
© Laurent / Adobe Stock

Introduction to Artificial Intelligence
8: Satisfiability and Model Construction

Luca Doria, KPH Mainz

Luca Doria, KPH Mainz Introduction to AI 2

Logical Deduction vs Satisfiability
Propositional Logic:

Logical deduction

Given: A logical theory (set of propositions)

Question: Does a proposition follow from this theory?

Algorithm: reduction to unsatisfiability (coNP-complete problem)

Satisfiability (SAT)

 Given: A logical theory

 Target: A model for the theory

 Easier in general: we just need one model

 Wide applications range.

Luca Doria, KPH Mainz Introduction to AI

The SAT Problem
The SAT Problem

AKA as Boolean Satisfiability Problem.

The problem consists in determining if there exists an interpretation that satisfies a
given Boolean formula.

More concretely, SAT asks whether the variables of a given Boolean formula can be
consistently replaced by the values true or false in such a way that the formula
evaluates to true.

k-SAT

Since every logical expression can be reduced to CNF, we define k-SAT as the SAT
problem referred to clauses with k literals.

SAT can be reformulated as a constrained satisfaction problem (CSP) with symbols of
the alphabet as variables and domain values {T,F}. Clauses are constraints.

Luca Doria, KPH Mainz Introduction to AI 4

Why is SAT important?
Complexity

SAT was the first problem to be shown to be NP-complete.

In particular, 2-SAT belongs to P, while k-SAT with k>2 is NP-complete (Cook-
Levin Theorem, Cook, 1971 Levin, 1973).

Notation:

SATk(n,m) : SAT problem reduced in CNF with m clauses, n symbols and k different
literals per clause.

Reducibility

We know that every problem in NP can be (polynomially) reduced to NP-complete
problems, therefore SAT represents a paradigm for the problems in this class and NP-
complete problems are the “most difficult” problems in NP.

Luca Doria, KPH Mainz Introduction to AI 5

Reminder: (Some) Complexity Classes

NP

NP-Complete

P

PSPACE

BQP (?)

kSAT k>2

kSAT k<3

Factoring

Luca Doria, KPH Mainz Introduction to AI 6

The DPLL Algorithm
The DPLL (Davis, Putnam, Logemann, Loveland, 1962) algorithm corresponds to

backtracking with inference in constrained satisfaction problems.

In general, a SAT problem corresponds to a CSP if we regard the clauses as constraints.

How do we solved a CSP? With DF-search and backtracking.

Therefore: a similar procedure can be applied to solve SAT.

Luca Doria, KPH Mainz Introduction to AI 7

The DPLL Algorithm
The DPLL algorithm employs the following techniques for improving the search:

1) Early Termination: the algorithm tries to check if a sentence is true before even if
the model is still not fully reconstructed. For example, a clause is true if one of the
literals is true and the full sentence is true if all the clauses are true.

2) Pure symbol heuristic: A “pure symbol” is a literal that appears with the same
“sign” in all the clauses. If there is a model, it has an assignment that makes the
pure symbols true.

3) Unit clause heuristic: an unit clause consists of just one literal or it is a clause with
only one literal unassigned and the others are false. Assigning an unit clause can
imply a “cascade” of assignments called unit propagation.

Luca Doria, KPH Mainz Introduction to AI 8

The DPLL Algorithm
function DPLL_SAT(s) returns true or false

clauses <— set of clauses from a CNF

symbols <— propositions in s

return DPLL(clauses, symbols, {})

function DPLL(clauses, symbols, model) returns true or false

 if every clause in clauses is true in model then return true

 if some clause in clauses is false in model then return false

 P, value <— FIND_PURE_SYMBOL(symbols, clauses, model)

 if P is non-null then return DPLL(clauses, symbols-P,model U {P=value})

 P, value <— FIND_UNIT_CLAUSE(clauses, model)

 if P is non-null then return DPLL(clauses, symbols-P, model U {P=value})

 P <— FIRST(symbols) ; rest <— REST(symbols)

 return DPLL(clauses, rest, model U {P=true}) or

 DPLL(clauses, rest, model U {P=false})

Luca Doria, KPH Mainz Introduction to AI 9

DPLL : Example

(P1 P2) (P1 P3 P5) (P2 P4) (P3 P4) (P1 P5 P2) (P2 P3) (P2 P3 P7) (P6 P5)¬ ∨ ∧ ¬ ∨ ∨ ∧ ¬ ∨ ∧ ¬ ∨¬ ∧ ∨ ∨¬ ∧ ∨ ∧ ∨¬ ∨ ∧ ∨¬

c1 = (P1 P2)¬ ∨
c2 = (P1 P3 P5)¬ ∨ ∨
c3 = (P2 P4)¬ ∨
c4 = (P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

Consider the following CNF:

corresponding to the satisfiability of the 8 clauses

Let’s apply DPLL…

Luca Doria, KPH Mainz Introduction to AI 10

DPLL : Example

c1 = (P1 P2)¬ ∨
c2 = (P1 P3 P5)¬ ∨ ∨
c3 = (P2 P4)¬ ∨
c4 = (P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

This clause becomes a unit literal —> P5 must be False

—> This clause is satisfied.

