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A new kind of agent: logical agents
Intelligent agents until now: 
- Limited “knowledge” 
- No knowledge of general facts about the problem 
- Often forced to generate a large amount of states with fixed rules 

Embed agents with logic: 
- Ability to employ general rules disconnected to the specific data 
- Ability to update their behaviour as new knowledge is acquired 
- Ability to perform new tasks
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Applications
Logic as universal tool for reasoning: 
- Theorem proving 
- Software verification 
- Detection of unwanted states 
- Hardware verification 
- Relation to NP-hard problems 

Outline: 
- Agents thinking rationally 
- An example “world” 
- Introduction to propositional logic 
- Syntax and Semantics 
- Entailment and Resolution
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Agents thinking rationally
- We pretended that our agents were acting rationally. 
- Rationality often requires logical thought. 
- For that part of the world where the agent is operating must be represented by a  

knowledge base (KB). 

A KB is composed of sentences in a language together with a truth theory (logic). 
We, externally to the agent, can attach a meaning to these sentences as statements 
about the world (semantics). 
The sentences can influence the agent’s behaviour through their form (syntax). 

Interaction with the KB through the simplified actions “Ask” and “Tell”: 
- Ask(KB,P) = “yes” when P follows from KB 
- Tell(KB,P) = KB’ so that P follows from KB’
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The 3 levels of a logical agent (A. Newell, 1982)

We can define 3 levels for giving an abstract description of logical agents: 

1: Knowledge Level: This is the most abstract and concerns the total  knowledge in the 
KB. For example, the Lufthansa information system knows the price P of a flight from 
Frankfurt to Toronto. 
2: Logical Level: Encodes the knowledge of a formal language. For example: 
Price(Frankfurt, Toronto, P). 
3: Implementation Level: The concrete internal representation of the sentences.  
For example:  
Price(Frankfurt, Toronto, P) represented as a string, as a matrix, hash table,… 

If Ask and Tell work correctly, it is possible to remain at Level 1. 
the advantage is a simpler user interface.
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Knowledge-Based Agents

function KB-AGENT(percept) returns an action 
persistent: KB, t 

TELL(KB,MAKE-PERCEPT-SENTENCE(percept,t)) //add percept to KB 
action <— ASK(KB,MAKE-ACTION-QUERY(t)) //ask the KB which action to perform 
TELL(KB,MAKE-ACTION-SENTENCE(action,t)) //inform KB that the action 

                                                                                                 was performed 
t <— t+1 
return action
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An example world: the “Wumpus World” (G. Yob, 1975)

Chapter 7: Propositional Logic

The Wumpus World (1): Illustration

This is just one sample configuration.
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Description of the world: 
- 4x4 grid 
- In the Wumpus square and in the adjacent ones the 

agent perceives a stench. 
- In the squares adjacent to a pit, the agent perceives  a 

breeze. 
- If the agent hits a wall (bump), he can perceive it. 
- When the Wumpus is killed, the scream is heard 

everywhere. 
- Percepts are the 5-tuple. 

[Stench, Breeze, Glitter, Bump, Scream]. 
- The agent cannot perceive its own location or look into 
an adjacent square. 
- Only up-down-left-right moves are allowed, plus 90deg 
turns. 
- Somewhere there is a gold treasure: the task is to find it. 
- Initial state: agent in square [1,1]. 
- You have 1 (and only 1) arrow to throw
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Chapter 7: Propositional Logic

The Wumpus World (4)

[1, 2] and [2, 1] are safe:
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Let’s start and apply some logic…

Move right

Percept = [none, none, none, none, none] Percept = [none, breeze, none, none, none]
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Chapter 7: Propositional Logic

The Wumpus World (5)

The wumpus is in [1, 3]!
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After some steps…

Percept(1,2) = [stench, none, none, none, none] Percept(2,3) = [stench, breeze, glitter, none, none]

We deduce that the Wumpus must be in (1,3)!
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Syntax and Semantics
- The KB consists of sentences. 

- Sentences are expressed in a language with a syntax 

- Syntax identifies all the sentences which are well-formed 

- Example: arithmetic. 

   x+y=4 is well formed, while y4x=+ is not 

- A logic defines also the semantics (the meaning) of sentences 

   - Defines the truth of sentences with respect to each possible world 

   - Example: semantics specifies that x+y=4 is true in a world where x=1 and y=3  
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Logical Entailment
- If a sentence P is true in a possible world M, we say that M satisfies P or M is a model of P. 
- The set of all models of P is denoted by M(P) 
- Logical entailment: 

- When does a sentence Q follow from another sentence P? Or: P  Q ?  

- P  Q if and only if (iff) in every model where P is true, Q is also true. 

- In symbols: P  Q iff M(P)  M(Q) 
- P is a stronger assertion than Q, since it rules out more worlds (models). 
- Example from arithmetic: 

x=0 entails xy=0 
x=0 rules out the world where {x=1,y=0} but xy=0 does not.

