
© Laurent / Adobe Stock

Introduction to Artificial Intelligence
6: Adversarial Games

Luca Doria, KPH Mainz

Luca Doria, KPH Mainz Introduction to AI

Introduction
• Playing board (adversarial) games is one of the oldest research areas in AI (since 1950s).

• Board games present an abstract form of competition between two agents requiring a form of
“intelligence”.

• The states of a game are easy to represent (map to a data structure).

• The possible actions of the players are well-defined (rules).

• The implementation of a game maps to a search problem.
• The individual states are fully accessible (every agent knows them).
• It is a contingency problem, because the actions of one agent are not decided by the others.

•

Luca Doria, KPH Mainz Introduction to AI 3

Board games can be very complex: they are contingency games + a very large state space.

Examples:
•Chess: On average 35 possible actions possible from a position.

Games have O(50) moves per player, resulting in a search depth of O(100):
 → 35100 ≈ 10150 nodes in the search tree (with ~1040 legal chess positions).

•Go: On average O(200) possible actions with
O(300) moves → 200300 ≈ 10700 nodes.

•Efficient programs delete irrelevant branches of the tree (pruning), use good evaluation functions for
in-between states, and look ahead as many moves as possible.

Introduction

chess.com

am
az

on
.c

om

Luca Doria, KPH Mainz Introduction to AI 4

Players are max and min, where max begins.

Initial position (e.g., board arrangement)

Operators (= legal moves)

Game tree is the search tree generated from the possible (alternate) moves.

Termination test, determines when the game is over and what the value of the final state is.

Strategy. In contrast to regular searches, where a path from beginning to end is a solution, max
must come up with a strategy to reach a favorable terminal state regardless of what min does.
Thus, all of min’s moves must be considered and reactions to them must be computed.

Definitions

Luca Doria, KPH Mainz Introduction to AI 5

Chapter 6: Board Games

Tic-Tac-Toe Example

Every level of the game tree is given the player’s name whose turn it is (max-
and min-steps).
When it is possible, as it is here, to produce the full game tree, the minimax
algorithm delivers an optimal strategy for max.
Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 5 / 32

Example: Tic-Tac-Toe (and imagine the Chess tree…)
Initial state

Possible terminal statesA
lte

rn
at

in
g

m
ov

es
 b

y
m

ax
 a

nd
 m

in
9 possible first moves

8 possible second moves —> 9*8 nodes

9! = 362880 different games

As many know, Max has one elementary strategy for reducing the tree by a factor 9…
And Min by another factor 2…

Luca Doria, KPH Mainz Introduction to AI 6

Note

Minimax assumes that min plays perfectly. Every weakness (i.e., every mistake min makes) can only improve the result for
max.

1. Generate the complete game tree using depth-first search (we do not need the full tree in memory)

2. Apply the utility function to each terminal state.

3. Beginning with the terminal states, determine the utility of the predecessor nodes with:
- Node is a min-node: Value is the minimum of the child nodes
- Node is a max-node: Value is the maximum of the child nodes
 - From the initial state (root of the game tree), Max chooses the move that leads to the highest
value (minimax decision).

Minimax assumes that min does not make any mistakes. Even if he did, Max would only end up even
better.

The Minimax algorithm

Luca Doria, KPH Mainz Introduction to AI 7

Minimax example
White moves first

-1 +3

Recursion brings the algorithm to the last level

Luca Doria, KPH Mainz Introduction to AI 8

-1 +3

Minimax example

+3White chooses +3 as Maximizer

Luca Doria, KPH Mainz Introduction to AI 9

Minimax example

-1 +3

+3

+5 +1

+5

Luca Doria, KPH Mainz Introduction to AI 10

Minimax example

-1 +3

+3

+5 +1

+5

+3It’s black’s turn: as Minimizer, +3 is chosen

Luca Doria, KPH Mainz Introduction to AI 11

-1 +3

+3

+5 +1

+5

+3

Minimax example

-6 -4

-4

0 9

9

-4

Luca Doria, KPH Mainz Introduction to AI 12

-1 +3

+3

+5 +1

+5

+3

-6 -4

-4

0 9

9

-4

Minimax example
+3

Luca Doria, KPH Mainz Introduction to AI 13

Minimax Algorithm
function MiniMax(position, depth, MaxPlayer)

