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Introduction
• Playing board (adversarial) games is one of the oldest research areas in AI (since 1950s).  

• Board games present an abstract form of competition between two agents requiring a form of 
“intelligence”.  

• The states of a game are easy to represent (map to a data structure).  

• The possible actions of the players are well-defined (rules).  

• The implementation of a game maps to a search problem. 
• The individual states are fully accessible (every agent knows them).  
• It is a contingency problem, because the actions of one agent are not decided by the others.  

•
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Board games can be very complex: they are contingency games + a very large state space.

Examples: 
•Chess: On average 35 possible actions possible from a position. 

Games have O(50) moves per player, resulting in a search depth of O(100): 
   → 35100 ≈ 10150 nodes in the search tree (with ~1040 legal chess positions). 

•Go: On average O(200) possible actions with 
O(300) moves → 200300 ≈ 10700 nodes. 

•Efficient programs delete irrelevant branches of the tree (pruning), use good evaluation functions for 
in-between states, and look ahead as many moves as possible. 

Introduction
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Players are max and min, where max begins. 
 
Initial position (e.g., board arrangement) 

Operators (= legal moves) 

Game tree is the search tree generated from the possible (alternate) moves. 

Termination test, determines when the game is over and what the value of the final state is.  

Strategy. In contrast to regular searches, where a path from beginning to end is a solution, max 
must come up with a strategy to reach a favorable terminal state regardless of what min does. 
Thus, all of min’s moves must be considered and reactions to them must be computed. 

Definitions
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Chapter 6: Board Games

Tic-Tac-Toe Example

Every level of the game tree is given the player’s name whose turn it is (max-
and min-steps).
When it is possible, as it is here, to produce the full game tree, the minimax
algorithm delivers an optimal strategy for max.
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Example: Tic-Tac-Toe (and imagine the Chess tree…)
Initial state
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9 possible first moves

8 possible second moves —> 9*8 nodes

9! = 362880 different games

As many know, Max has one elementary strategy for reducing the tree by a factor 9… 
And Min by another factor 2…
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Note

Minimax assumes that min plays perfectly. Every weakness (i.e., every mistake min makes) can only improve the result for 
max.

1. Generate the complete game tree using depth-first search (we do not need the full tree in memory) 

2.   Apply the utility function to each terminal state. 

3. Beginning with the terminal states, determine the utility of the predecessor nodes with: 
- Node is a min-node: Value is the minimum of the child nodes 
- Node is a max-node: Value is the maximum of the child nodes
 - From the initial state (root of the game tree), Max chooses the move that leads to the highest 
value (minimax decision). 

Minimax assumes that min does not make any mistakes. Even if he did, Max would only end up even 
better.

The Minimax algorithm
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Minimax example
White moves first

-1 +3

Recursion brings the algorithm to the last level
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-1 +3

Minimax example

+3White chooses +3 as Maximizer
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Minimax example

-1 +3

+3

+5 +1

+5
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Minimax example

-1 +3

+3

+5 +1

+5

+3It’s black’s turn: as Minimizer, +3 is chosen
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Minimax example
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-1 +3

+3

+5 +1

+5

+3

-6 -4

-4

0 9
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-4

Minimax example
+3
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Minimax Algorithm
function MiniMax(position, depth, MaxPlayer) 

if depth = 0 or game_over in position 
return Evaluation(position) 

if MaxPlayer 
maxEval = - Infinity 
for child in position 
         eval = MiniMax(child, depth-1, false) 
         maxEval = max(maxEval, eval) 
return maxEval 

else  
         minEval = + Infinity 

for child in position 
         eval = MiniMax(child, depth-1, true) 
         maxEval = min(minEval, eval) 
return minEval 

Recursive algorithm.
Max must maximise starting from -
Min must minimise starting from +
Function Evaluation must be specified

∞
∞
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When the search tree is very large, only a certain depth can be practically reached.
Correctly evaluating the playing position at a given depth is fundamental.

Example of a simple evaluation function for chess: 
Assign the scores: pawn 1, knight/bishop 3, rook 5, queen 9 
Additional heuristic criteria: king safety, good pawn structure, bishops on long 
diagonals,… 
Rule of thumb: three-point advantage = certain victory 
 
Consistency of the evaluation function:  the chance of winning with a one-point 
advantage should be less than with a two-point advantage. 

Evaluation Function
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where the  are weights, and the fi are the features (e.g. , f=“Queen present”). 
The above linear sum makes the (rather strong) assumption that the contributions of all 
features are independent. (not true in general: e.g., bishops in the endgame are more 
powerful, when there is more space. Or bishops are stronger when both present). 

