
© Laurent / Adobe Stock

Introduction to Artificial Intelligence
5: Constraint Satisfaction Problems

Luca Doria, KPH Mainz

Luca Doria, KPH Mainz Introduction to AI

Problems with Constraints
Constraint satisfaction problems (CSP) often deal with the optimisation of a function
together with the satisfaction of constraints.
In the continuum, it is a classical mathematical problem like for example:

Find the maximum of f(x,y) = xy , given the constraint x+y=10.

This translates to minimising the “lagrangian”
<latexit sha1_base64="vf0D5cB2PcXys9m4Tz86zvEElOo=">AAACDHicbVDLSsNAFJ34rPVVdelmsAiVYklE1I1QdOPCRQX7gCaUyWTSDp1MwsxEGkI/wI2/4saFIm79AHf+jZM2C209MHA451zm3uNGjEplmt/GwuLS8spqYa24vrG5tV3a2W3JMBaYNHHIQtFxkSSMctJUVDHSiQRBgctI2x1eZ377gQhJQ36vkog4Aepz6lOMlJZ6pbIdIDXAiKW3Y3gJRwmsQpvpeQ/ByqiaHFvmkU6ZNXMCOE+snJRBjkav9GV7IY4DwhVmSMquZUbKSZFQFDMyLtqxJBHCQ9QnXU05Coh00skxY3ioFQ/6odCPKzhRf0+kKJAyCVydzFaXs14m/ud1Y+VfOCnlUawIx9OP/JhBFcKsGehRQbBiiSYIC6p3hXiABMJK91fUJVizJ8+T1knNOquZd6fl+lVeRwHsgwNQARY4B3VwAxqgCTB4BM/gFbwZT8aL8W58TKMLRj6zB/7A+PwBVJWZOQ==</latexit>

L = xy + �(x+ y � 10)

<latexit sha1_base64="eaG+EO7Uf2AOdqclEV2Dv20VKYM=">AAACIXicbVDLSgMxFM3UV62vUZdugkUQxDIjot0Uim5cuKhgH9Ap5U6aaUMzD5KMWIb5FTf+ihsXinQn/oyZtovaeiBwOOc+co8bcSaVZX0buZXVtfWN/GZha3tnd8/cP2jIMBaE1knIQ9FyQVLOAlpXTHHaigQF3+W06Q5vM7/5RIVkYfCoRhHt+NAPmMcIKC11zbLjCSCJE4FQDDh2fFADAjy5T9M5leuJPUhxBT+fjc5tq2J1zaJVsibAy8SekSKaodY1x04vJLFPA0U4SNm2rUh1kmwD4TQtOLGkEZAh9Glb0wB8KjvJ5MIUn2ilh71Q6BcoPFHnOxLwpRz5rq7MDpCLXib+57Vj5ZU7CQuiWNGATBd5MccqxFlcuMcEJYqPNAEimP4rJgPQkSkdakGHYC+evEwaFyX7qmQ9XBarN7M48ugIHaNTZKNrVEV3qIbqiKAX9IY+0KfxarwbX8Z4WpozZj2H6A+Mn18g46Nl</latexit>

@L
@�

= x+ y � 10 = 0

<latexit sha1_base64="4bf7OP/7sg+MtWsVn2s5pVxfBW0=">AAACInicbVDLSgMxFM3UV62vUZdugkUQhDIj4mMhFN24cFHBPqBTyp0004ZmHiQZsQzzLW78FTcuFHUl+DFm2gG19ULg5Jx7c3OOG3EmlWV9GoW5+YXFpeJyaWV1bX3D3NxqyDAWhNZJyEPRckFSzgJaV0xx2ooEBd/ltOkOLzO9eUeFZGFwq0YR7fjQD5jHCChNdc0zxxNAEicCoRhw7PigBgR4cp2mP+x9is/xCB9gh+une6BvVtcsWxVrXHgW2Dkoo7xqXfPd6YUk9mmgCAcp27YVqU6SrSCcpiUnljQCMoQ+bWsYgE9lJxlbTPGeZnrYC4U+gcJj9vdEAr6UI9/VnZkDOa1l5H9aO1beaSdhQRQrGpDJIi/mWIU4ywv3mKBE8ZEGQATTf8VkADozpVMt6RDsacuzoHFYsY8r1s1RuXqRx1FEO2gX7SMbnaAqukI1VEcEPaAn9IJejUfj2XgzPiatBSOf2UZ/yvj6Bj26o2E=</latexit>