⊧
⊧

⊧ ⊆
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Example from the Wumpus World
Chapter 7: Propositional Logic

The Wumpus World (1): Illustration

This is just one sample configuration.
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Chapter 7: Propositional Logic

Example in the Wumpus World (1)

Setup:
Agent detected nothing in [1, 1] and a breeze in [2, 1]
These percepts, plus the rules of the wumpus world, make up the agent’s KB

Let’s reason about three variables: whether [1, 2], [2, 2], and [3, 1] contain pits
KB is false in any possible world that contradicts what the agent knows

E.g., in possible worlds in which [1, 2] contains a pit (no breeze in [1, 1])
E.g., when neither [2, 2] nor [3, 1] have a pit (breeze in [2, 1])
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- The agent detected nothing in [1,1] and breeze in [2,1]. 
- This information is the actual KB, plus the rules of this world. 
- Considering only [1,2] , [2,2] , [3,1] : does any of them contain a pit? 
- KB returns “false” in any M contradicting what the agent knows: 

Example 1: In a world where [1,2] has a pit (no breeze in [1,1]) 
Example 2: In a world where [2,2] and [3,1] do not have a pit (breeze in [2,1])

Possible models for a pit in [1,2] , [2,2] , [3,1] 

Breeze detected in [2,1]
No pit in [2,2]No pit in [1,2]
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Example from the Wumpus World
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Possible models for a pit in (1,2) , (2,2) , (3,1) 

Breeze detected in (2,1)
No pit in (2,2)

- Consider the sentences: 
   “There is no pit in [1,2]” (true in the models enclosed with the dashed line, left) 
   “There is no pit in [2,2]” (true in models enclosed with the dashed line, right) 
- KB   : by inspection, every model where KB is true,  is also true 
- KB   : in some models where KB is true,  is false

α1 =:
α2 =:

⊧ α1 α1

⊮ α2 α2

No pit in (1,2)
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Entailment and Inference
- Which inference algorithm did we just use? Exhaustive enumeration! 

Logical entailment: KB   

Inference: derive  with an inference algorithm k. 

Formally: KB   (in words:  is derived from KB by algorithm k). 

- Our aim is to have an inference algorithm that derives only sentences that 

are entailed (soundness) and all of them (completeness).

⊧ α

α

⊢k α α
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Soundness and Completeness

Soundness:  ⊢ P ⇒ ⊧ P

Completeness:  ⊧ P ⇒ ⊢ P

1) Soundness ensures no false positives: If a proof exists for a statement, then the 
statement must be true. 

2) Completeness ensures no false negatives: If a statement is true, then there must 
be a proof for it.

Ideally, in a logic system, both properties are highly desirable. 
We will see how in certain cases this is not the case (Gödel’s Theorems)
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Entailment and Inference

Entails

Follows

Sentences Sentence

Aspects of the 
real world

Aspect of the 
real world

Representations

World

- Sentences are physical configurations of the agent. 
- Reasoning is producing new configurations from old ones. 
- Logical reasoning ensures that new configurations respect the aspects of the following world
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Declarative Languages
In order to be capable of building a system (agent) which is capable of learning, thinking, planning, …
we have to find how to express knowledge. 

This can be done only with a precise, declarative language: 

Declarative: 
We state what we want to compute, not how  
The system believes P if and only if (iff) it considers P to be true  

Precise:  
       We must know, which symbols represent sentences, what it means for a sentence to be true, and      
       when a sentence follows from other sentences.  

One possibility: Propositional Logic  
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Propositional Logic
Propositions:  

The building blocks of propositional logic are indivisible, atomic statements (atomic propositions),  

Example: ”The Wumpus is in [1,3]”, expressed, e.g., by the symbol ”W1,3”  

and the logical connectives ”and”, ”or”, and ”not”, which can be used to build formulae.  
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Propositional Logic
Interesting questions: 

- When is a proposition true? 

- When does a proposition follow from a KB? i.e: KB  P 

- Can we syntactically define a concept of derivation? i.e: KB  P 

- Can we make sure that   and   are equivalent?  

This is a concrete implementation of Ask.

⊧

⊢

⊧ ⊢
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The Syntax of Propositional Logic
Countable alphabet  of atomic propositions P, Q, … 

Logical formulae: 
P   : atomic formula 

 : falseness 
 : truth 
P: negation 

P Q: conjunction 
P Q: disjunction 
P Q: implication (equiv. to: P Q) 
P Q: equivalence (equiv to: P Q  Q P) 

Operator precedence order: , , , ,  (with brackets if needed) 
Atom: atomic formula (P, , ) 
Literal: (negated) atomic formula 
Clause: disjunction of literals (e.g.: A B C,…)  

Σ

∈ Σ
⊥
⊤
¬

∧
∨
⇒ ¬ ∨
⟺ ⇒ ∧ ⇒

¬ ∧ ∨ ⇒ ⟺
⊥ ⊤

∨ ∨
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Semantics

• Atomic propositions can be true (T) or false (F).  

• The truth of a formula follows from the truth of its atomic 

propositions (truth assignment or interpretation) and the connectives.  

• Example: (P ∨ Q) ∧ R 

If P and Q are false and R is true, what is the value of the formula? 

• If P and R are true, the formula is true regardless of what Q is. 



Luca Doria, KPH Mainz Introduction to AI 22

Semantics
A truth assignment I of the atoms in  (or a boolean interpretation I over ) is a functionΣ Σ

<latexit sha1_base64="9p5TKJVzflM+MCjJd77G4xi1NBA=">AAACBXicbVDLSgMxFM3UV62vUZe6CBbBhZQZERVXRUF0V7Ev6Awlk2ba0GQyJBmlDN248VfcuFDErf/gzr8xbWehrQcuHM65l3vvCWJGlXacbys3N7+wuJRfLqysrq1v2JtbdSUSiUkNCyZkM0CKMBqRmqaakWYsCeIBI42gfznyG/dEKiqiqh7ExOeoG9GQYqSN1LZ3b869O9rlCHqSdnsaSSkeoJdWD6+8YdsuOiVnDDhL3IwUQYZK2/7yOgInnEQaM6RUy3Vi7adIaooZGRa8RJEY4T7qkpahEeJE+en4iyHcN0oHhkKaijQcq78nUsSVGvDAdHKke2raG4n/ea1Eh2d+SqM40STCk0VhwqAWcBQJ7FBJsGYDQxCW1NwKcQ9JhLUJrmBCcKdfniX1o5J7UnJuj4vliyyOPNgBe+AAuOAUlME1qIAawOARPINX8GY9WS/Wu/Uxac1Z2cw2+APr8weD2Zfz</latexit>