The weights can be learned via some optimising procedure. The features, however, are 
often designed by human intuition and understanding (heuristic criteria).

ωi ω = 10

Evaluation Function
In general, preferred evaluation functions are weighted, linear functions: 

<latexit sha1_base64="n8oCGKr2woPyvj/WOjR8TxvQbdM=">AAACG3icbVDLSgMxFM34rPU16tJNsAiCMMwMom6EohuXFewD2mHIpJk2NMkMSUYoQ//Djb/ixoUirgQX/o1pO6K2Hgice8693NwTpYwq7bqf1sLi0vLKammtvL6xubVt7+w2VJJJTOo4YYlsRUgRRgWpa6oZaaWSIB4x0owGV2O/eUekoom41cOUBBz1BI0pRtpIoe3H8AJ2Ek56KPTi0IPH35Ufh76pHMf50UQcChjaFddxJ4DzxCtIBRSohfZ7p5vgjBOhMUNKtT031UGOpKaYkVG5kymSIjxAPdI2VCBOVJBPbhvBQ6N0YZxI84SGE/X3RI64UkMemU6OdF/NemPxP6+d6fg8yKlIM00Eni6KMwZ1AsdBwS6VBGs2NARhSc1fIe4jibA2cZZNCN7syfOk4Tv eqePenFSql0UcJbAPDsAR8MAZqIJrUAN1gME9eATP4MV6sJ6sV+tt2rpgFTN74A+sjy8D352v</latexit>

f = !1f1 + !2f2 + ...+ !nfn
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Motivation: return an answer within a given time limit. Fixed-depth search. 
Even better: iterative deepening search (stop, when time is over). 

It is better to reach in “quiescent” positions that do not cause large fluctuations in the evaluation 
function in the following moves. Chess example: you can have material advantage, but if on the next 
(non evaluated) move the opponent captures the queen, then the evaluation changes dramatically.

Limited-depth search can lead also to the horizon effect.
This happens when a very dangerous move can be delayed by the opponent to the point that the 
move “falls beyond the horizon”, i.e. it is beyond the maximum search depth.

Maximum Tree Depth and other limiting methods
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Alpha-Beta Pruning: General Idea

8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

Suppose we evaluated these nodes 
with MiniMax:



Luca Doria, KPH Mainz Introduction to AI 18

Now evaluate another node.
Should we evaluate the next one?

8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

1 ?

Alpha-Beta Pruning: General Idea
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8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

1 ?

Not really: we know already 
that the parent must be  
because Black wanted to 
minimize! (Compare with the 
other known branches). 

≤ 1

≤ 1

Alpha-Beta Pruning: General Idea
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8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

1 ?

This means that the white (Max) 
player will never go along this path: 
we do not need to explore the node 
“?” and we prune it.

≤ 1

White will not go down the (red) 
highlighted path since the best he 
can hope for is a “+1”, while 
following the other (blue) path it 
will be better off (getting a 3>1).

Alpha-Beta Pruning: General Idea
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Alpha-Beta Pruning: General Idea

8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

5 21 ?

Continuing to the next nodes…

≤ 1
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Alpha-Beta Pruning: General Idea

8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

5 2

2

2

1 ?

Continuing to the next nodes…

≤ 1
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Alpha-Beta Pruning: General Idea

8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

5 2

2

2

3

1 ?

Comparing the red and the blue 
paths, again white will choose blue, 
and we can prune all the remaining 
nodes.

What is the final best path?

≤ 1

≤ 2
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Alpha-Beta Pruning
Idea: keep track of the best score you can achieve (assuming a “perfect” play of the other player).
For this, we add two mode parameters, conventionally called alpha and beta to the MiniMax function:

function MiniMax(position, depth, MaxPlayer) 

function MiniMax(position, depth, alpha, beta, MaxPlayer) 

We will decide if to prune a tree branch based on the values of alpha and beta.
For Max: alpha will be the max(alpha,MiniMax) : alpha carries the best (=maximum) choice we 
found so far along a path. We can think at alpha as “at least this value”.

