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A new kind of agent: logical agents

Intelligent agents until now:

- Limited “knowledge™

- No knowledge of general facts about the problem

- Often forced to generate a large amount of states with fixed rules

Embed agents with logic:

- Ability to employ general rules disconnected to the specific data
- Ability to update their behaviour as new knowledge 1s acquired
- Ability to perform new tasks
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Applications

Logic as universal tool for reasoning:
- Theorem proving

- Software verification

- Detection of unwanted states

- Hardware veritication

- Relation to NP-hard problems

Outline:

- Agents thinking rationally

- An example “world”

- Introduction to propositional logic
- Syntax and Semantics

- Entailment and Resolution
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Agents thinking rationally

- We pretended that our agents were acting rationally.
- Rationality often requires logical thought.

- For that part of the world where the agent 1s operating must be represented by a
knowledge base (KB).

A KB 1s composed of sentences 1n a language together with a truth theory (logic).
We, externally to the agent, can attach a meaning to these sentences as statements
about the world (semantics).

The sentences can influence the agent’s behaviour through their form (syntax).

Interaction with the KB through the simplified actions “Ask™ and “Tell™:
- Ask(KB,P) = “yes” when P follows from KB
- Tell(KB,P) = KB’ so that P follows from KB’
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The 3 levels of a logical agent (a. Newell, 1982)

We can define 3 levels for giving an abstract description of logical agents:

1: Knowledge Level: This 1s the most abstract and concerns the total knowledge 1n the
KB. For example, the Lufthansa information system knows the price P of a flight from
Frankfurt to Toronto.

2: Logical Level: Encodes the knowledge of a formal language. For example:
Price(Frankfurt, Toronto, P).

3: Implementation Level: The concrete internal representation of the sentences.

For example:

Price(Frankfurt, Toronto, P) represented as a string, as a matrix, hash table,...

If Ask and Tell work correctly, 1t 1s possible to remain at Level 1.
the advantage 1s a simpler user interface.
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Knowledge-Based Agents

function KB-AGENT(percept) returns an action
persistent: KB, t

TELL(KB,MAKE-PERCEPT-SENTENCE(percept,t)) //add percept to KB
action <— ASK(KB,MAKE-ACTION-QUERY (t)) //ask the KB which action to perform
TELL(KB,MAKE-ACTION-SENTENCE(action,t)) //inform KB that the action

was performed
t<—t+1
return action
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An example world: the “Wumpus World” . vob, 1975)

Description of the world:

- 4x4 ¢nd

- In the Wumpus square and 1n the adjacent ones the 4 SeosS
agent percerves a stench.

- In the squares adjacent to a pit, the agent perceives a

breeze. ~ Bresze —
- If the agent hits a wall (bump), he can perceive it. 3 S g\tglnz;?
- When the Wumpus is killed, the scream is heard \/\m/

everywhere. ' '
- Percepts are the S-tl}ple. , cccc

| Stench, Breeze, Glitter, Bump, Scream]. Stench

- The agent cannot perceive 1ts own location or look 1nto

an adjacent square.

- Only up-down-left-right moves are allowed, plus 90deg
turns. 1
- Somewhere there 1s a gold treasure: the task 1s to find it.

- In1tial state: agent 1in square [1,1].

- You have 1 (and only 1) arrow to throw
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Let’s start and apply some logic...

= Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P =Pit

S = Stench

V = Visited

W = Wumpus

—_
Move right
Percept = [none, none, none, none, none| Percept = [none, breeze, none, none, none|
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After some steps...