@L
@x

= y + � = 0

<latexit sha1_base64="y5qLYsiYHj69MnDU6tP423CrQgQ=">AAACInicbVDLSgMxFM3UV62vUZdugkUQhDIj4mMhFN24cFHBPqBTyp0004ZmHiQZsQzzLW78FTcuFHUl+DFm2gG19ULg5Jx7c3OOG3EmlWV9GoW5+YXFpeJyaWV1bX3D3NxqyDAWhNZJyEPRckFSzgJaV0xx2ooEBd/ltOkOLzO9eUeFZGFwq0YR7fjQD5jHCChNdc0zxxNAEicCoRhw7PigBgR4cp2mP+woxef4Hh9gh+une6BvVtcsWxVrXHgW2Dkoo7xqXfPd6YUk9mmgCAcp27YVqU6SrSCcpiUnljQCMoQ+bWsYgE9lJxlbTPGeZnrYC4U+gcJj9vdEAr6UI9/VnZkDOa1l5H9aO1beaSdhQRQrGpDJIi/mWIU4ywv3mKBE8ZEGQATTf8VkADozpVMt6RDsacuzoHFYsY8r1s1RuXqRx1FEO2gX7SMbnaAqukI1VEcEPaAn9IJejUfj2XgzPiatBSOf2UZ/yvj6Bj2/o2E=</latexit>

@L
@y

= x+ � = 0

<latexit sha1_base64="BIfUHlVU7c1a6PJgRvc3Ixz3fq4=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cq9gPaUDbbTbt0kw27E6WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80jUo14w2mpNLtgBouRcwbKFDydqI5jQLJW8HoZuq3Hrk2QsUPOE64H9FBLELBKFqp070XgyFSrdVTr1xxq+4MZJl4OalAjnqv/NXtK5ZGPEYmqTEdz03Qz6hGwSSflLqp4QllIzrgHUtjGnHjZ7OTJ+TEKn0SKm0rRjJTf09kNDJmHAW2M6I4NIveVPzP66QYXvmZiJMUeczmi8JUElRk+j/pC80ZyrEllGlhbyVsSDVlaFMq2RC8xZeXSfOs6l1U3bvzSu06j6MIR3AMp+DBJdTgFurQAAYKnuEV3hx0Xpx352PeWnDymUP4A+fzB5LBkXI=</latexit>)

<latexit sha1_base64="b04ptnlyex/8xrdkMTp87X5vdNE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3l9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A50qjWo=</latexit>

{ <latexit sha1_base64="JkEwgHk+trJqd9bEmqzUnkDT0i4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr0uh6MVjBdMW2lA22027dLMJuxsxhP4GLx4U8eoP8ua/cZvmoK0PBh7vzTAzz485U9q2v63Syura+kZ5s7K1vbO7V90/aKsokYS6JOKR7PpYUc4EdTXTnHZjSXHoc9rxJ7czv/NIpWKReNBpTL0QjwQLGMHaSO5TI21cDKo1u27nQMvEKUgNCrQG1a/+MCJJSIUmHCvVc+xYexmWmhFOp5V+omiMyQSPaM9QgUOqvCw/dopOjDJEQSRNCY1y9fdEhkOl0tA3nSHWY7XozcT/vF6ig2svYyJONBVkvihIONIRmn2OhkxSonlqCCaSmVsRGWOJiTb5VEwIzuLLy6R9Vncu6/b9ea15U8RRhiM4hlNw4AqacActcIEAg2d4hTdLWC/Wu/Uxby1Zxcwh/IH1+QNADo5R</latexit>

x = y = 5

Luca Doria, KPH Mainz Introduction to AI 3

• A Constraint Satisfaction Problems (CSP) is given by a set of variables x1, x2, ..., xn,
an associated set of value domains dom1, dom2, ..., domn, and a set of constraints. i.e.,
relations, over the variables.

• An assignment of values to variables that satisfies all constraints is a solution of such a CSP.

• In CSPs viewed as search problems, states are explicitly represented as variable assignments.
CSP search algorithms take advantage of this structure.

• The main idea is to exploit the constraints to eliminate large portions of search space.