For Min: beta will be the min(beta,MiniMax): beta carries the best (=minumun) choice we found 
so far along a path. We can think at beta as “at most this value”.
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Alpha-Beta Pruning Algorithm
function MiniMax(position, depth, alpha, beta, MaxPlayer) 

if depth = 0 or game_over in position 
return Evaluation(position) 

if MaxPlayer 
maxEval = - Infinity 
for child in position 
         eval = MiniMax(child, depth-1, alpha, beta, false) 
         maxEval = max(maxEval, eval) 
         alpha = max(alpha, eval) 
         if beta <= alpha: break 
return maxEval 

else  
         minEval = + Infinity 

for child in position 
         eval = MiniMax(child, depth-1, alpha, beta, true) 
         maxEval = min(minEval, eval) 
         beta = min(beta, eval) 
         if beta <= alpha: break 
return minEval α = − ∞ ; β = + ∞

At the beginning, the 
function is called with:
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Visualization of the Algorithm

+3

[α, β] = [−∞, + ∞]

[−∞, + 3]

First depth-first pass: the final node is evaluated as +3.
This means that the parent black node is AT MOST 3 (or, ).
Beta is updated accordingly: min( ,+3) = +3 

≤ 3
+∞
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+3

[α, β] = [−∞, + ∞]

[−∞, + 3]

The second node is evaluated as +12: Min (Black) will avoid this move and beta stays +3.

Visualization of the Algorithm

+12
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+3

+3

Now we evaluated all the successors of the black node and discover that it has the value 3.
This means that the value of the ROOT node is AT LEAST 3 ( ) and we update alpha accordingly:
max( ,+3) = +3.

≥ 3
−∞

+12

Visualization of the Algorithm

+8

[+3, + 3]

[3, + ∞]
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Visualization of the Algorithm

+3

+3

+2

A new terminal node is evaluated with the result +2.
As in the previous branch, beta is updated the the “at most” value beta = min( ,2).
BUT: we know that node A has a value +3 and node B has . This means that the Max (white 
player) will never go down the path through B. This means that we can prune nodes C and D and 
avoid their evaluation (the break command in the code) …. …. … 

+∞
≤ 2

+12 +8

[+3, + 3]

[3, + ∞]

[−∞, + 2]A B

C D
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Another view of the recursion

+3

+3

+3

+12 +8

MiniMax(Root) = max(min(3,12,8) , min(2,x,y) , min(14,5,2)) = 
                               = max(3, min(2,x,y), 2) = 3

+14 +5 +2+2 x y

Root

+2

min(2,x,y)  2≤ The final result is independent from x,y
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•The alpha-beta pruning eliminates the largest amount of nodes/branches when we examining the best 
move first.  

•In the best case (always the best move first), the time complexity is reduced to O(bd/2). This means 
that we can search twice as deep in the same amount of time.  

•In the average case (randomly distributed moves), for moderate b (b < 100), we roughly  
  have O(b3d/4).  

•Unfortunately, the best move is not known in general. An ordering heuristic can bring the 
performance close to the optimal case. In chess, a depth of about 6-7 moves can be reached.  

•Can we establish a good ordering for chess? Heuristics: try captures first, threats, forward moves, 
backward moves, control the center, no knights at the edges, …

Pruning Efficiency increase
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Games with Random Components

Chapter 6: Board Games

Games that Include an Element of Chance

White has just rolled a 6 and a 5 and has 4 legal moves.

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 24 / 32

Some games involve probabilistic outcomes,
like e.g. the throw of two dice at backgammon.

For the example on the right, a player rolled a 6 and 
a 5 which lead to 4 legal moves.

The MinMax tree must contain also “random 
nodes”.
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Games with Random Components

Chapter 6: Board Games

Game Tree for Backgammon

In addition to min- and max nodes, we need chance nodes (for the dice).

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 25 / 32
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Expected Value Calculation
The Min and Max nodes are treated like before.
The “chance” nodes are treated calculating the expected value of a state.
The new algorithm is called expectiminimax:

   ExpectiMiniMax(s) = 

   Utility(s, Max)                                            if s is a terminal state.  
   maxa ExpectiMiniMax(Result(s,a))    if Max moves 
   mina ExpectiMiniMax(Result(s,a))     if Min moves 
    ExpectiMiniMax(Result(s,r)) if we are in a chance node

r = possible value of a dice roll

∑
r

P(r)

<latexit sha1_base64="b04ptnlyex/8xrdkMTp87X5vdNE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3l9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A50qjWo=</latexit>

{
Corresponds to the average over the chance nodes
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Summary
• A game can be defined by an initial state, the operators (or legal moves), a terminal test and a utility function 

(outcome of the game). 

• In two-player games which are deterministic, zero-sum, discrete, turn-taking with perfect information,  the 
MiniMax algorithm is optimal in selecting the moves adopting a depth-first search.

• An improvement is achieved through pruning techniques like alpha-beta pruning.

• There are alternatives, like the Monte Carlo random search coupled with some guidance for trying randomly 
only “good” moves.

• Often search is combined with look-up tables (e.g. the openings in chess)

• Games with imperfect information (poker, kriegspiel,…) can employ strategies consisting in averaging over 
possible states.

• Computer programs achieve human-like or better performance in newly all cases with humans retaining a 
little advantage in games with imperfect information.


