Introduction to Artificial Intelligence 7: Propositional Logic (Logic Agents) 070010

Luca Doria, KPH Mainz

A new kind of agent: logical agents

Intelligent agents until now:

- Limited "knowledge"
- No knowledge of general facts about the problem
- Often forced to generate a large amount of states with fixed rules

Embed agents with logic:

- Ability to employ general rules disconnected to the specific data
- Ability to update their behaviour as new knowledge is acquired
- Ability to perform new tasks

Applications

Logic as universal tool for reasoning:

- Theorem proving
- Software verification
- Detection of unwanted states
- Hardware verification
- Relation to NP-hard problems

Outline:

- Agents thinking rationally
- An example "world"
- Introduction to propositional logic
- Syntax and Semantics
- Entailment and Resolution

Introduction to AI

3

Agents thinking rationally

- We pretended that our agents were acting rationally.
- Rationality often requires logical thought.
- For that part of the world where the agent is operating must be represented by a knowledge base (KB).

about the world (<u>semantics</u>).

- Interaction with the KB through the simplified actions "Ask" and "Tell": - Ask(KB,P) = "yes" when P follows from KB - Tell(KB,P) = KB' so that P follows from KB'

- A KB is composed of sentences in a language together with a truth theory (logic). We, externally to the agent, can attach a meaning to these sentences as statements
- The sentences can influence the agent's behaviour through their form (<u>syntax</u>).

The 3 levels of a logical agent (A. Newell, 1982)

We can define 3 levels for giving an abstract description of logical agents:

Frankfurt to Toronto.

2: Logical Level: Encodes the knowledge of a formal language. For example: Price(Frankfurt, Toronto, P).

For example:

Price(Frankfurt, Toronto, P) represented as a string, as a matrix, hash table,...

If Ask and Tell work correctly, it is possible to remain at Level 1. the advantage is a simpler user interface.

- 1: Knowledge Level: This is the most abstract and concerns the total knowledge in the KB. For example, the Lufthansa information system knows the price P of a flight from
- **3: Implementation Level:** The concrete internal representation of the sentences.

Knowledge-Based Agents

function KB-AGENT(percept) returns an action persistent: KB, t

TELL(KB,MAKE-PERCEPT-SENTENCE(percept,t)) //add percept to KB action - ASK(KB, MAKE-ACTION-QUERY(t)) //ask the KB which action to performTELL(KB,MAKE-ACTION-SENTENCE(action,t)) //inform KB that the action was performed

t <-- t+1 return action

An example world: the "Wumpus World" (G. Yob, 1975)

Description of the world:

- 4x4 grid
- In the Wumpus square and in the adjacent ones the agent perceives a stench.
- In the squares adjacent to a pit, the agent perceives a breeze.
- If the agent hits a wall (bump), he can perceive it.
- When the Wumpus is killed, the scream is heard everywhere.
- Percepts are the 5-tuple. [Stench, Breeze, Glitter, Bump, Scream].
- The agent cannot perceive its own location or look into an adjacent square.
- Only up-down-left-right moves are allowed, plus 90deg turns.
- Somewhere there is a gold treasure: the task is to find it.
- Initial state: agent in square [1,1].
- You have 1 (and only 1) arrow to throw

Let's start and apply some logic...

1,4	2,4	3,4	4,4	A B C
1,3	2,3	3,3	4,3	OK P
				v W
1,2 OV	2,2	3,2	4,2	
OK				
1,1 A	2,1	3,1	4,1	
ОК	ОК			

Move right

Percept = [none, none, none, none, none]

Luca Doria, KPH Mainz

- = Agent
- = Breeze
- = Glitter, Gold
- = Safe square
- = Pit
- = Stench
- = Visited
- = Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 ОК	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	^{3,1} P?	4,1

Percept = [none, breeze, none, none, none]

After some steps...

1,4	2,4	3,4	4,4		1,4	2,4 P?	3,4	4,4
^{1,3} w!	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus	^{1,3} w!	2,3 A S G B	^{3,3} Р?	4,3
1,2A S OK	2,2 OK	3,2	4,2	•• – ••umpus	^{1,2} s V OK	2,2 V OK	3,2	4,2
1,1 V OK	2,1 B V OK	^{3,1} P!	4,1		1,1 V OK	2,1 B V OK	^{3,1} P!	4,1

Percept(1,2) = [stench, none, none, none, none]Percept(2,3) = [stench, breeze, glitter, none, none] We deduce that the Wumpus must be in (1,3)!