if depth = 0 or game_over in position
return Evaluation(position)

if MaxPlayer
maxEval = - Infinity
for child in position
 eval = MiniMax(child, depth-1, false)
 maxEval = max(maxEval, eval)
return maxEval

else
 minEval = + Infinity

for child in position
 eval = MiniMax(child, depth-1, true)
 maxEval = min(minEval, eval)
return minEval

Recursive algorithm.
Max must maximise starting from -
Min must minimise starting from +
Function Evaluation must be specified

∞
∞

Luca Doria, KPH Mainz Introduction to AI 14

When the search tree is very large, only a certain depth can be practically reached.
Correctly evaluating the playing position at a given depth is fundamental.

Example of a simple evaluation function for chess:
Assign the scores: pawn 1, knight/bishop 3, rook 5, queen 9
Additional heuristic criteria: king safety, good pawn structure, bishops on long
diagonals,…
Rule of thumb: three-point advantage = certain victory

Consistency of the evaluation function: the chance of winning with a one-point
advantage should be less than with a two-point advantage.

Evaluation Function

Luca Doria, KPH Mainz Introduction to AI 15

where the are weights, and the fi are the features (e.g. , f=“Queen present”).
The above linear sum makes the (rather strong) assumption that the contributions of all
features are independent. (not true in general: e.g., bishops in the endgame are more
powerful, when there is more space. Or bishops are stronger when both present).

The weights can be learned via some optimising procedure. The features, however, are
often designed by human intuition and understanding (heuristic criteria).

ωi ω = 10

Evaluation Function
In general, preferred evaluation functions are weighted, linear functions:

<latexit sha1_base64="n8oCGKr2woPyvj/WOjR8TxvQbdM=">AAACG3icbVDLSgMxFM34rPU16tJNsAiCMMwMom6EohuXFewD2mHIpJk2NMkMSUYoQ//Djb/ixoUirgQX/o1pO6K2Hgice8693NwTpYwq7bqf1sLi0vLKammtvL6xubVt7+w2VJJJTOo4YYlsRUgRRgWpa6oZaaWSIB4x0owGV2O/eUekoom41cOUBBz1BI0pRtpIoe3H8AJ2Ek56KPTi0IPH35Ufh76pHMf50UQcChjaFddxJ4DzxCtIBRSohfZ7p5vgjBOhMUNKtT031UGOpKaYkVG5kymSIjxAPdI2VCBOVJBPbhvBQ6N0YZxI84SGE/X3RI64UkMemU6OdF/NemPxP6+d6fg8yKlIM00Eni6KMwZ1AsdBwS6VBGs2NARhSc1fIe4jibA2cZZNCN7syfOk4Tv eqePenFSql0UcJbAPDsAR8MAZqIJrUAN1gME9eATP4MV6sJ6sV+tt2rpgFTN74A+sjy8D352v</latexit>

f = !1f1 + !2f2 + ...+ !nfn

Luca Doria, KPH Mainz Introduction to AI 16

Motivation: return an answer within a given time limit. Fixed-depth search.
Even better: iterative deepening search (stop, when time is over).

It is better to reach in “quiescent” positions that do not cause large fluctuations in the evaluation
function in the following moves. Chess example: you can have material advantage, but if on the next
(non evaluated) move the opponent captures the queen, then the evaluation changes dramatically.

Limited-depth search can lead also to the horizon effect.
This happens when a very dangerous move can be delayed by the opponent to the point that the
move “falls beyond the horizon”, i.e. it is beyond the maximum search depth.

Maximum Tree Depth and other limiting methods

Luca Doria, KPH Mainz Introduction to AI 17

Alpha-Beta Pruning: General Idea

8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

Suppose we evaluated these nodes
with MiniMax:

Luca Doria, KPH Mainz Introduction to AI 18

Now evaluate another node.
Should we evaluate the next one?

