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Logical Deduction vs Satisfiability
Propositional Logic:


Logical deduction


Given: A logical theory (set of propositions)


Question: Does a proposition follow from this theory?


Algorithm: reduction to unsatisfiability (coNP-complete problem)


Satisfiability (SAT)


   Given: A logical theory


   Target: A model for the theory


   Easier in general: we just need one model


   Wide applications range. 
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The SAT Problem
The SAT Problem

AKA as Boolean Satisfiability Problem.

The problem consists in determining if there exists an interpretation that satisfies a 
given Boolean formula.

More concretely, SAT asks whether the variables of a given Boolean formula can be 
consistently replaced by the values true or false in such a way that the formula 
evaluates to true.


k-SAT

Since every logical expression can be reduced to CNF, we define k-SAT as the SAT 
problem referred to clauses with k literals.


SAT can be reformulated as a constrained satisfaction problem (CSP) with symbols of 
the alphabet as variables and domain values {T,F}. Clauses are constraints.
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Why is SAT important?
Complexity

SAT was the first problem to be shown to be NP-complete.

In particular, 2-SAT belongs to P, while k-SAT with k>2 is NP-complete (Cook-
Levin Theorem, Cook, 1971 Levin, 1973).


Notation:

SATk(n,m) : SAT problem reduced in CNF with m clauses, n symbols and k different 
literals per clause.


Reducibility

We know that every problem in NP can be (polynomially) reduced to NP-complete 
problems, therefore SAT represents a paradigm for the problems in this class and NP-
complete problems are the “most difficult” problems in NP.
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Reminder: (Some) Complexity Classes

NP

NP-Complete

P

PSPACE

BQP (?)

kSAT k>2

kSAT k<3

Factoring
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The DPLL Algorithm
The DPLL (Davis, Putnam, Logemann, Loveland, 1962) algorithm corresponds to 

backtracking with inference in constrained satisfaction problems. 


In general, a SAT problem corresponds to a CSP if we regard the clauses as constraints.


How do we solved a CSP? With DF-search and backtracking.


Therefore: a similar procedure can be applied to solve SAT.
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The DPLL Algorithm
The DPLL algorithm employs the following techniques for improving the search:


1) Early Termination: the algorithm tries to check if a sentence is true before even if 
the model is still not fully reconstructed. For example, a clause is true if one of the 
literals is true and the full sentence is true if all the clauses are true.


2) Pure symbol heuristic: A “pure symbol” is a literal that appears with the same 
“sign” in all the clauses. If there is a model, it has an assignment that makes the 
pure symbols true. 


3) Unit clause heuristic: an unit clause consists of just one literal or it is a clause with 
only one literal unassigned and the others are false. Assigning an unit clause can 
imply a “cascade” of assignments called unit propagation. 
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The DPLL Algorithm
function DPLL_SAT(s) returns true or false


clauses <— set of clauses from a CNF

symbols <— propositions in s

return DPLL(clauses, symbols, {})


function DPLL(clauses, symbols, model) returns true or false

          if every clause in clauses is true in model then return true

          if some clause in clauses is false in model then return false

          P, value <— FIND_PURE_SYMBOL(symbols, clauses, model)

          if P is non-null then return DPLL(clauses, symbols-P,model U {P=value})

          P, value <— FIND_UNIT_CLAUSE(clauses, model)

          if P is non-null then return DPLL(clauses, symbols-P, model U {P=value})

          P <— FIRST(symbols) ; rest <— REST(symbols)

          return DPLL(clauses, rest, model U {P=true}) or

                        DPLL(clauses, rest, model U {P=false})
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DPLL : Example

( P1 P2) ( P1 P3 P5) ( P2 P4) ( P3 P4) (P1 P5 P2) (P2 P3) (P2 P3 P7) (P6 P5)¬ ∨ ∧ ¬ ∨ ∨ ∧ ¬ ∨ ∧ ¬ ∨¬ ∧ ∨ ∨¬ ∧ ∨ ∧ ∨¬ ∨ ∧ ∨¬

c1 = ( P1 P2)¬ ∨
c2 = ( P1 P3 P5)¬ ∨ ∨
c3 = ( P2 P4)¬ ∨
c4 = ( P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

Consider the following CNF:

corresponding to the satisfiability of the 8 clauses 

Let’s apply DPLL…



Luca Doria, KPH Mainz Introduction to AI 10

DPLL : Example

c1 = ( P1 P2)¬ ∨
c2 = ( P1 P3 P5)¬ ∨ ∨
c3 = ( P2 P4)¬ ∨
c4 = ( P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

This clause becomes a unit literal —> P5 must be False

—> This clause is satisfied.
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DPLL : Example

c1 = ( P1 P2)¬ ∨
c2 = ( P1 P3 P5)¬ ∨ ∨
c3 = ( P2 P4)¬ ∨
c4 = ( P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

Done

P7= False
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c1 = ( P1 P2)¬ ∨
c2 = ( P1 P3 P5)¬ ∨ ∨
c3 = ( P2 P4)¬ ∨
c4 = ( P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

Done

P7= False

DPLL : Example

P1= True
This clause is now true
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DPLL : Example

c1 = ( P1 P2)¬ ∨
c2 = ( P1 P3 P5)¬ ∨ ∨
c3 = ( P2 P4)¬ ∨
c4 = ( P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