= Agent

B = Breeze
G = Glitter, Gold
OK = Safe square

P =Pit

S = Stench
V = Visited
W = Wumpus

Percept(1,2) = [stench, none, none, none, none| Percept(2,3) = [stench, breeze, glitter, none, none]
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We deduce that the Wumpus must be 1n (1,3)!
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Syntax and Semantics

- The KB consists of sentences.
- Sentences are expressed 1n a language with a syntax
- Syntax 1dentifies all the sentences which are well-formed

- Example: arithmetic.

x+y=4 1s well formed, while y4x=+ 1s not
- A logic defines also the semantics (the meaning) of sentences
- Defines the truth of sentences with respect to each possible world

- Example: semantics specifies that x+y=4 1s true 1in a world where x=1 and y=3
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Logical Entailment

- If a sentence P 1s true 1n a possible world M, we say that M satisfies P or M 1s a model of P.
- The set of all models of P 1s denoted by M(P)

- Logical entailment:
- When does a sentence QQ follow from another sentence P? Or: PF Q ?
- P F Q if and onlyv 1if (iff) 1n every model where P 1s true. Q 1s also true.
- In symbols: P F Q iff M(P) C M(Q)
- P 1s a stronger assertion than Q, since 1t rules out more worlds (models).

- Example from arithmetic:

x=0 entails xy=0

x=0 rules out the world where {x=1,y=0} but xy=0 does not.
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Example from the Wumpus World

- The agent detected nothing 1in [1,1] and breeze 1n [2,1]. 4

- This information 1s the actual KB, plus the rules of this world.

- Considering only [1,2], [2,2], [3,1] : does any of them contain a pit?

- KB returns “false” 1n any M contradicting what the agent knows:

Example 1: In a world where [1,2] has a pit (no breeze in [1,1])

Example 2: In a world where [2,2] and [3,1] do not have a pit (breeze 1n [2,1])

/' [KB T 7 Nopltm [1,2]

EEI:

———
=
- -~

\ No pit in [2,2]

-
™ - -

Possible models for a pitin [1,2], [2,2], [3,1]
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Example from the Wumpus World

- Consider the sentences:
a; =: “There 1s no pit in [1,2]” (true in the models enclosed with the dashed line, lett)

a, =: “There 1s no pitin [2,2]” (true in models enclosed with the dashed line, right)
- KB F a; : by inspection, every model where KB 1s true, o, 1s also true

- KB I o, : 1n some models where KB 1s true, o, 1s false

———
=
- -~

’_-—--------
-
=
-~
\

Y
\
@]
HEAN
\

\

VIR No p1t in (1,2)

\,x\“ =

Breeze detected 1n (2,1) ,, »

\ No pit in (2,2)

I
I
I
|
|
|
\

\

\

-
\-———"”

Possible models forapitin (1,2), (2,2) , (3,1)
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Entailment and Inference

- Which inference algorithm did we just use? Exhaustive enumeration!

Logical entaillment: KB F

Inference: derive a with an inference algorithm k.

Formally: KB F, a (1n words: a 1s derived from KB by algorithm k).

- Our aim 1s to have an inference algorithm that derives only sentences that

are entailed (soundness) and all of them (completeness).
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Soundness and Completeness

Soundness: HFP=>FEP

Completeness: FP=>F P

1) Soundness ensures no false positives: If a proof exists for a statement, then the
statement must be true.

2) Completeness ensures no false negatives: If a statement 1s true, then there must
be a proof for it.

Ideally, 1n a logic system, both properties are highly desirable.
We will see how 1n certain cases this 1s not the case (Godel’s Theorems)

Luca Doria, KPH Mainz Introduction to Al



Entailment and Inference

Representations

World

- Sentences are physical configurations of the agent.
- Reasoning 1s producing new configurations from old ones.
- Logical reasoning ensures that new configurations respect the aspects of the following world
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Declarative Languages

In order to be capable of building a system (agent) which 1s capable of learning, thinking, planning, ...
we have to find how to express knowledge.

This can be done only with a precise, declarative language:

Declarative:
We state what we want to compute, not how

The system believes P if and only 1f (1ff) 1t considers P to be true
Precise:
We must know, which symbols represent sentences, what 1t means for a sentence to be true, and

when a sentence follows trom other sentences.