I : ⌃ ! {T, F}
The interpretation I satisfies a formula  : 

- I   
- I   
- I  P  iff PI = T  
- I     iff  I   
- I  (   )  iff  I   and I   
- I  (   )  iff  I   or I   
- I  (   ) iff I   then I   
- I  (   ) iff I   if and only if I   

I satisfies (I  ) or is true under I, when I( )=T. I can be seen as a possible world. 

ϕ(I ⊧ ϕ)
⊧ ⊤
⊮ ⊥
⊧
⊮ ¬ϕ ⊧ ϕ
⊧ ϕ ∧ ψ ⊧ ϕ ⊧ ψ
⊧ ϕ ∨ ψ ⊧ ϕ ⊧ ψ
⊧ ϕ ⇒ ψ ⊧ ϕ ⊧ ψ
⊧ ϕ ⟺ ψ ⊧ ϕ ⊧ ψ

ϕ ⊧ ϕ ϕ

Note 1: if  contains N propositions, 
then there are 2N possible interpretations. 
Note 2: I( )=F for whatever I 
Note 3:  is a tautology if it is always 
true independently from the 
interpretation I. 
Example: A A

Σ

⊥
ϕ

∨¬
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Semantics: Truth table representation��� #HAPTER �� ,OGICAL !GENTS

P Q ¬P P ∧Q P ∨Q P ⇒ Q P ⇔ Q

false false true false false true true

false true true false true true false

true false false false true false false

true true false true true true true

Figure 7�8 4RUTH TABLES FOR THE lVE LOGICAL CONNECTIVES� 4O USE THE TABLE TO COMPUTE� FOR
EXAMPLE� THE VALUE OF P ∨Q WHEN P IS TRUE AND Q IS FALSE� lRST LOOK ON THE LEFT FOR THE ROW
WHERE P IS true ANDQ IS false �THE THIRD ROW	� 4HEN LOOK IN THAT ROW UNDER THE P ∨Q COLUMN
TO SEE THE RESULT� true�

THE SENTENCE ¬P1,2 ∧ (P2,2 ∨ P3,1)� EVALUATED IN m1� GIVES true ∧ (false ∨ true)= true ∧

true = true � %XERCISE ��� ASKS YOU TO WRITE THE ALGORITHM 0,425%��s�m	� WHICH COMPUTES
THE TRUTH VALUE OF A PROPOSITIONAL LOGIC SENTENCE s IN A MODELm�

4HE TRUTH TABLES FOR hAND�v hOR�v AND hNOTv ARE IN CLOSE ACCORD WITH OUR INTUITIONS ABOUT
THE %NGLISH WORDS� 4HE MAIN POINT OF POSSIBLE CONFUSION IS THAT P ∨Q IS TRUE WHEN P IS TRUE
OR Q IS TRUE or both� ! DIFFERENT CONNECTIVE� CALLED hEXCLUSIVE ORv �hXORv FOR SHORT	� YIELDS
FALSE WHEN BOTH DISJUNCTS ARE TRUE�� 4HERE IS NO CONSENSUS ON THE SYMBOL FOR EXCLUSIVE OR�
SOME CHOICES ARE ∨̇ OR %= OR ⊕�

4HE TRUTH TABLE FOR⇒ MAY NOT QUITE lT ONE�S INTUITIVE UNDERSTANDING OF hP IMPLIES Qv
OR hIF P THENQ�v &OR ONE THING� PROPOSITIONAL LOGIC DOES NOT REQUIRE ANY RELATION OF causation
OR relevance BETWEEN P AND Q� 4HE SENTENCE h� IS ODD IMPLIES 4OKYO IS THE CAPITAL OF *APANv
IS A TRUE SENTENCE OF PROPOSITIONAL LOGIC �UNDER THE NORMAL INTERPRETATION	� EVEN THOUGH IT IS
A DECIDEDLY ODD SENTENCE OF %NGLISH� !NOTHER POINT OF CONFUSION IS THAT ANY IMPLICATION IS
TRUE WHENEVER ITS ANTECEDENT IS FALSE� &OR EXAMPLE� h� IS EVEN IMPLIES 3AM IS SMARTv IS TRUE�
REGARDLESS OF WHETHER 3AM IS SMART� 4HIS SEEMS BIZARRE� BUT IT MAKES SENSE IF YOU THINK OF
hP ⇒ Qv AS SAYING� h)F P IS TRUE� THEN ) AM CLAIMING THAT Q IS TRUE� /THERWISE ) AM MAKING
NO CLAIM�v 4HE ONLY WAY FOR THIS SENTENCE TO BE false IS IF P IS TRUE BUT Q IS FALSE�

4HE BICONDITIONAL� P ⇔ Q� IS TRUE WHENEVER BOTH P ⇒ Q AND Q ⇒ P ARE TRUE� )N
%NGLISH� THIS IS OFTEN WRITTEN AS hP IF AND ONLY IF Q�v -ANY OF THE RULES OF THE WUMPUS WORLD
ARE BEST WRITTEN USING ⇔� &OR EXAMPLE� A SQUARE IS BREEZY if A NEIGHBORING SQUARE HAS A PIT�
AND A SQUARE IS BREEZY only if A NEIGHBORING SQUARE HAS A PIT� 3O WE NEED A BICONDITIONAL�

B1,1 ⇔ (P1,2 ∨ P2,1) ,

WHERE B1,1 MEANS THAT THERE IS A BREEZE IN ;���=�

7�4�3 A simple knowledge base

.OW THAT WE HAVE DElNED THE SEMANTICS FOR PROPOSITIONAL LOGIC� WE CAN CONSTRUCT A KNOWLEDGE
BASE FOR THE WUMPUS WORLD� 7E FOCUS lRST ON THE immutable ASPECTS OF THE WUMPUS WORLD�
LEAVING THE MUTABLE ASPECTS FOR A LATER SECTION� &OR NOW� WE NEED THE FOLLOWING SYMBOLS FOR
EACH [x, y] LOCATION�

7 ,ATIN HAS A SEPARATE WORD� aut� FOR EXCLUSIVE OR�

Notes: 
- Here we do not list the XOR (“aut”) operator, with values (false, true, true, false) 
- Observe that the implication is false only when P is true and Q is false. 
  On the other hand, if P is false and Q true, P Q is true.  
  This can be translated with: “if P is false, I make no claim”…

⇒
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Concrete Example

Chapter 7: Propositional Logic

Example

„ = ((P ‚ Q) … (R ‚ S)) · (¬(P · Q) · (R · ¬S))
Question: I |= „?
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Truth assignment:

Formula:

Question: I ⊧ ϕ?
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The Wumpus World translated in propositional logic
Symbols: B11, B12, …,S12, …W11, … 
Meaning: B = “breeze”, Bij = “breeze in square (i,j)” … 

Rules: 
R1: B11  (P12  P21) 
R2: B21  (P11  P22  P31) 
… 

Facts: 
       F1: P11 
       F2: B11 
        …

⟺ ∨
⟺ ∨ ∨

¬
¬

Chapter 7: Propositional Logic

The Wumpus World (1): Illustration

This is just one sample configuration.
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Logical Entailment
An interpretation I is a model of  if I   

I is a model of a set of formulae if it fulfils all the formulae of the set. 

A formula  is 

satisfiable of there exists I that satisfies it 

unsatisfiable if  is not satisfiable 

falsifiable if there exists I that doesn’t satisfy  

valid (tautology) if I   holds for all I 

Relation among formulae: 

Two formulae are logically equivalent if  (I   iff I  ) holds for all I 

ϕ ⊧ ϕ

ϕ

ϕ

ϕ

⊧ ϕ

⊧ ϕ ⊧ ψ
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Logical Equivalences
3ECTION ���� 0ROPOSITIONAL 4HEOREM 0ROVING ���

(α ∧ β) ≡ (β ∧ α) COMMUTATIVITY OF ∧
(α ∨ β) ≡ (β ∨ α) COMMUTATIVITY OF ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) ASSOCIATIVITY OF ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) ASSOCIATIVITY OF ∨

¬(¬α) ≡ α DOUBLENEGATION ELIMINATION
(α ⇒ β) ≡ (¬β ⇒ ¬α) CONTRAPOSITION
(α ⇒ β) ≡ (¬α ∨ β) IMPLICATION ELIMINATION
(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) BICONDITIONAL ELIMINATION
¬(α ∧ β) ≡ (¬α ∨ ¬β) $E -ORGAN
¬(α ∨ β) ≡ (¬α ∧ ¬β) $E -ORGAN

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) DISTRIBUTIVITY OF ∧ OVER ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) DISTRIBUTIVITY OF ∨ OVER ∧

Figure 7�11 3TANDARD LOGICAL EQUIVALENCES� 4HE SYMBOLS α� β� AND γ STAND FOR ARBITRARY
SENTENCES OF PROPOSITIONAL LOGIC�

��� 02/0/3)4)/.!, 4(%/2%- 02/6).'

3O FAR� WE HAVE SHOWN HOW TO DETERMINE ENTAILMENT BY model checking� ENUMERATING MODELS
AND SHOWING THAT THE SENTENCE MUST HOLD IN ALL MODELS� )N THIS SECTION� WE SHOW HOW ENTAIL
MENT CAN BE DONE BY theorem proving�APPLYING RULES OF INFERENCE DIRECTLY TO THE SENTENCESTHEOREM PROVING

IN OUR KNOWLEDGE BASE TO CONSTRUCT A PROOF OF THE DESIRED SENTENCE WITHOUT CONSULTING MODELS�
)F THE NUMBER OF MODELS IS LARGE BUT THE LENGTH OF THE PROOF IS SHORT� THEN THEOREM PROVING CAN
BE MORE EFlCIENT THAN MODEL CHECKING�

"EFORE WE PLUNGE INTO THE DETAILS OF THEOREMPROVING ALGORITHMS� WE WILL NEED SOME
ADDITIONAL CONCEPTS RELATED TO ENTAILMENT� 4HE lRST CONCEPT IS logical eTuivalence� TWO SENLOGICAL

EQUIVALENCE

TENCES α AND β ARE LOGICALLY EQUIVALENT IF THEY ARE TRUE IN THE SAME SET OF MODELS� 7E WRITE
THIS AS α ≡ β� &OR EXAMPLE� WE CAN EASILY SHOW �USING TRUTH TABLES	 THAT P ∧ Q AND Q ∧ P

ARE LOGICALLY EQUIVALENT� OTHER EQUIVALENCES ARE SHOWN IN &IGURE ����� 4HESE EQUIVALENCES
PLAY MUCH THE SAME ROLE IN LOGIC AS ARITHMETIC IDENTITIES DO IN ORDINARY MATHEMATICS� !N
ALTERNATIVE DElNITION OF EQUIVALENCE IS AS FOLLOWS� ANY TWO SENTENCES α AND β ARE EQUIVALENT
ONLY IF EACH OF THEM ENTAILS THE OTHER�

α ≡ β IF AND ONLY IF α |= β AND β |= α .