8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

1 ?

Alpha-Beta Pruning: General Idea

Luca Doria, KPH Mainz Introduction to AI 19

8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

1 ?

Not really: we know already
that the parent must be
because Black wanted to
minimize! (Compare with the
other known branches).

≤ 1

≤ 1

Alpha-Beta Pruning: General Idea

Luca Doria, KPH Mainz Introduction to AI 20

8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

1 ?

This means that the white (Max)
player will never go along this path:
we do not need to explore the node
“?” and we prune it.

≤ 1

White will not go down the (red)
highlighted path since the best he
can hope for is a “+1”, while
following the other (blue) path it
will be better off (getting a 3>1).

Alpha-Beta Pruning: General Idea

Luca Doria, KPH Mainz Introduction to AI 21

Alpha-Beta Pruning: General Idea

8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

5 21 ?

Continuing to the next nodes…

≤ 1

Luca Doria, KPH Mainz Introduction to AI 22

Alpha-Beta Pruning: General Idea

8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

5 2

2

2

1 ?

Continuing to the next nodes…

≤ 1

Luca Doria, KPH Mainz Introduction to AI 23

Alpha-Beta Pruning: General Idea

8 5 6 -4 3 8 4 -6

5 -4 3 -6

5 3

3

5 2

2

2

3

1 ?

Comparing the red and the blue
paths, again white will choose blue,
and we can prune all the remaining
nodes.

What is the final best path?

≤ 1

≤ 2

Luca Doria, KPH Mainz Introduction to AI 24

Alpha-Beta Pruning
Idea: keep track of the best score you can achieve (assuming a “perfect” play of the other player).
For this, we add two mode parameters, conventionally called alpha and beta to the MiniMax function:

function MiniMax(position, depth, MaxPlayer)

function MiniMax(position, depth, alpha, beta, MaxPlayer)

We will decide if to prune a tree branch based on the values of alpha and beta.
For Max: alpha will be the max(alpha,MiniMax) : alpha carries the best (=maximum) choice we
found so far along a path. We can think at alpha as “at least this value”.

For Min: beta will be the min(beta,MiniMax): beta carries the best (=minumun) choice we found
so far along a path. We can think at beta as “at most this value”.

Luca Doria, KPH Mainz Introduction to AI 25

Alpha-Beta Pruning Algorithm
function MiniMax(position, depth, alpha, beta, MaxPlayer)

if depth = 0 or game_over in position
return Evaluation(position)

if MaxPlayer
maxEval = - Infinity
for child in position
 eval = MiniMax(child, depth-1, alpha, beta, false)
 maxEval = max(maxEval, eval)
 alpha = max(alpha, eval)
 if beta <= alpha: break
return maxEval

else
 minEval = + Infinity

for child in position
 eval = MiniMax(child, depth-1, alpha, beta, true)
 maxEval = min(minEval, eval)
 beta = min(beta, eval)
 if beta <= alpha: break
return minEval α = − ∞ ; β = + ∞

At the beginning, the
function is called with:

Luca Doria, KPH Mainz Introduction to AI 26

Visualization of the Algorithm

+3

[α, β] = [−∞, + ∞]

[−∞, + 3]

First depth-first pass: the final node is evaluated as +3.
This means that the parent black node is AT MOST 3 (or,).
Beta is updated accordingly: min(,+3) = +3

≤ 3
+∞

Luca Doria, KPH Mainz Introduction to AI 27

+3

[α, β] = [−∞, + ∞]

[−∞, + 3]

The second node is evaluated as +12: Min (Black) will avoid this move and beta stays +3.

Visualization of the Algorithm

+12

Luca Doria, KPH Mainz Introduction to AI 28

+3

+3

Now we evaluated all the successors of the black node and discover that it has the value 3.
This means that the value of the ROOT node is AT LEAST 3 () and we update alpha accordingly:
max(,+3) = +3.