Syntax and Semantics

- The KB consists of sentences.
- Sentences are expressed in a language with a syntax
 - Syntax identifies all the sentences which are well-formed
 - <u>Example</u>: arithmetic.
 - x+y=4 is well formed, while y4x=+ is not
- A logic defines also the semantics (the meaning) of sentences
 - Defines the truth of sentences with respect to each possible world
 - Example: semantics specifies that x+y=4 is true in a world where x=1 and y=3

Logical Entailment

- The set of all models of P is denoted by M(P)
- Logical entailment:
 - When does a sentence Q follow from another sentence P? Or: $P \models Q$?
 - $P \models Q$ if and only if (iff) in every model where P is true, Q is also true.
 - In symbols: $P \models Q$ iff $M(P) \subseteq M(Q)$
 - P is a stronger assertion than Q, since it rules out more worlds (models).
 - Example from arithmetic:

x=0 entails xy=0

x=0 rules out the world where $\{x=1\}$

- If a sentence P is true in a possible world M, we say that M satisfies P or M is a **model** of P.

Example from the Wumpus World

- The agent detected nothing in [1,1] and breeze in [2,1].
- This information is the actual KB, plus the rules of this world.
- Considering only [1,2], [2,2], [3,1]: does any of them contain a pit?
- KB returns "false" in any M contradicting what the agent knows: Example 1: In a world where [1,2] has a pit (no breeze in [1,1]) Example 2: In a world where [2,2] and [3,1] do not have a pit (breeze in [2,1])

Possible models for a pit in [1,2], [2,2], [3,1]

Example from the Wumpus World

- Consider the sentences:
- $\alpha_1 =:$ "There is no pit in [1,2]" (true in the models enclosed with the dashed line, left) $\alpha_2 =:$ "There is no pit in [2,2]" (true in models enclosed with the dashed line, right) - KB $\models \alpha_1$: by inspection, every model where KB is true, α_1 is also true
- KB $\not\vdash \alpha_2$: in some models where KB is true, α_2 is false

Possible models for a pit in (1,2), (2,2), (3,1)

No pit in (2,2)1 2 3

Introduction to AI

13

Entailment and Inference

- Which inference <u>algorithm</u> did we just use? Exhaustive enumeration! Logical entailment: KB $\models \alpha$ Inference: derive α with an <u>inference algorithm</u> k. Formally: KB $\vdash_k \alpha$ (in words: α is derived from KB by algorithm k).

- Our aim is to have an inference algorithm that derives only sentences that are entailed (soundness) and all of them (completeness).

14

Soundness and Completeness

statement must be true.

be a proof for it.

Ideally, in a logic system, both properties are highly desirable. We will see how in certain cases this is not the case (Gödel's Theorems)

$$: \vdash P \Rightarrow \models P$$

- Soundness: $\vdash P \Rightarrow \models P$ Completeness: $\models P \Rightarrow \vdash P$
- 1) Soundness ensures no false positives: If a proof exists for a statement, then the

2) Completeness ensures no false negatives: If a statement is true, then there must

Entailment and Inference

- Sentences are physical configurations of the agent.
- Reasoning is producing new configurations from old ones.

- Logical reasoning ensures that new configurations respect the aspects of the following world

Declarative Languages

we have to find how to express knowledge.

This can be done only with a <u>precise</u>, <u>declarative</u> language:

Declarative:

We <u>state</u> what we want to compute, not <u>how</u> The system believes P if and only if (iff) it considers P to be true Precise:

We must know, which symbols represent sentences, what it means for a sentence to be true, and when a sentence follows from other sentences.

<u>One possibility</u>: **Propositional Logic**

In order to be capable of building a system (agent) which is capable of learning, thinking, planning, ...

Propositional Logic

Propositions:

Example: "The Wumpus is in [1,3]", expressed, e.g., by the symbol "W_{1.3}"

and the logical connectives "and", "or", and "not", which can be used to build formulae.

- The building blocks of propositional logic are indivisible, atomic statements (atomic propositions),

Propositional Logic

Interesting questions:

- When is a proposition true?
- When does a proposition follow from a KB? i.e: KB |= P
- Can we syntactically define a concept of derivation? i.e. $KB \vdash P$
- Can we make sure that \models and \vdash are equivalent?

This is a concrete implementation of Ask.