Constraint Satisfaction Problems

Luca Doria, KPH Mainz Introduction to AI 4

Example: Map Coloring

Variables: NL, PE, NS, NB, QC, ON, MB, SK, AB, BC, YT, NY, NU

Values: Red, Green, Blue

Constraints: adjacent regions must have different colors.

Luca Doria, KPH Mainz Introduction to AI 5

Possible Solution

Luca Doria, KPH Mainz Introduction to AI 6

Constraint Graphs

• A constraint graph can be used to visualise binary constraints
• For high-order constraints, hyper graph representations are available
• Nodes = variables
• Arcs = constraints

BC AB SK MB ON QC

YT NT NU NL

NB NS

PE

Luca Doria, KPH Mainz Introduction to AI 7

• Binary, ternary, or even higher arity (e.g., ALL DIFFERENT)

• Finite domains (d values) → dn possible variable assignments

• Infinite domains (reals, integers)

• linear constraints (each variable occurs only in linear form): solvable (in P if real)

• nonlinear constraints: unsolvable

Other variations

Luca Doria, KPH Mainz Introduction to AI 8

• Timetabling (classes, rooms, times)

• Configuration (hardware, cars, . . .)

• Scheduling

• Floor planning

• Frequency assignments

• Sudoku and other games

...

Applications

Luca Doria, KPH Mainz Introduction to AI 9

Constraint Propagation
A CSP algorithm can be seen as a graph where variables are nodes and constraints are edges.
In expanding a node, the algorithm can:

- assign a variable (e.g. decide the colour in the map example)
- do constraint propagation: use the constraints to reduce the choices for the variable

Many possibilities:
- Local consistency: general idea of checking the constraints connected to the current node
- Node consistency: check and resolve all the unary constraits (e.g: BC people do not like red)
- Arc consistency: check and resolve all the binary constraints (e.g.: no same neighbouring

colours)
- Path consistency: similar to arc consistency, but over 3 nodes
- k-consistency: for a consistent assignment of k-1 variables, there is a constant assignment of

the k-th variable.

Additional note: remember that CSPs can have also global constraints
-

Luca Doria, KPH Mainz Introduction to AI 10

AC-3: An Arc-Consistency Algorithm
Developed by A. Mackworth (1977), the name comes from being the 3rd version developed in
the original paper.
AC-3 tries to make all variables arc-consistent using a queue of arcs to consider.

Initially, the queue contains all the arcs, where binary constrains become 2 arcs (1 for each
direction)
AC-3 pops an arc from the queue (xi,xj) and makes xi arc-consistent.
If Di (the domain of xi) does not change, move to the next arc.
If Di changes, add to the queue all the arcs (xk,xi) where xk is a neighbour of xi.

—> Why? Because the reduction of Di might imply reductions in Dk later on.
If Di becomes empty, return FAIL.
Otherwise, keep inspecting the queue until empty.
Worst-case time complexity O(#constraints * domain-size3)

Luca Doria, KPH Mainz Introduction to AI 11

AC-3: An Arc-Consistency Algorithm
function AC3 (csp) : returns false if inconsistency is found, otherwise true
 queue <— arcs (initially all the arcs of csp)

while queue not empty do
(xi,xj) <— POP(queue)
if REVISE(csp,xi,xj) then

if size(Di=0) then return false
for each xk in xi.NEIGHBOURS - {xj} do

add (xk,xi) to queue
 return true

function REVISE(csp,xi,xj): returns true iff the domain of xi is revised
revised <— false
for each x in Di do

if no value y in Dj allows (x,y) to satisfy the constraint between xi and xj then
delete x from Di
revised <— true

 return revised

Luca Doria, KPH Mainz Introduction to AI 12

Another example: SUDOKU
81 variables
Di = {1,2,3,4,5,6,7,8,9}
9+9+9=27 Alldiff constraints:

All the rows must be different (9):
Alldiff(A1,A2,A3,A4,A5,A6,A7,A8,A8)
Alldiff(B1,B2, ….)
….
All columns must be different (9)
All squares must contain different numbers (9)

Note: AC-3 can solve the easiest puzzles, while for the more
complex ones one has to apply longer path-consistency algorithms.

Luca Doria, KPH Mainz Introduction to AI 13

After consistency: search!
After the constraint propagation process, we might still not have a solution and we need to search for
one. Considering the search tree:

- For a CSP with n variables with domain size d , the total possible assignments are dn.
- The solution must be at depth n.
- The branching factor at the root node is nd (any of the d values can be assigned to any var. n).
- At the deeper level, the branching factor is (n-1)d and so on..
- This means that in total the number of tree leaves is n!dn.