4HE SECOND CONCEPT WE WILL NEED IS validity� ! SENTENCE IS VALID IF IT IS TRUE IN allMODELS� &ORVALIDITY

EXAMPLE� THE SENTENCE P ∨¬P IS VALID� 6ALID SENTENCES ARE ALSO KNOWN AS tautologies�THEYTAUTOLOGY

ARE necessarily TRUE� "ECAUSE THE SENTENCE True IS TRUE IN ALL MODELS� EVERY VALID SENTENCE
IS LOGICALLY EQUIVALENT TO True � 7HAT GOOD ARE VALID SENTENCES� &ROM OUR DElNITION OF
ENTAILMENT� WE CAN DERIVE THE deduction theorem� WHICH WAS KNOWN TO THE ANCIENT 'REEKS�DEDUCTION

THEOREM

For any sentences α and β, α |= β if and only if the sentence (α⇒ β) is valid.
�%XERCISE ��� ASKS FOR A PROOF�	 (ENCE� WE CAN DECIDE IF α |= β BY CHECKING THAT (α ⇒ β) IS
TRUE IN EVERY MODEL�WHICH IS ESSENTIALLY WHAT THE INFERENCE ALGORITHM IN &IGURE ���� DOES�
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Truth Table Method

Chapter 7: Propositional Logic

The Truth Table Method

How can we decide if a formula is satisfiable, valid, etc.?
æ generate a truth table

Example: Is „ = ((P ‚ H) · ¬H) ∆ P valid?

Since the formula is true for all possible combinations of truth values (satisfied
under all interpretations), „ is valid.

Satisfiability, falsifiability, unsatisfiability likewise.
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Generating a truth table is a method for deciding if a formula is satisfiable. 

Example:  = ϕ ((P ∨ H) ∧ ¬H) ⇒ P

The formula is true for all the possible combinations (I) therefore  it is valid.ϕ
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The Wumpus World Knowledge Base
Chapter 7: Propositional Logic

The Wumpus World (1): Illustration

This is just one sample configuration.
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Sentences: 

R1: P11 

R2: B11  P12  P21 

R3: B21  P11  P22  P31 

R4: B11 

R5: B21

¬

⟺ ∨

⟺ ∨ ∨

¬

They are sufficient to derive: P12¬

<latexit sha1_base64="d+yhMWJ6jozuEyCGZ3VV+rSUPjw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Jv2yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UvVrVvb+s1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB6AyjWw=</latexit>

}

<latexit sha1_base64="d+yhMWJ6jozuEyCGZ3VV+rSUPjw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Jv2yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UvVrVvb+s1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB6AyjWw=</latexit>

}
Derived after first two moves

True in every world

Initial observation
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Inference by Enumeration
We would like to decide whether KB   for some sentence . 
Example:  = P12. 

Direct algorithm: enumerate the models and check that  is true in every model where 
KB is true.

⊧ ϕ ϕ
ϕ ¬

ϕ��� #HAPTER �� ,OGICAL !GENTS

B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB

false false false false false false false true true true true false false
false false false false false false true true true false true false false
���

���
���

���
���

���
���

���
���

���
���

���
���

false true false false false false false true true false true true false

false true false false false false true true true true true true true
false true false false false true false true true true true true true
false true false false false true true true true true true true true

false true false false true false false true false false true true false
���

���
���

���
���

���
���

���
���

���
���

���
���

true true true true true true true false true true false true false

Figure 7�9 ! TRUTH TABLE CONSTRUCTED FOR THE KNOWLEDGE BASE GIVEN IN THE TEXT� KB IS TRUE
IF R1 THROUGH R5 ARE TRUE� WHICH OCCURS IN JUST � OF THE ��� ROWS �THE ONES UNDERLINED IN THE
RIGHTHAND COLUMN	� )N ALL � ROWS� P1,2 IS FALSE� SO THERE IS NO PIT IN ;���=� /N THE OTHER HAND�
THERE MIGHT �OR MIGHT NOT	 BE A PIT IN ;���=�

function 44%.4!),3��KB �α	 returns true OR false
inputs� KB � THE KNOWLEDGE BASE� A SENTENCE IN PROPOSITIONAL LOGIC

α� THE QUERY� A SENTENCE IN PROPOSITIONAL LOGIC

symbols← A LIST OF THE PROPOSITION SYMBOLS IN KB AND α
return 44#(%#+!,,�KB �α� symbols �{ }	

function 44#(%#+!,,�KB �α� symbols �model 	 returns true OR false
if %-049��symbols	 then

if 0,425%��KB �model 	 then return 0,425%��α�model 	
else return true �� when KB is false, always return true

else do
P← &)234�symbols	
rest←2%34�symbols	
return �44#(%#+!,,�KB �α� rest �model ∪ {P = true}	

and
44#(%#+!,,�KB �α� rest �model ∪ {P = false }		

Figure 7�10 ! TRUTHTABLE ENUMERATION ALGORITHM FOR DECIDING PROPOSITIONAL ENTAILMENT�
�44 STANDS FOR TRUTH TABLE�	 0,425%� RETURNS true IF A SENTENCE HOLDS WITHIN A MODEL� 4HE
VARIABLE model REPRESENTS A PARTIAL MODEL�AN ASSIGNMENT TO SOME OF THE SYMBOLS� 4HE KEY
WORD handv IS USED HERE AS A LOGICAL OPERATION ON ITS TWO ARGUMENTS� RETURNING true OR false �
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Model Checking vs Theorem Proving

- Model Checking: Enumerate models and show the sentence holds everywhere 

- Theorem Proving: Apply rules of inference to the sentences in the KB to prove  
   a sentence without consulting models.