The Syntax of Propositional Logic

Countable alphabet Σ of atomic propositions P, Q, ... Logical formulae:

 $P \in \Sigma$: atomic formula

 \perp : falseness

T: truth

¬P: negation

 $P \land Q$: conjunction

 $P \lor Q$: disjunction

 $P \Rightarrow Q$: implication (equiv. to: $\neg P \lor Q$)

 $P \iff Q$: equivalence (equiv to: $P \Rightarrow Q \land Q \Rightarrow P$)

Operator precedence order: \neg , \land , \lor , \Rightarrow , \iff (with brackets if needed) Atom: atomic formula (P, \bot, T) Literal: (negated) atomic formula Clause: disjunction of literals (e.g.: AVBVC,...)

Semantics

- Atomic propositions can be true (T) or false (F).
- The truth of a formula follows from the truth of its atomic propositions (truth assignment or interpretation) and the connectives.
- Example: $(P \lor Q) \land R$
 - If P and Q are false and R is true, what is the value of the formula?
- If P and R are true, the formula is true regardless of what Q is.

Semantics

A truth assignment I of the atoms in Σ (or a boolean interpretation I over Σ) is a function

The interpretation I satisfies a formula $\phi(I \models \phi)$:

- I J L
- $-I \models P \text{ iff } P^{I} = T$
- I $\nvdash \neg \phi$ iff I $\models \phi$
- I $\models (\phi \land \psi)$ iff I $\models \phi$ and I $\models \psi$
- $-I \models (\phi \lor \psi) \text{ iff } I \models \phi \text{ or } I \models \psi$
- I $\models (\phi \Rightarrow \psi)$ iff I $\models \phi$ then I $\models \psi$
- I $\models (\phi \iff \psi)$ iff I $\models \phi$ if and only if I $\models \psi$

I satisfies $\phi(I \models \phi)$ or is true under I, when $I(\phi)=T$. I can be seen as a **possible world**.

$I: \Sigma \to \{T, F\}$

<u>Note 1</u>: if Σ contains N propositions, then there are 2^N possible interpretations. <u>Note 2</u>: $I(\bot) = F$ for whatever I Note 3: ϕ is a **tautology** if it is always true independently from the interpretation I.

Example: $A \lor \neg A$

Semantics: Truth table representation

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Notes:

- Observe that the implication is false only when P is true and Q is false. On the other hand, if P is false and Q true, $P \Rightarrow Q$ is true. This can be translated with: "if P is false, I make no claim"...

- Here we do not list the XOR ("aut") operator, with values (false, true, true, false)

Concrete Example

Formula:

Question: $I \models \phi$?

Luca Doria, KPH Mainz

Truth assignment: $I: \begin{cases} P \mapsto T \\ Q \mapsto T \\ R \mapsto F \\ S \mapsto F \\ \cdots \end{cases}$

 $\phi = ((P \lor Q) \Leftrightarrow (R \lor S)) \land (\neg (P \land Q) \land (R \land \neg S))$

The Wumpus World translated in propositional logic

Symbols: B_{11} , B_{12} , ..., S_{12} , ..., W_{11} , ... Meaning: $B = "breeze", B_{ij} = "breeze in square (i,j)" \dots 4$

Rules:

$$R_1: B_{11} \iff (P_{12} \lor P_{21})$$
$$R_2: B_{21} \iff (P_{11} \lor P_{22} \lor P_{31})$$

Facts:

• • •

 $F_1: \neg P_{11}$ $F_2: \neg B_{11}$

• • •

/	
re -	

Logical Entailment

An interpretation I is a **model** of ϕ if I \models I is a model of a set of formulae if it fulfils all the formulae of the set. A formula ϕ is satisfiable of there exists I that satisfies it unsatisfiable if ϕ is not satisfiable falsifiable if there exists I that doesn't satisfy ϕ valid (tautology) if $I \models \phi$ holds for all I Relation among formulae: Two formulae are logically equivalent if $(I \models \phi \text{ iff } I \models \psi)$ holds for all I

Logical Equivalences

 $(\alpha \land \beta) \equiv (\beta \land \alpha)$ commutativity of \land $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ De Morgan $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$

 $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor distributivity of \lor over \land

Truth Table Method

Generating a truth table is a method for deciding if a formula is satisfiable. Example: $\phi = ((P \lor H) \land \neg H) \Rightarrow P$

P	H	$P \lor H$	$(P \lor H) \land \neg H$	$((P \lor H) \land \neg H) \Rightarrow P$
F	F	F	F	T
F	T	T	F	T
T	F	T	T	T
T	T	T	F	T

The formula is true for all the possible combinations (I) therefore ϕ it is valid.