One possibility: Propositional Logic
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Propositional Logic

Propositions:
The building blocks of propositional logic are indivisible, atomic statements (atomic propositions),
Example: "The Wumpus 1s 1n [1,3]”, expressed, e.g., by the symbol "W 3”

and the logical connectives “and”, ”or”, and ’not”, which can be used to build formulae.
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Propositional Logic

Interesting questions:

- When 1s a proposition true?

- When does a proposition follow from a KB? 1.e: KB F P

- Can we syntactically define a concept of derivation? 1.e: KB = P

- Can we make sure that F and F are equivalent?

This 1s a concrete implementation of Ask.
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The Syntax of Propositional Logic

Countable alphabet 2 of atomic propositions P, Q, ...
Logical formulae:
P € X : atomic formula
1 : falseness
T : truth

—P: negation

PAQ: conjunction
PVQ: disjunction
P=Q: implication (equiv. to: "PVQ)
P<—Q: equivalence (equiv to: P=>Q A Q=P)
Operator precedence order: =, A, V, =, < (with brackets 1f needed)
Atom: atomic formula (P,L, T)
Literal: (negated) atomic formula
Clause: disjunction of literals (e.g.: AVBVC,...)
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Semantics

e Atomic propositions can be true (T) or false (F).

e The truth of a formula follows from the truth of 1ts atomic

propositions (truth assignment or interpretation) and the connectives.
e Example: (Pv Q) A R
If P and Q are false and R 1s true, what 1s the value of the formula?

e If Pand R are true, the formula 1s true regardless of what Q) 1s.
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Semantics

A truth assignment I of the atoms 1n 2 (or a boolean interpretation I over 2) 1s a function

[:Y—=A{T,F}
The interpretation I satisfies a formula ¢(/ F @) :
-1E
-1~ 1
-1EP iff PI=T
-1 =g iff 1E @
-IE(@pAyw) iff IEgpandIFy

Note 1: if 2 contains N propositions,

then there are 2N possible interpretations.
Note 2: I(_L)=F for whatever I
Note 3: @ is a tautology if 1t 1s always

-IF(@Vvy it TFporlFy true independently from the
-1E(p=>yw)iffTE @ thenl E interpretation I.
-IF(p =y iffIFg@ifand only if I F y Example: A V-A

I satisfies @(I F @) or 1s true under I, when I(¢)=T. I can be seen as a possible world.
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Semantics: Truth table representation

P Q) - P PAQ PV Q P = @ P & @
false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

Notes:

- Here we do not list the XOR (*‘aut’) operator, with values (false, true, true, false)
- Observe that the implication 1s false only when P 1s true and Q 1s false.

On the other hand, 1f P 1s false and Q true, P=Q 1s true.
This can be translated with: “if P 1s false, I make no claim”...

Introduction to Al
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Concrete Example

P—1T
Q—T
Truth assignment: [: S R— F
S— F

Formula: ¢=(PVQ)< (RVS)A(PAQ)N(RNAS))

Question: I F ¢?
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The Wumpus World translated in propositional logic

Symbols: B11, Bi2, ...,S12, ... Wi, ...
Meaning: B = “breeze”, Bjj = “breeze in square (1,))” ... 4

Rules: ’
Ri: Bii < (P12 VvV P21)
R2: B21 < (P11 V P22 V P31)

Facts:

4
Fl: _|P]1 1 2 <

Fo: =B
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Logical Entailment

An interpretation I 1s a model of ¢ if I F ¢
I 1s a model of a set of formulae 1f 1t fulfils all the formulae of the set.
A formula ¢ 1s
satisfiable of there exists I that satisfies it
unsatisfiable 1f ¢ 1s not satisfiable
falsifiable 1f there exists I that doesn’t satisty ¢
valid (tautology) 1f I F @ holds for all I
Relation among formulae:

Two formulae are logically equivalent if (I F ¢ 1ff I F w) holds for all I
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Logical Equivalences