Remember that initially we expected dn assignment but we found n!dn.
The factor n! comes from the commutativity property of the CSP.
Commutativity refers to the fact that we can commute the variable’s values and obtain still a valid
solution. Example: in the map colouring we can start with whatever of the available colours.

Luca Doria, KPH Mainz Introduction to AI 14

Backtracking (recursive depth-first search)
function BACKTRACKING-SEARCH(csp) returns a solution, or failure

return BACKTRACK(csp,{})

function BACKTRACK(csp,assignment) returns a solution or failure
if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(csp,assignment)
for each value in ORDER-DOMAIN-VALUES(csp,var,assignment) do

if value is consistent with assignment then
add {var = value} to assignment
inferences ← INFERENCE(csp , var , assignment)
if inferences != failure then

add inferences to csp
result←BACKTRACK(csp, assignment)
if result != failure then return result
remove inferences from csp

remove {var = value} from assignment

return failure

Optional consistency check,
e.g. arc-consistency

The algorithm (a depth-first search)
repeatedly chooses an unassigned
variable and tries all the values on its
domain trying to extend it to a solution
with a recursive call.

Implement heuristics

Luca Doria, KPH Mainz Introduction to AI 15

Map-coloring Example

Luca Doria, KPH Mainz Introduction to AI 16

Efficiency Improvement (Heuristics)

•Variable ordering: Which one to assign first?

•Value ordering: Which value to try first?

•Try to detect failures early on

•Try to exploit problem structure

All this is not problem-specific…

Luca Doria, KPH Mainz Introduction to AI 17

Variable Ordering
In the BACKTRACKING algorithm we have to choose a variable with
SELECT-UNASSIGNED-VARIABLE.

Simple solutions (which are not optimal!)
- Order assignment
- Random assignment

Better strategy: Minimum-remaining-values heuristic (MRV). Idea: choose the variable
leading to fewest allowed moves. This reduces the branching fraction.

Choose to color NT: only 1 choice possible
while e.g. AB has two.

Luca Doria, KPH Mainz Introduction to AI 18

Degree Heuristics
MRV can speed-up the process significantly (although depending on the problem).
What it cannot do is to decide with which variable is better to start or breaking ties.

A possibility is to use the degree heuristics:
Choose the variable involved in the largest number of constraints.
The idea is that this choice will maximise the reduction of the future possibilities.

Recalling the example of the “Canada graph”, NT is the province
connected with most constraints.

BC AB SK MB ON QC

YT NT NU NL

NB NS

PE

Luca Doria, KPH Mainz Introduction to AI 19

Value Ordering
Once a variable ordering algorithm is in place, we need to order the values for a variable.
The least-constraining-value heuristic is an efficient choice:

This strategy chooses the value (the color, in the map example) which rules out the fewer choices for
the neighbouring variables in the constraint graph. In other words: it is the choice which leaves
maximum flexibility.

?

If we color SK with blue, we constrain NT too much.
Actually in this case no color is allowed at all.

Luca Doria, KPH Mainz Introduction to AI 20

Forward Checking, or Ruling out Failures early on
Idea: apply inference during the search.

Remember: algorithms like AC3 should be run instead before the search.

Simplest algorithm: forward checking

Once a variable X is chosen, FC checks for arc-consistency, i.e. for every (unassigned) variable Y

connected to X via a constraint, delete from DY the values incompatible with the value chosen for X.

Luca Doria, KPH Mainz Introduction to AI 21

Chapter 5: Constraint Satisfaction Problems

Forward Checking (1)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 17 / 37

Forward Checking 1

Chapter 5: Constraint Satisfaction Problems

Forward Checking (1)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 17 / 37

Considering for simplicity a “smaller” country, we follow BACKTRACKING with FC:

Initial domains:

Luca Doria, KPH Mainz Introduction to AI 22

Forward Checking 2

Chapter 5: Constraint Satisfaction Problems

Forward Checking (2)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 18 / 37

Chapter 5: Constraint Satisfaction Problems

Forward Checking (1)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 17 / 37

Chapter 5: Constraint Satisfaction Problems

Forward Checking (2)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 18 / 37

FC removes “red”
from the neighbours

Luca Doria, KPH Mainz Introduction to AI 23

Chapter 5: Constraint Satisfaction Problems

Forward Checking (1)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 17 / 37

Chapter 5: Constraint Satisfaction Problems

Forward Checking (2)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 18 / 37

Forward Checking 3

Chapter 5: Constraint Satisfaction Problems

Forward Checking (3)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 19 / 37

Chapter 5: Constraint Satisfaction Problems

Forward Checking (3)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 19 / 37

Two variable domains (NT, SA) reduced to 1 choice after assigning “green” to Q.