The Wumpus World Knowledge Base

Sentences:

- $R_1: \neg P_{11}$ Initial observation
- $R_{2}: B_{11} \iff P_{12} \lor P_{21}$ $R_{3}: B_{21} \iff P_{11} \lor P_{22} \lor P_{31}$ True in every world
- $\left.\begin{array}{c} R_4: \neg B_{11} \\ R_5: B_{21}\end{array}\right\} \text{ Derived after first two moves}$

They are sufficient to derive: $\neg P_{12}$

Breeze Stench S PIT 4 Breeze 55 SSSSS SStench Breez PIT 3 50 Breeze Stench 2 Breeze Breez PIT START 1 2 3 4

e	
e	

Inference by Enumeration

We would like to decide whether KB $\models \phi$ for some sentence ϕ . Example: $\phi = \neg P_{12}$.

KB is true.

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	false	false	false	false	false	false	true	true	$true \\ false$	true	false	false
false	false	false	false	false	false	true	true	true		true	false	false
: false	\vdots true	\vdots false	$\vdots \\ false$	$\vdots \\ false$	$\vdots false$	$\vdots \\ false$: true	$\vdots true$	\vdots false	$\vdots true$	$\vdots true$: false
false	true	false	false	false	false	true	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	false	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	true	true	true	true	true	true	<u>true</u>
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	true	true	true	true	true	true	false	true	true	false	true	false

<u>Direct algorithm</u>: enumerate the models and check that ϕ is true in every model where

Introduction to AI

30

Model Checking vs Theorem Proving

- **Model Checking**: <u>Enumerate models</u> and show the sentence holds everywhere
- a sentence without consulting models.

If the number of models is large with respect to the length of a proof, then theorem proving can bring a computational advantage.

- Theorem Proving: Apply rules of inference to the sentences in the KB to prove

Theorem Proving

Starting point: logical equivalence: $P \equiv Q$ iff $P \models Q$ and $Q \models P$

Validity:

P is valid if true in all models (it is a <u>tautology</u>. Example: $P \lor \neg P$)

Deduction Theorem:

For any sentences P and Q, $P \models Q$ iff $P \Rightarrow Q$ is valid.

Satisfiability:

A sentence P is satisfiable, if it is true in some model. In Logic (and Computer Science!) this problem is better known as **SAT**, the paradigmatic **NP-complete** problem.

Luca Doria, KPH Mainz

Theorem Proving: Inference Rules

Luca Doria, KPH Mainz

- → Inferred

Biconditional Elimination

 $P \iff Q$ $(P \Rightarrow Q) \land (Q \Rightarrow P)$ $(P \Rightarrow Q) \land (Q \Rightarrow P)$ $P \iff Q$

Wumpus World Example

1: Apply biconditional elimination to R₂: **R₆:** $B_{11} \Rightarrow (P_{12} \lor P_{21}) \land (P_{12} \lor P_{21}) \Rightarrow B_{11}$ 2: Apply AND-elimination to R₆: $\mathbf{R}_{7}: (\mathbf{P}_{12} \lor \mathbf{P}_{21}) \Rightarrow \mathbf{B}_{11}$ 3: Logical equiv. for contrapositives: **R**₈: \neg B₁₁ $\Rightarrow \neg$ (P₁₂ \lor P₂₁) 4: Modus ponens to R₈ and use R₄ **R**₉: \neg (**P**₁₂ \lor **P**₂₁) 5: Apply De Morgan's rule to R₉ $\neg P_{12} \land \neg P_{21} \longrightarrow \text{No pit in } [1,2] \text{ and } [2,1]$

Remember the KB: $R_1: \neg P_{11}$ $R_2: B_{11} \Longleftrightarrow P_{12} \lor P_{21}$ $R_3: B_{21} \iff P_{11} \lor P_{22} \lor P_{31}$ R₄: ¬B₁₁ R₅: B₂₁

2

З

4

We present with an <u>example</u> an inference technique called **Resolution**:

Suppose that in the Wumpus world we have R: $P_{11} \vee P_{22} \vee P_{31}$ and we add the fact $\neg P_{22}$ (no pit in [2,2]).