If the number of models is large with respect to the length of a proof, then theorem 
proving can bring a computational advantage.
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Theorem Proving
Starting point: logical equivalence:  

 iff  and  

Validity: 
P is valid if true in all models (it is a tautology. Example: P  P) 

Deduction Theorem: 
For any sentences P and Q, P  Q iff P Q is valid. 
  
Satisfiability: 
A sentence P is satisfiable, if it is true in some model. 
In Logic (and Computer Science!) this problem is better known as SAT, the paradigmatic 
NP-complete problem.

P ≡ Q P ⊧ Q Q ⊧ P

∨ ¬

⊧ ⇒
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Theorem Proving: Inference Rules

P ⇒ Q, P
Q

P ⇒ Q, ¬P
¬Q

P ⇒ Q, P ⇒ ¬Q
¬P

P ∧ Q
P

P ⟺ Q
(P ⇒ Q) ∧ (Q ⇒ P)

(P ⇒ Q) ∧ (Q ⇒ P)
P ⟺ Q

Modus Ponens

Modus Tollens

AND-elimination

Reductio ad Absurdum

Biconditional 
Elimination

Given

Inferred

Theophrastus (from Wikipedia)
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Wumpus World Example
Remember the KB: 
R1: P11 
R2: B11  P12  P21 
R3: B21  P11  P22  P31 
R4: B11 
R5: B21

¬
⟺ ∨
⟺ ∨ ∨

¬

1: Apply biconditional elimination to R2: 

R6:   B11 (P12 P21)  (P12 P21) B11 

2: Apply AND-elimination to R6: 
R7: (P12 P21) B11 

3: Logical equiv. for contrapositives: 
R8: B11  (P12 P21) 
4: Modus ponens to R8 and use R4 
R9: (P12 P21) 
5: Apply De Morgan’s rule to R9 

P12 P21                         No pit in [1,2] and [2,1]

⇒ ∨ ∧ ∨ ⇒

∨ ⇒

¬ ⇒ ¬ ∨

¬ ∨

¬ ∧¬

Chapter 7: Propositional Logic

The Wumpus World (1): Illustration

This is just one sample configuration.

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 7 / 53
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Resolution
We present with an example an inference technique called Resolution:

Suppose that in the Wumpus world we have R: P11  P22  P31 

and we add the fact P22 (no pit in [2,2]). 

We say that P22 resolves R giving the resolvent P11  P31

∨ ∨
¬

∨

This means: “If there is a pit in [1,1] or [2,2] or [3,1]” and it is not in [2,2] then 
it is in either [1,1] or [3,1]… 
This is an example of unit resolution inference rule



Luca Doria, KPH Mainz Introduction to AI 36

Unit Resolution
Let li be literals (i=1,..,k) and 
let m be complementary literal (negation) of li,  
then the unit resolution formula is:

l1 ∨ . . . ∨ lk, m
l1 ∨ . . . ∨ li−1 ∨ li+1 ∨ . . . ∨ lk
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Generalised Resolution Rule

l1 ∨ . . . ∨ lk , m1 ∨ . . . ∨ mn

l1 ∨ . . . ∨ li−1 ∨ li+1 ∨ . . . ∨ lk ∨ m1 ∨ . . . ∨ mj−1 ∨ mj+1 ∨ . . . ∨ mn

where li and mk are complementary literals. 

Note that the rule eliminates the complementary literal but adds all the rest of 
the additional information in the literals m. 
Important: the resulting clause(*) must contain only one copy of each literal. 
Copy removal is called factoring, e.g.: A  A  A∨ →

(*) A clause is a conjunction of literals
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Conjunctive Normal Form
Theorem: every sentence of propositional logic is logically equivalent to a 
conjuction of clauses, called conjunctive normal form (CNF)

Example: convert P (Q R) in CNF⟺ ∨

1) Biconditional elimination: P (Q R)  (Q R) P 
2) Implication elimination: ( P Q R)  ( (Q R) P) 
3) De Morgan law: ( P Q R)  [( Q R) P] 
4) Distributive law: ( P Q R)  ( Q P)  ( R P)

⇒ ∨ ∧ ∨ ⇒
¬ ∨ ∨ ∧ ¬ ∨ ∨

¬ ∨ ∨ ∧ ¬ ∧¬ ∨
¬ ∨ ∨ ∧ ¬ ∨ ∧ ¬ ∨ CNF

<latexit sha1_base64="d+yhMWJ6jozuEyCGZ3VV+rSUPjw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Jv2yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UvVrVvb+s1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB6AyjWw=</latexit>

}

<latexit sha1_base64="d+yhMWJ6jozuEyCGZ3VV+rSUPjw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Jv2yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UvVrVvb+s1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB6AyjWw=</latexit>

}

<latexit sha1_base64="d+yhMWJ6jozuEyCGZ3VV+rSUPjw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Jv2yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UvVrVvb+s1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB6AyjWw=</latexit>

}
Clause Clause Clause
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Resolution Algorithm
The algorithm is based in the proof by contradiction, i.e. in order to show that 
KB P, we show that (KB A) cannot be satisfied. 