Luca Doria, KPH Mainz Introduction to AI 24

Forward Checking 4

Chapter 5: Constraint Satisfaction Problems

Forward Checking (1)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 17 / 37

Chapter 5: Constraint Satisfaction Problems

Forward Checking (2)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 18 / 37

Chapter 5: Constraint Satisfaction Problems

Forward Checking (3)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 19 / 37

Chapter 5: Constraint Satisfaction Problems

Forward Checking (4)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 20 / 37

Chapter 5: Constraint Satisfaction Problems

Forward Checking (4)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 20 / 37

One domain (SA) is now empty! Backtracking needed…

Luca Doria, KPH Mainz Introduction to AI 25

Some considerations remembering AC3

FC propagates information from assigned variables to unassigned variables.
Therefore: no information exchange between unassigned variables.

Remember arc-consistency:

- A directed arc X → Y is “consistent” iff for every value x of X, there exists a value y of Y,
 such that (x, y) satisfies the constraint between X and Y.

- Remove values from the domain of X to enforce arc-consistency.
- Arc consistency detects failures earlier.
- Can be used as preprocessing technique or as a propagation step during backtracking.

Luca Doria, KPH Mainz Introduction to AI 26

Arc-consistency: example

Chapter 5: Constraint Satisfaction Problems

Forward Checking (3)

Keep track of remaining values

Stop if all have been removed

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 19 / 37

Chapter 5: Constraint Satisfaction Problems

Arc Consistency Example

enforcing Arc-Consistency between SA and NSW implies to remove blue from
NSW

enforcing Arc-Consistency between SA and NT, leaves no possible variable
assignment in NSW.

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 23 / 37

Arc-consistency between SA and NSW implies the removal of “blue” from NSW

Arc-consistency between SA and NT leaves instead no assignments possible for NSW.

Luca Doria, KPH Mainz Introduction to AI 27

Structure and Topology 1
Understanding the structure (or the topology) of a problem can help in
speeding up the search for a solution.
From the map example:

BC AB SK MB ON QC

YT NT NU NL

NB NS

PE

we have 2 disconnected graph components that can be solved separately.
This leads to 2 simpler, independent sub-problems.

Luca Doria, KPH Mainz Introduction to AI 28

Structure and Topology 2

Chapter 5: Constraint Satisfaction Problems

Problem Structure (2): Tree-structured CSPs

If the CSP graph is a tree, then it can be solved in O(nd
2) (general CSPs

need in the worst case O(dn)).

Idea: Pick root, order nodes, apply arc consistency from leaves to root, and
assign values starting at root.

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 27 / 37

If the CSP graph of constraints is a tree (any 2 variables are connected only by 1 path), it can be
solved in O(nd2) (linear in the number of variables!) while a general CSP needs O(dn) in the worst
case.

Idea of the algorithm:
- Order the nodes
- Apply directional arc-consistency (DAC) from leaves to root
- Assign values starting from the root.

Tree topology

Luca Doria, KPH Mainz Introduction to AI 29

Structure and Topology 3

Chapter 5: Constraint Satisfaction Problems

Problem Structure (2): Tree-structured CSPs

If the CSP graph is a tree, then it can be solved in O(nd
2) (general CSPs

need in the worst case O(dn)).

Idea: Pick root, order nodes, apply arc consistency from leaves to root, and
assign values starting at root.

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 27 / 37

Chapter 5: Constraint Satisfaction Problems

Problem Structure (2): Tree-structured CSPs

Pick any variable as root; choose an ordering such that each variable appears
after its parent in the tree.
Apply arc-consistency to (xi, xk) when xi is the parent of xk for all k = n

down to 2 (any tree with n nodes has n ≠ 1 arcs and per arc d
2 comparisons

are needed, which results in a complexity of O(nd
2)).