We say that P_{22} resolves R giving the resolvent $P_{11} \vee P_{31}$

This means: "If there is a pit in [1,1] or [2,2] or [3,1]" and it is not in [2,2] then it is in either [1,1] or [3,1]... This is an example of unit resolution inference rule

Unit Resolution

Let \mathbf{l}_i be literals (i=1,...,k) and let **m** be complementary literal (negation) of l_i, then the **unit resolution** formula is:

$$\lor l_k, m$$

 $\lor l_{i+1} \lor \ldots \lor l_k$

Generalised Resolution Rule

$$l_1 \vee \ldots \vee l_k, \quad m_1 \vee \ldots \vee m_n$$
$$\vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots \vee l_k \vee m_1 \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_n$$

where l_i and m_k are complementary literals.

the additional information in the literals m. Copy removal is called factoring, e.g.: $A \lor A \rightarrow A$

(*) A clause is a conjunction of literals

$$m_1 \vee \ldots \vee m_n$$

- <u>Note</u> that the rule eliminates the complementary literal but adds all the rest of
- **Important**: the resulting clause^(*) must contain only one copy of each literal.

37

Conjunctive Normal Form

Theorem: every sentence of propositional logic is logically equivalent to a conjuction of clauses, called <u>conjunctive normal form</u> (CNF)

Example: convert $P \iff (Q \lor R)$ in CNF

1) Biconditional elimination: $P \Rightarrow (Q \lor R) \land (Q \lor R) \Rightarrow P$ 2) Implication elimination: $(\neg P \lor Q \lor R) \land (\neg (Q \lor R) \lor P)$ 3) De Morgan law: $(\neg P \lor Q \lor R) \land [(\neg Q \land \neg R) \lor P]$ 4) Distributive law: $(\neg P \lor Q \lor R) \land (\neg Q \lor P) \land (\neg R \lor P) \longrightarrow CNF$

Clause

Clause

Resolution Algorithm

The algorithm is based in the proof by contradiction, i.e. in order to show that KB \models P, we show that (KB $\land \neg A$) cannot be satisfied.

The steps of the algorithms are:

- Convert (KB $\land \neg A$) in CNF
- Apply the resolution rule to the resulting clauses
- Stop when: 3)
 - **a**)

Empty clause = disjunction of no disjuncts: this is always false.

No new clauses to be added: then KB does not entail A b) Two clauses resolve in the empty clause then KB entails A

If the agent is in [1,1], there is no breeze so there are no pits in [1,2] and [2,1]. The corresponding KB is: $R_2 \wedge R_4 : (B_{11} \iff (P_{21} \vee P_{12})) \wedge \neg B_{11}$. We would like to prove that there is no pit in [1,2], or $\neg P_{12}$. For proving KB $\models \neg P_{12}$ we prove by contradiction KB $\land P_{12}$.

Reducing the last formula in CNF we have: $(\neg P_{21} \lor B_{11}) \land (\neg B_{11} \lor P_{12} \lor P_{21}) \land (\neg P_{12} \lor B_{11}) \land (\neg B_{11}) \land P_{12}$

Now we apply **resolution** to the 5 clauses we found...

Example (cont'd)

Resolution Algorithm's Code

function RESOLUTION(KB, A) returns true or false clauses < – set of clauses in the CNF of KB $\land \neg A$ new <-- { } while true do for each pair of clauses C_i, C_j in clauses do resolvents $\langle -RESOLVE(C_i, C_j) \rangle$ new <-- new U resolvents if new \subseteq clauses **then return** false clauses <-- clauses U new

- if resolvents contains an empty clause **then return** true

Soundness and Completeness

Reminder:

A procedure (algorithm) is **sound** (or "truth-preserving") if derives only entailed sentences. In other words, it never produces wrong statements.

Completeness means that an algorithm can derive <u>any</u> entailed sentence. For a finite number of consequences, this can be verified in a certain time. For infinite consequences, this property can be tricky...

Resolution is sound and complete.

43

Horn Clauses

- Definition (Horn Clause): it is a clause with <u>maximally</u> one positive literal.
- Example 1: $\neg A_1 \lor \ldots \lor \neg A_n \lor B$
- Example 2: $\neg A_1 \lor \ldots \lor \neg A_n$
- Equivalent representation: $\neg A_1 \lor \ldots \lor \neg$
- Horn clause.
- This is the basis of logic programming (e.g with languages like PROLOG)

• Horn clauses are a relevant special case since they lead to <u>polynomial scaling</u>.

$$\neg A_n \lor B \iff \bigwedge_i A_i \Rightarrow B.$$

• Horn clauses are closed under resolution: resolving two Horn clauses generate a

Forward Chaining Algorithm

- **1.** Initialization: Start with an initial set of known facts and a set of rules in the form: $A_1 \wedge A_2 \wedge \ldots \wedge A_n \Rightarrow B$
- 2. Matching: Find all the rules whose premises $(A_1, ..., A_n)$ are satisfied by the current set of known facts.
- **3.** Inference: For each rule that matches, deduce the conclusion B and add it to the set of known facts if it is not already present.