The steps of the algorithms are: 
1) Convert (KB A) in CNF 
2) Apply the resolution rule to the resulting clauses 
3) Stop when: 

a) No new clauses to be added: then KB does not entail A 
b) Two clauses resolve in the empty clause then KB entails A

⊧ ∧ ¬

∧ ¬

Empty clause = disjunction of no disjuncts: this is always false.
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Example
Chapter 7: Propositional Logic

The Wumpus World (1): Illustration

This is just one sample configuration.

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 7 / 53

If the agent is in [1,1], there is no breeze so there are no pits 
in [1,2] and [2,1]. The corresponding KB is: 

 . 
We would like to prove that there is no pit in [1,2], or  . 
For proving KB  we prove by contradiction KB  .

R2 ∧ R4 : (B11 ⟺ (P21 ∨ P12)) ∧ ¬B11

¬P12

⊧¬P12 ∧P12

Reducing the last formula in CNF we have: 
(¬P21 ∨ B11) ∧ (¬B11 ∨ P12 ∨ P21) ∧ (¬P12 ∨ B11) ∧ (¬B11) ∧ P12

Now we apply resolution to the 5 clauses we found…
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Example (cont’d)
(¬P21 ∨ B11) (¬B11 ∨ P12 ∨ P21) (¬P12 ∨ B11) (¬B11) P12

¬B11 ∨ P12 ∨ B11 P12 ∨ P21 ∨ ¬P21 ¬B11 ∨ P21 ∨ B11 P12 ∨ P21 ∨ ¬P12 ¬P12¬P21

Two clauses resolve in an empty clause: the KB entails the sentence ¬P12
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Resolution Algorithm’s Code

function RESOLUTION(KB, A) returns true or false 

clauses <— set of clauses in the CNF of KB A 
new <— {} 
while true do 

for each pair of clauses Ci,Cj in clauses do 
resolvents <— RESOLVE(Ci,Cj) 
if resolvents contains an empty clause then return true 

new <— new  resolvents 

                  if new  clauses then return false 

                  clauses <— clauses  new

∧ ¬

∪
⊆

∪
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Soundness and Completeness
Reminder: 
A procedure (algorithm) is sound (or “truth-preserving”) if derives only entailed 
sentences. In other words, it never produces wrong statements. 
Completeness means that an algorithm can derive any entailed sentence. For a finite 
number of consequences, this can be verified in a certain time. For infinite 
consequences, this property can be tricky…

Resolution is sound and complete.
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Horn Clauses
• Horn clauses are a relevant special case since they lead to polynomial scaling. 

• Definition (Horn Clause): it is a clause with maximally one positive literal. 

• Example 1: A1 … An B 

• Example 2: A1 … An 

• Equivalent representation: A1 … An B iAi B.  

¬ ∨ ∨¬ ∨

¬ ∨ ∨¬

¬ ∨ ∨¬ ∨ ⟺∧ ⇒

• This is the basis of logic programming (e.g with languages like PROLOG)

• Horn clauses are closed under resolution: resolving two Horn clauses generate a 
Horn clause.
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Forward Chaining Algorithm
1. Initialization: Start with an initial set of known facts and a set of rules in the form: 

 

2. Matching: Find all the rules whose premises (A1,..,An) are satisfied by the current 
set of known facts. 

3. Inference: For each rule that matches, deduce the conclusion B and add it to the 
set of known facts if it is not already present. 

4. Iteration: Repeat the matching and inference steps until one of the following 
conditions is met: a) the goal proposition is derived, b) No new facts are being added 

A1 ∧ A2 ∧ . . . ∧ An ⇒ B
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FC Example 1

B
A
A B L∧ ⇒
B L M∧ ⇒
L M P∧ ⇒
P Q⇒

3ECTION ���� %FFECTIVE 0ROPOSITIONAL -ODEL #HECKING ���

P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

Q

P

M

L

BA
�A	 �B	

Figure 7�16 �A	 ! SET OF (ORN CLAUSES� �B	 4HE CORRESPONDING !.$n/2 GRAPH�

AN INCREMENTAL FORWARDCHAINING ALGORITHM IN WHICH NEW FACTS CAN BE ADDED TO THE AGENDA TO
INITIATE NEW INFERENCES� )N HUMANS� A CERTAIN AMOUNT OF DATADRIVEN REASONING OCCURS AS NEW
INFORMATION ARRIVES� &OR EXAMPLE� IF ) AM INDOORS AND HEAR RAIN STARTING TO FALL� IT MIGHT OCCUR
TO ME THAT THE PICNIC WILL BE CANCELED� 9ET IT WILL PROBABLY NOT OCCUR TO ME THAT THE SEVENTEENTH
PETAL ON THE LARGEST ROSE IN MY NEIGHBOR�S GARDEN WILL GET WET� HUMANS KEEP FORWARD CHAINING
UNDER CAREFUL CONTROL� LEST THEY BE SWAMPED WITH IRRELEVANT CONSEQUENCES�

4HE BACKWARDCHAINING ALGORITHM� AS ITS NAME SUGGESTS� WORKS BACKWARD FROM THE
QUERY� )F THE QUERY q IS KNOWN TO BE TRUE� THEN NO WORK IS NEEDED� /THERWISE� THE ALGORITHM
lNDS THOSE IMPLICATIONS IN THE KNOWLEDGE BASE WHOSE CONCLUSION IS q � )F ALL THE PREMISES OF
ONE OF THOSE IMPLICATIONS CAN BE PROVED TRUE �BY BACKWARD CHAINING	� THEN q IS TRUE� 7HEN
APPLIED TO THE QUERY Q IN &IGURE ����� IT WORKS BACK DOWN THE GRAPH UNTIL IT REACHES A SET OF
KNOWN FACTS� A AND B� THAT FORMS THE BASIS FOR A PROOF� 4HE ALGORITHM IS ESSENTIALLY IDENTICAL
TO THE !.$/2'2!0(3%!2#( ALGORITHM IN &IGURE ����� !S WITH FORWARD CHAINING� AN
EFlCIENT IMPLEMENTATION RUNS IN LINEAR TIME�

"ACKWARD CHAINING IS A FORM OF goal-directed reasoning� )T IS USEFUL FOR ANSWERINGGOAL-DIRECTED

REASONING

SPECIlC QUESTIONS SUCH AS h7HAT SHALL ) DO NOW�v AND h7HERE ARE MY KEYS�v /FTEN� THE COST
OF BACKWARD CHAINING IS much less THAN LINEAR IN THE SIZE OF THE KNOWLEDGE BASE� BECAUSE THE
PROCESS TOUCHES ONLY RELEVANT FACTS�

��� %&&%#4)6% 02/0/3)4)/.!, -/$%, #(%#+).'

)N THIS SECTION� WE DESCRIBE TWO FAMILIES OF EFlCIENT ALGORITHMS FOR GENERAL PROPOSITIONAL
INFERENCE BASED ON MODEL CHECKING� /NE APPROACH BASED ON BACKTRACKING SEARCH� AND ONE
ON LOCAL HILLCLIMBING SEARCH� 4HESE ALGORITHMS ARE PART OF THE hTECHNOLOGYv OF PROPOSITIONAL
LOGIC� 4HIS SECTION CAN BE SKIMMED ON A lRST READING OF THE CHAPTER�

from: P. Norvig-S. Russell

AND-OR Diagram notation: 
Edges joined with an arc: AND 
Edges with no arc: OR. 
The algorithm propagates through the 
graph and when a conjunction is 
encountered, it is resolved only when all 
the inputs are known. 

Goal: derive Q
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FC Example 2
Known Facts: {A}

Rules: A B⇒
B C⇒
C D⇒

Goal: D 



Luca Doria, KPH Mainz Introduction to AI 48

FC Example 2
Known Facts: {A,B}

Rules: A B⇒
B C⇒
C D⇒

Goal: D 

Matching: derive B

B added to the known facts
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FC Example 2
Known Facts: {A,B,C}

Rules: A B⇒
B C⇒
C D⇒

Goal: D 

Matching: derive C

C added to the known facts
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FC Example 2
Known Facts: {A,B,C,D}

Rules: A B⇒
B C⇒
C D⇒

Goal: D 

Matching: derive D —> D is the goal —> return.

D added to the known facts
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FC Algorithm
function FC(KB, q) returns true or false 

count <— a table where count[c] is initially the number of symbols in clause c’s premise. 
inferred <— a table where inferred[s] is initially false for all symbols. 
queue <— queue of symbols, initially all the ones known in the KB 
while queue is not empty do 

p <— POP(queue) 
if p = q then return true 
if inferred[p] = false then 
           inferred[p] <— true 
           for each clause c in KB where p  is in c.PREMISE do 
                      count[c] = count[c] - 1  
                       if count[c] = 0 then add c.CONCLUSION to queue 

           return false
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Backward Chaining
• FC is data-driven: can be used from an agent for updating his KB as new 

information comes in (new percepts). It is sound and complete. 

• Backward chaining (BC) starts from the query q and then works backwards. 

• With reference to the previous graph, BC works from Q to A or B. 

• BC is a goal-directed algorithm and tries to answer to questions like “What should I 

do now?” looking into the KB for known facts/actions. 

• BC corresponds to a search algorithm on AND-OR graphs.
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Backward Chaining Algorithm
1. Initialization: Start with an goal-proposition G to prove. 

2. Matching: Look into the KB for rules where G is a consequence:  
 

3. Sub-goal formation: For each rule that matches, the premises Ai become sub-goals. 
The algorithm tries to match all these sub-goals. 

4. Recursion: Matching is repeated for each sub-goal recursively until: a) a sub-goal 
matches with a KB known fact or b) no rules can be found matching the sub-goal.

A1 ∧ A2 ∧ . . . ∧ An ⇒ G
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BC Example
Known Facts: {A, B}

Rules: A B C∧ ⇒
C D⇒
B E⇒

Goal: D 
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BC Example
Known Facts: {A, B}

Rules: A B C∧ ⇒
C D⇒
B E⇒

Goal: D 

Matching: find a rule where D is the consequence
Sub-goal: prove C
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BC Example
Known Facts: {A, B}

Rules: A B C∧ ⇒
C D⇒
B E⇒

Goal: D 

Matching: find a rule where C (sub-goal) is the consequence

Sub-goal: prove A and B
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BC Example
Known Facts: {A, B}

Rules: A B C∧ ⇒
C D⇒
B E⇒

Goal: D 

Matching: A and B are known facts

back recursion: A and B prove C that proves D —> return.
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Summary

• Rational agents require knowledge of their world in order to make rational decisions. 

• With the help of a declarative (knowledge-representation) language, this knowledge is 

represented and stored in a knowledge base. 

• Propositional logic is a possible way to achieve this.

• Logical implication is key. 

• Logical implication can be automated using inference rules, e.g, resolution. 

• Propositional logic becomes impractical when the world becomes too large (or infinite). 