We start from the bottom (i.e F): First arc-consistency between F-D, i.e.

remove values at D, then move upwards... at the end we know, that all

possible assignments which are left, lead to a solution

Now we can start at x1 assigning values from the remaining domains without
creating any conflict in one sweep through the tree!
This algorithm is linear in n.
Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 28 / 37

topological variables sorting
(starting from A as root)

Directional arc-consistency: Given n variables under the ordering X1, X2, …, Xn, they have DAC
iff every Xi is arc-consistent with Xj for j>i .

A tree with n nodes has (n-1) edges. We can enforce DAC in O(n) steps (going backwards).
Each step must compare up to d values for couples of variables —> time complexity O(nd2).

Once we have DAC over the tree, we can start from the root and choose the remaining values.
Since there is consistency, we know already that whatever value we pick, it will be consistent
with one of the values of the next node.

No backtracking is needed!

Luca Doria, KPH Mainz Introduction to AI 30

Structure and Topology 4

Chapter 5: Constraint Satisfaction Problems

Problem Structure (3): Almost Tree-structured

Idea: Reduce the graph structure to a tree by fixing values in a reasonably
chosen subset

Instantiate a variable and prune values in neighboring variables is called
”Conditioning”

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 29 / 37

SA

Cutset conditioning: we can remove one node (here: SA) and turn the graph into a tree. We
ca assign a value to SA and make the other nodes consistent to it. After that, we can run the
previous linear algorithm.

Nodes like SA are called cycle cutsets.

Finding cycle cutsets is unfortunately NP-hard, but approximate algorithms are known.

Luca Doria, KPH Mainz Introduction to AI 31

Structure and Topology 5
Reduce a graph to a tree: Tree Decomposition

Chapter 5: Constraint Satisfaction Problems

Another Method: Tree Decomposition (1/3)

Decompose the problem into a set of connected sub-problems, where two
sub-problems are connected when they share a constraint

Solve the sub-problems independently and then combine the solutions

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 31 / 37

- Decompose the problem into a set of connected
sub-problems, where two sub-problems are
connected when they share a constraint.

- Solve the sub-problems independently and
then combine the solutions.

A tree decomposition must satisfy the following conditions:
1) Every variable of the original problem appears in at least
one sub-problem.
2) Every constraint appears in at least one sub-problem
3) If a variable appears in two sub-problems, it must appear
in all sub-problems on the path between the two sub-
problems
4) The connections form a tree

Meaning of the conditions:
1)+2) : all variables and constraints represented.
3) implies that any variable has the same value
wherever it appeasers.

Luca Doria, KPH Mainz Introduction to AI 32

Structure and Topology 6

Chapter 5: Constraint Satisfaction Problems

Another Method: Tree Decomposition (1/3)

Decompose the problem into a set of connected sub-problems, where two
sub-problems are connected when they share a constraint

Solve the sub-problems independently and then combine the solutions

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 31 / 37

- Consider sub-problems as new collective variables, with values defined
by the solutions to the sub-problems

- Use tree-CSP solver algorithm to find an overall solution

- Constraint: identical value for the same variable

Luca Doria, KPH Mainz Introduction to AI 33

Structure and Topology 7

•It is desirable to make all the subproblems as small as possible. The tree width of a tree
decomposition is the size(largest sub-problem)-1

•Tree width of a graph is the minimal tree width over all possible tree decompositions

•If a graph has tree width w and we know a tree decomposition with that width, we can
solve the problem in O(ndw+1)

•Unfortunately, finding a tree decomposition with minimal tree width is NP-hard. However,
there are heuristic methods that work well in practice.

Luca Doria, KPH Mainz Introduction to AI 34

Summary
• CSPs represent states with variables/values pairs plus a set of constraints.
 These structures represent many real-world problems (scheduling, VLSI, …)

• Inference techniques can be used for reducing the number of variable values using the constraints.
 Examples are node-, arc-, path-, and k-consistency.

• Backtracking (depth-first search) is commonly used for solving CSPs and inference techniques are
applied while searching.

• Heuristics like MRV can be used for deciding which variable to use next during backtracking.
 Least-constraining-value heuristics can be used for deciding which value to try first.

• Cutset conditioning and tree decomposition are two ways to transform part of the problem into a tree
 CSPs with tree topology can also be solved using local search