4. Iteration: Repeat the matching and inference steps until one of the following conditions is met: a) the goal proposition is derived, b) No new facts are being added

Goal: derive Q P⇒Q $L \land M \Rightarrow P$ $B \land L \Rightarrow M$ $A \land B \Rightarrow L$ A B

from: P. Norvig-S. Russell

Luca Doria, KPH Mainz

AND-OR Diagram notation:

Edges joined with an arc: AND

Edges with no arc: OR.

The algorithm propagates through the graph and when a conjunction is encountered, it is resolved only when all the inputs are known.

Known Facts: {A}

Rules: $A \Rightarrow B$ B⇒C C⇒D

Goal: D

Luca Doria, KPH Mainz

Known Facts: {A,B} B added to the known facts

Rules: $A \Rightarrow B$ Matching: derive B B⇒C

C⇒D

Goal: D

Luca Doria, KPH Mainz

Known Facts: {A,B,C} C added to the known facts

Rules: $A \Rightarrow B$ $B \Rightarrow C$ Matching: derive C C⇒D

Known Facts: {A,B,C,D} D added to the known facts

Rules: $A \Rightarrow B$ B⇒C $C \Rightarrow D$ Matching: derive D \longrightarrow D is the goal \longrightarrow return.

Goal: D

FC Algorithm

function FC(KB, q) returns true or false

count $\langle -a table where count[c]$ is initially the number of symbols in clause c's premise. inferred $\langle -a \rangle$ table where inferred[s] is initially false for all symbols.

queue <-- queue of symbols, initially all the ones known in the KB

while queue is not empty do

p <- POP(queue)</pre>

if p = q then return true

if inferred[p] = false then

inferred[p] <- true

for each clause c in KB where p is in c.PREMISE do

count[c] = count[c] - 1

return false

if count[c] = 0 **then** add c.CONCLUSION to queue

Backward Chaining

- FC is data-driven: can be used from an agent for updating his KB as new
 - information comes in (new percepts). It is sound and complete.
- Backward chaining (BC) starts from the query q and then works backwards.
- With reference to the previous graph, BC works from Q to A or B.
- BC is a **goal-directed** algorithm and tries to answer to questions like "What should I do now?" looking into the KB for known facts/actions.
- BC corresponds to a search algorithm on AND-OR graphs.

52

Backward Chaining Algorithm

- **1.** Initialization: Start with an goal-proposition G to prove.
- **2.** Matching: Look into the KB for rules where G is a consequence: $A_1 \wedge A_2 \wedge \ldots \wedge A_n \Rightarrow G$
- The algorithm tries to match all these sub-goals.

3. Sub-goal formation: For each rule that matches, the premises A_i become sub-goals.

4. Recursion: Matching is repeated for each sub-goal recursively until: a) a sub-goal matches with a KB known fact or b) no rules can be found matching the sub-goal.

Known Facts: {A, B}

Rules: $A \land B \Rightarrow C$ C⇒D B⇒E

Goal: D

Luca Doria, KPH Mainz

Known Facts: {A, B}

Rules: $A \land B \Rightarrow C$ Matching: find a rule where D is the consequence C⇒D Sub-goal: prove C B⇒E

Goal: D

Luca Doria, KPH Mainz

Known Facts: {A, B}

Rules: $A \land B \Rightarrow C$ Matching: find a rule where C (sub-goal) is the consequence Sub-goal: prove A and B C⇒D B⇒E

Goal: D

Luca Doria, KPH Mainz

Introduction to AI

56

Known Facts: {A, B}

B⇒E

Goal: D

Luca Doria, KPH Mainz

Matching: A and B are known facts back recursion: A and B prove C that proves D —> return.

Introduction to AI

57

Summary

- Rational agents require knowledge of their world in order to make rational decisions.
- With the help of a declarative (knowledge-representation) language, this knowledge is represented and stored in a knowledge base.
- Propositional logic is a possible way to achieve this.
- Logical implication is key.
- Logical implication can be automated using inference rules, e.g, resolution.
- Propositional logic becomes impractical when the world becomes too large (or infinite).