(N
(V3
(e ANB) Ny
((aVB)Vry

Jlerer
Q ]
RO v O

o

22

)

N N v N v v N N N N N

(6 A «) commutativity of A
(6V «) commutativity of V
(A (B A~)) associativity of A\
(Vv (BV 7)) associativity of V

« double-negation elimination

-3 = —«) contraposition

—a V () implication elimination

(« = B)AN (B = «)) Dbiconditional elimination
) De Morgan

—a A —(3) De Morgan

(AN B)V (aAv)) distributivity of A over V
(aV B) A (aVy)) distributivity of V over A
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Truth Table Method

Generating a truth table 1s a method for deciding if a formula 1s satisfiable.

Example:p=((PV H)ANH) => P

pluH] PvH | (PYH)A-H | (PVH)A-H)= P
F|F F F T
Flrl| 7 F T
T | F T T T
T | T T F T

The formula 1s true for all the possible combinations (I) therefore ¢ 1t 1s valid.
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The Wumpus World Knowledge Base

Sentences:

Ri: 2 P11 Initial observation
R2: Bi1 <= P12 VvV P2

R3: B21 <= P11V P22V P3j
R4: =B

Rs: Bai

Derived after first two moves

They are sufficient to derive: =P
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} True 1in every world
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Inference by Enumeration

We would like to decide whether KB F ¢ for some sentence ¢.
Example: ¢ = —P12.

Direct algorithm: enumerate the models and check that ¢ 1s true in every model where
KB 1s true.
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Model Checking vs Theorem Proving

- Model Checking: Enumerate models and show the sentence holds everywhere

- Theorem Proving: Apply rules of inference to the sentences 1in the KB to prove

a sentence without consulting models.

If the number of models 1s large with respect to the length of a proof, then theorem
proving can bring a computational advantage.
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Theorem Proving

Starting point: logical equivalence:
P=QiftPEQand QO F P

Validity:
P 1s valid 1f true 1n all models (it 1s a tautology. Example: P vV —P)

Deduction Theorem:
For any sentences P and Q, P F Q 1ff P =Q 1s valid.

Satistiability:
A sentence P 1s satisfiable, 1f 1t 1s true 1n some model.

In Logic (and Computer Science!) this problem 1s better known as SAT, the paradigmatic
NP-complete problem.
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Theorem Proving: Inference Rules

Modus Ponens P=07P Given
 —— Inferred 7%
& j;ﬁ =\
P - P AT e
M()dus T()Hens :> Q, Theophrastus (from Wikipedia)
mld,
P < (0
o PAQ R NN
AND-elimination Biconditional (P = Q) A (Q = P)
P Elimination
b b (P=>Q)AN(Q =>P)
=> (), = —
Reductio ad Absurdum M P < (0

P
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Wumpus World Example

. » . R ber the KB:
1: Apply biconditional elimination to Ro. RemeII)n cr e
;7P

Res: B11=(P12VP21) A (P12VP21)=B11 B <= Pp» V Py

2. Apply AND-elimination to Re: - By; <= P11 V P> V Paj
R7: (P12VP21)=>B11 . 1B

3: Logical equiv. for contrapositives: '
Rg: =B11 = —(P12VP21)

4: Modus ponens to Rg and use Ry
Ro: 7(P12VP21)

5: Apply De Morgan’s rule to Ro

—Pi12A-P2; =—— Nopitin [1,2] and [2,1]
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Resolution

We present with an example an inference technique called Resolution:

Suppose that in the Wumpus world we have R: P11 V P22 V P3;
and we add the fact =P (no pit in [2,2]).

We say that P2 resolves R giving the resolvent P11 V Pz

This means: “If there1sapitin [1,1] or[2,2] or [3,1]” and 1t 1s not 1n [2,2] then
1t 1s 1n either [1,1] or [3,1]...