Done

P7= False

P1= True
Done

Unit propagation

Unit propagation P3=true

P3= True

P2= True
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DPLL : Example

c1 = ( P1 P2)¬ ∨
c2 = ( P1 P3 P5)¬ ∨ ∨
c3 = ( P2 P4)¬ ∨
c4 = ( P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

Done

P7= False

P1= True
Done

Done

Done

P3= True

P2= True

Unit clause

P4 must be true

P4= True

P4 must be true

Conflict in c4!!
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DPLL : Example

c1 = ( P1 P2)¬ ∨
c2 = ( P1 P3 P5)¬ ∨ ∨
c3 = ( P2 P4)¬ ∨
c4 = ( P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

Done

P7= False

P1= True
Done

Done

Done

P3= True

P2= True

Done

Done

P4= True

Conflict

We took 3 decisions so far:

P6, P7, P1, the other ones were forced.

BACKTRACK to the last.
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DPLL : Example

c1 = ( P1 P2)¬ ∨
c2 = ( P1 P3 P5)¬ ∨ ∨
c3 = ( P2 P4)¬ ∨
c4 = ( P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

Done

P7= False

P1= True
Done

Done

Done

P3= True

P2= True

Done

Done

P4= True

Conflict P1= False



Luca Doria, KPH Mainz Introduction to AI 17

DPLL Properties

• DPLL is complete, correct and always terminate.


• DPLL returns a model if one exists.


• DPLL requires in general exponential time (heuristics can help).


• DPLL requires polynomial time on Horn clauses (see next).


• In SAT competitions among algorithms, DPLL variants show excellent performances.
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The average SAT instance

• SAT is NP-complete (exponential time in the worst case)


• True also for the best DPLL-style algorithm.


• Can we improve on the average case (not in the worst)?


• A first result (Goldberg, 1979): if the probability of a positive-, negative-, or non-

appearance for a literal is 1/3, then DPLL needs only average quadratic time.
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A digression: Phase Transitions

Phase transitions refer to when a substance transforms between a state of matter to 

another one.


Example: the boiling point of water (100oC) or its freezing point (0oC).


The change of phase is usually “fast” and it is controlled by a parameter (e.g. the 
temperature).


Phases display  very different macroscopic properties while the “microscopic” 
structure is the same.


Phase transitions can happen also in algorithmic problems, as in the case of SAT!
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Phase Transition in SAT

J.A.Crawford,L.D.Auton, Artif. Intell. 81,31 (1996)

 = n/m (Clause/Variables)α

SAT3(n,m)

 ~ 4.26α

under-constrained 

problems 

over-constrained 

problems 

Usually the first backtracking 

path is successful

The absence of a solution can 

be determined early in the search.

Critically-constrained:

Many almost-solutions 

present
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SAT and Local Search
• SAT can be formulated as a local search problem:


• Make a local “move” and try to reach a better state.


• Needed: a function to minimise (evaluation function) associated to the problem.


• Example: Number of satisfied clauses.


• Problem: local maxima.


• In this context, many algorithms can be used (Simulated Annealing, (Reactive)Tabu 

Search, ….)
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A local search algorithm: GSAT
function GSAT(clauses,Max-Flips, Max-Tries) returns truth assignment (if it exists)


for i=1 to Max-Tries:

T <— random truth assignment

for j=1 to <Max-Flips:


if T satisfies clauses then return T

v <— propositional variable such that a change in its truth assignment 
gives the large increase in the # of clauses satisfied by T.

T <— T with truth assignment v reversed.


          return “no assignment found”


Chapter 8: Satisfiability and Model Construction

The Search Behavior of GSAT

In contrast to many other local search methods, we must also allow sideways
movements!

Most time is spent searching on plateaus.
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Another variant: WalkSAT. Here the choice of which variable to flip 
is different. First picks a random clause which is unsatisfied by the 
current assignment T, then flips a variable within that clause. The 
variable is picked that will result in the fewest previously 
satisfied clauses becoming unsatisfied, with some probability of 
picking one of the variables at random. When picking a guessed-
to-be-optimal variable, WalkSAT has to do less calculation than 
GSAT because it is considering fewer possibilities.

Notice how GSAT 
spends a lot of 
time on plateaus.
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Practical Improvements of  DPLL

Component Analysis: If we discover sets of clauses which do not share unassigned 
variables, we can decompose the original problem in two (or more) disjoined ones.


Variable/Value Ordering: Try first the unassigned variable which appears more frequently 
in the remaining clauses (degree heuristic). 

 

Intelligent Backtracking: Backtrack directly to the source of conflicts. Frequently used: 
conflict clause learning (for not repeating the same “mistake” again).


Random restart: (remember hill climbing algorithms) in case of conflict, restart from a 
random place in the previous search tree.

 

Clever Indexing: optimisation of the data structures indexing the different variables/
clauses.

Many ideas come from CSP algorithms:
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SAT Status

• Since the beginning of the 90s: SAT competitions


• http://www.satcompetition.org/


• Largest instances > 107 variables


• Complete solvers dominate the performance ranking


• Incomplete local search solvers are best on random satisfiable instances


• Best solvers use meta-algorithmic methods like algorithm configuration/selection, ….

http://www.satcompetition.org/
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Summary

• Algorithms solving SAT make strong use of resolution


• DPLL combines resolution with backtracking


• Very efficient implementation techniques


• Smart branching heuristics


• Clause learning


