">AAACQnicbVDLSgMxFM34rPVVdekmWARFWmZE1I0gunFZwfqgU8qdNGODmcyQ3BHLMN/mxi9w5we4caGIWxemtb49EDg55x5ucoJECoOue+cMDY+Mjo0XJoqTU9Mzs6W5+WMTp5rxOotlrE8DMFwKxesoUPLTRHOIAslPgov9nn9yybURsTrCbsKbEZwrEQoGaKVW6cwPQGdXeSsTa15Od+jXPadr1AeZdMBXEEig4cqHKVZpxU5yBPqpYeUzihUvX22Vym7V7YP+Jd6AlMkAtVbp1m/HLI24QibBmIbnJtjMQKNgkudFPzU8AXYB57xhqYKIm2bWryCny1Zp0zDW9iikffV7IoPImG4U2MkIsGN+ez3xP6+RYrjdzIRKUuSKvS8KU0kxpr0+aVtozlB2LQGmhX0rZR3QwNC2XrQleL+//Jccr1e9zap7uFHe3RvUUSCLZImsEI9skV1yQGqkThi5JvfkkTw5N86D8+y8vI8OOYPMAvkB5/UNwlCwTQ==</latexit>

x̄i+1 = x̄i + ↵rf(x̄i)� �(x̄t � x̄t�1)

Other stochastic/adaptive variants exist (more on this later with machine learning).

Luca Doria, KPH Mainz Introduction to AI 38

Summary

• Heuristic algorithms incorporate “good ideas” for improving (mostly) searches.

• Best-first search expands the node with the highest score (defined by some measure)

first.

• With the minimization of the evaluated costs to the goal we obtain a greedy search.

• The minimization of f(n) = g(n)+h(n) combines uniform and greedy searches.

• When h(n) is admissible (i.e. h∗ is never overestimated) we obtain the A∗ search, which
is complete and optimal.

• Other methods: tabu search, annealing, genetic algorithms, ….