This 1s an example of unit resolution inference rule
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Unit Resolution

Let Ii be literals (1=1,..,k) and
let m be complementary literal (negation) of 1;,

then the unit resolution formula 1s:
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Generalised Resolution Rule

Lv...vI[, m V...Vvm,
11V...Vll-_1Vli+1V...\/lkal\/...ij_l\/mj+1V...\/mn

where l; and mk are complementary literals.

Note that the rule eliminates the complementary literal but adds all the rest of
the additional information 1n the literals m.

Important: the resulting clause®™ must contain only one copy of each literal.

Copy removal 1s called factoring, e.g.: AVA — A

(*) A clause 1s a conjunction of literals
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Conjunctive Normal Form

Theorem: every sentence of propositional logic 1s logically equivalent to a
conjuction of clauses, called conjunctive normal form (CNF)

Example: convert P < (QVR) in CNF

1) Biconditional elimination: P=(QVR) A (QVR)=>P

2) Implication elimination: (=PVQVR) A (=(QVR)VP)

3) De Morgan law: (7PVQVR) A [(mQA—R)VP]

4) Distributive law: (-PVQVR) A (7QVP) A (FRVP) — CNF
—— Y~~~

Clause Clause Clause
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Resolution Algorithm

The algorithm 1s based 1n the proof by contradiction, 1.e. in order to show that
KBFP, we show that (KB A = A) cannot be satistied.

The steps of the algorithms are:
1) Convert (KB A =7A) in CNF

2) Apply the resolution rule to the resulting clauses
3) Stop when:

a) No new clauses to be added: then KB does not entail A

b) Two clauses resolve 1n the empty clause then KB entails A

Empty clause = disjunction of no disjuncts: this 1s always false.
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Example

If the agent 1s 1n [1,1], there 1s no breeze so there are no pits :
in [1,2] and [2,1]. The corresponding KB 1s:

RyAR,: (By; < (Py;VP)ABy .

We would like to prove that there 1s no pitin [1,2], or =Py, .

For proving KBF =P, we prove by contradiction KBAP, .

Reducing the last formula in CNF we have:
(7P V Bi) A(7B VPV Py) A(2P iV B) A(2By) APy

Now we apply resolution to the 5 clauses we found...
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Example (cont’d)

4\\\\ \\

By VPR VB || PioV Py VP | | 7BV Py VB | P2V Py VP

Two clauses resolve 1n an empty clause: the KB entails the sentence =P, .
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Resolution Algorithm’s Code

function RESOLUTION(KB, A) returns true or false

clauses <— set of clauses in the CNF of KB A 7A
new <— {}
while true do

for each pair of clauses C;,C; in clauses do
resolvents <— RESOLVE(C;,G)
if resolvents contains an empty clause then return true

new <— new U resolvents
if new C clauses then return false

clauses <— clauses U new
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Soundness and Completeness

Reminder:

A procedure (algorithm) 1s sound (or “truth-preserving”) 1t derives only entailed
sentences. In other words, i1t never produces wrong statements.

Completeness means that an algorithm can derive any entailed sentence. For a finite
number of consequences, this can be verified 1n a certain time. For infinite
consequences, this property can be tricky...

Resolution 1s sound and complete.
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Horn Clauses

e Horn clauses are a relevant special case since they lead to polynomial scaling.

e Definition (Horn Clause): 1t 1s a clause with maximally one positive literal.

e Example 1: "A1V...V-ALVB

e Example 2: 7A1V...V-A,

* Equivalent representation:(—A1V...VoA,VB <:>|/\1Ai = B.

e Horn clauses are closed under resolution: resolving two Horn clauses generate a

Horn clause.

e This 1s the basis of logic programming (e.g with languages like PROLOG)

Luca Doria, KPH Mainz Introduction to Al



Forward Chaining Algorithm

1. Initialization: Start with an 1nitial set of known facts and a set of rules 1n the form:

A/ANAA...ANA => B

2. Matching: Find all the rules whose premises (A1,..,An) are satisfied by the current
set of known facts.

3. Inference: For each rule that matches, deduce the conclusion B and add 1t to the
set of known facts 1if 1t 1s not already present.