≥ 3
−∞

+12

Visualization of the Algorithm

+8

[+3, + 3]

[3, + ∞]

Luca Doria, KPH Mainz Introduction to AI 29

Visualization of the Algorithm

+3

+3

+2

A new terminal node is evaluated with the result +2.
As in the previous branch, beta is updated the the “at most” value beta = min(,2).
BUT: we know that node A has a value +3 and node B has . This means that the Max (white
player) will never go down the path through B. This means that we can prune nodes C and D and
avoid their evaluation (the break command in the code) …. …. …

+∞
≤ 2

+12 +8

[+3, + 3]

[3, + ∞]

[−∞, + 2]A B

C D

Luca Doria, KPH Mainz Introduction to AI 30

Another view of the recursion

+3

+3

+3

+12 +8

MiniMax(Root) = max(min(3,12,8) , min(2,x,y) , min(14,5,2)) =
 = max(3, min(2,x,y), 2) = 3

+14 +5 +2+2 x y

Root

+2

min(2,x,y) 2≤ The final result is independent from x,y

Luca Doria, KPH Mainz Introduction to AI 31

•The alpha-beta pruning eliminates the largest amount of nodes/branches when we examining the best
move first.

•In the best case (always the best move first), the time complexity is reduced to O(bd/2). This means
that we can search twice as deep in the same amount of time.

•In the average case (randomly distributed moves), for moderate b (b < 100), we roughly
 have O(b3d/4).

•Unfortunately, the best move is not known in general. An ordering heuristic can bring the
performance close to the optimal case. In chess, a depth of about 6-7 moves can be reached.

•Can we establish a good ordering for chess? Heuristics: try captures first, threats, forward moves,
backward moves, control the center, no knights at the edges, …

Pruning Efficiency increase

Luca Doria, KPH Mainz Introduction to AI 32

Games with Random Components

Chapter 6: Board Games

Games that Include an Element of Chance

White has just rolled a 6 and a 5 and has 4 legal moves.

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 24 / 32

Some games involve probabilistic outcomes,
like e.g. the throw of two dice at backgammon.

For the example on the right, a player rolled a 6 and
a 5 which lead to 4 legal moves.

The MinMax tree must contain also “random
nodes”.

Luca Doria, KPH Mainz Introduction to AI 33

Games with Random Components

Chapter 6: Board Games

Game Tree for Backgammon

In addition to min- and max nodes, we need chance nodes (for the dice).

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 25 / 32

Creator: siridhata | Credit: Getty Images/iStockphoto

Luca Doria, KPH Mainz Introduction to AI 34

Expected Value Calculation
The Min and Max nodes are treated like before.
The “chance” nodes are treated calculating the expected value of a state.
The new algorithm is called expectiminimax:

 ExpectiMiniMax(s) =

 Utility(s, Max) if s is a terminal state.
 maxa ExpectiMiniMax(Result(s,a)) if Max moves
 mina ExpectiMiniMax(Result(s,a)) if Min moves
 ExpectiMiniMax(Result(s,r)) if we are in a chance node

r = possible value of a dice roll

∑
r

P(r)

<latexit sha1_base64="b04ptnlyex/8xrdkMTp87X5vdNE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Mv65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6qXq3q3l9W6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A50qjWo=</latexit>

{
Corresponds to the average over the chance nodes

Luca Doria, KPH Mainz Introduction to AI 35

Summary
• A game can be defined by an initial state, the operators (or legal moves), a terminal test and a utility function

(outcome of the game).

• In two-player games which are deterministic, zero-sum, discrete, turn-taking with perfect information, the
MiniMax algorithm is optimal in selecting the moves adopting a depth-first search.

• An improvement is achieved through pruning techniques like alpha-beta pruning.

• There are alternatives, like the Monte Carlo random search coupled with some guidance for trying randomly
only “good” moves.

• Often search is combined with look-up tables (e.g. the openings in chess)

• Games with imperfect information (poker, kriegspiel,…) can employ strategies consisting in averaging over
possible states.

• Computer programs achieve human-like or better performance in newly all cases with humans retaining a
little advantage in games with imperfect information.