4. Iteration: Repeat the matching and inference steps until one of the following
conditions 1s met: a) the goal proposition 1s derived, b) No new facts are being added
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FC Example 1

Goal: derive

P=Q

LAM=P
BAL=>M
AAB=L

L M

L N\

> >
A

from: P. Norvig-S. Russell

B

Introduction to Al

AND-OR Diagram notation:

Edges joined with an arc: AND
Edges with no arc: OR.

The algorithm propagates through the
graph and when a conjunction 1s
encountered, 1t 1s resolved only when all
the inputs are known.
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FC Example 2

Known Facts: {A}

Rules: A=B
B=>C
C=D

Goal: D
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FC Example 2

Known Facts: {A,B} B added to the known facts

Rules: A=B Matching: derive B
B=C
C=D

Goal: D
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FC Example 2

Known Facts: {A,B,C} C added to the known facts

Rules: A=B
B=C Matching: derive C
C=D

Goal: D
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FC Example 2

Known Facts: {A,B,C,D} D added to the known facts

Rules: A=B
B=>C
C=D Matching: derive D —> D 1s the goal —> return.

Goal: D
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FC Algorithm

function FC(KB, q) returns true or false
count <— a table where count[c] is initially the number of symbols in clause ¢’s premise.
inferred <— a, table where inferred|[s] is initially false for all symbols.
queue <— queue of symbols, initially all the ones known in the KB
while queue is not empty do
p <— POP(queue)
if p = q then return true
if inferred[p] = false then
inferred[p] <— true
for each clause c in KB where p is in c.PREMISE do
count[c] =count[c] - 1
if count[c] = O then add ¢c.CONCLUSION to queue

return false
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Backward Chaining

e FC 1s data-driven: can be used from an agent for updating his KB as new

information comes 1n (new percepts). It 1s sound and complete.

e Backward chaining (BC) starts from the query g and then works backwards.

e With reference to the previous graph, BC works from Q to A or B.

e BC 1s a goal-directed algorithm and tries to answer to questions like “What should I
do now?” looking into the KB for known facts/actions.

e BC corresponds to a search algorithm on AND-OR graphs.
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Backward Chaining Algorithm

1. Initialization: Start with an goal-proposition G to prove.

2. Matching: Look into the KB for rules where G 1s a consequence:
AINAAN...NA =G

3. Sub-goal formation: For each rule that matches, the premises Ai become sub-goals.
The algorithm tries to match all these sub-goals.

4. Recursion: Matching 1s repeated for each sub-goal recursively until: a) a sub-goal
matches with a KB known fact or b) no rules can be found matching the sub-goal.
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BC Example

Known Facts: {A, B}

Rules: AAB=C
C=D
B=E

Goal: D
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BC Example

Known Facts: {A, B}

Rules: AAB=C

C=D Matching: find a rule where D 1s the consequence
B=E Sub-goal: prove C

Goal: D
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BC Example

Known Facts: {A, B}

Rules: AAB=C Matching: find a rule where C (sub-goal) 1s the consequence
C=D Sub-goal: prove A and B
B=E

Goal: D

Luca Doria, KPH Mainz Introduction to Al



BC Example

Known Facts: {A, B} Matching: A and B are known facts

back recursion: A and B prove C that proves D —> return.
Rules: AAB=C

C=>D
B=FE

Goal: D
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Summary

e Rational agents require knowledge of their world 1n order to make rational decisions.

* With the help of a declarative (knowledge-representation) language, this knowledge 1s

represented and stored 1n a knowledge base.
* Propositional logic 1s a possible way to achieve this.
e Logical implication 1s key.
e Logical implication can be automated using inference rules, e.g, resolution.

* Propositional logic becomes impractical when the world becomes too large (or infinite).
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