Luca Doria, KPH Mainz Introduction to AI 11

DPLL : Example

c1 = (P1 P2)¬ ∨
c2 = (P1 P3 P5)¬ ∨ ∨
c3 = (P2 P4)¬ ∨
c4 = (P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

Done

P7= False

Luca Doria, KPH Mainz Introduction to AI 12

c1 = (P1 P2)¬ ∨
c2 = (P1 P3 P5)¬ ∨ ∨
c3 = (P2 P4)¬ ∨
c4 = (P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

Done

P7= False

DPLL : Example

P1= True
This clause is now true

Luca Doria, KPH Mainz Introduction to AI 13

DPLL : Example

c1 = (P1 P2)¬ ∨
c2 = (P1 P3 P5)¬ ∨ ∨
c3 = (P2 P4)¬ ∨
c4 = (P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

Done

P7= False

P1= True
Done

Unit propagation

Unit propagation P3=true

P3= True

P2= True

Luca Doria, KPH Mainz Introduction to AI 14

DPLL : Example

c1 = (P1 P2)¬ ∨
c2 = (P1 P3 P5)¬ ∨ ∨
c3 = (P2 P4)¬ ∨
c4 = (P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

Done

P7= False

P1= True
Done

Done

Done

P3= True

P2= True

Unit clause

P4 must be true

P4= True

P4 must be true

Conflict in c4!!

Luca Doria, KPH Mainz Introduction to AI 15

DPLL : Example

c1 = (P1 P2)¬ ∨
c2 = (P1 P3 P5)¬ ∨ ∨
c3 = (P2 P4)¬ ∨
c4 = (P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

Done

P7= False

P1= True
Done

Done

Done

P3= True

P2= True

Done

Done

P4= True

Conflict

We took 3 decisions so far:

P6, P7, P1, the other ones were forced.

BACKTRACK to the last.

Luca Doria, KPH Mainz Introduction to AI 16

DPLL : Example

c1 = (P1 P2)¬ ∨
c2 = (P1 P3 P5)¬ ∨ ∨
c3 = (P2 P4)¬ ∨
c4 = (P3 P4)¬ ∨¬
c5 = (P1 P5 P2)∨ ∨¬
c6 = (P2 P3)∨
c7 = (P2 P3 P7)∨¬ ∨
c8 = (P6 P5)∨¬

P6= False

Done

P7= False

P1= True
Done

Done

Done

P3= True

P2= True

Done

Done

P4= True

Conflict P1= False

Luca Doria, KPH Mainz Introduction to AI 17

DPLL Properties

• DPLL is complete, correct and always terminate.

• DPLL returns a model if one exists.

• DPLL requires in general exponential time (heuristics can help).

• DPLL requires polynomial time on Horn clauses (see next).

• In SAT competitions among algorithms, DPLL variants show excellent performances.

Luca Doria, KPH Mainz Introduction to AI 18

The average SAT instance

• SAT is NP-complete (exponential time in the worst case)

• True also for the best DPLL-style algorithm.

• Can we improve on the average case (not in the worst)?

• A first result (Goldberg, 1979): if the probability of a positive-, negative-, or non-

appearance for a literal is 1/3, then DPLL needs only average quadratic time.

Luca Doria, KPH Mainz Introduction to AI 19

A digression: Phase Transitions

Phase transitions refer to when a substance transforms between a state of matter to

another one.

Example: the boiling point of water (100oC) or its freezing point (0oC).

The change of phase is usually “fast” and it is controlled by a parameter (e.g. the
temperature).

Phases display very different macroscopic properties while the “microscopic”
structure is the same.

Phase transitions can happen also in algorithmic problems, as in the case of SAT!

Luca Doria, KPH Mainz Introduction to AI 20

Phase Transition in SAT

J.A.Crawford,L.D.Auton, Artif. Intell. 81,31 (1996)

 = n/m (Clause/Variables)α

SAT3(n,m)

 ~ 4.26α

under-constrained

problems

over-constrained

problems

Usually the first backtracking

path is successful

The absence of a solution can

be determined early in the search.

Critically-constrained:

Many almost-solutions

present

Luca Doria, KPH Mainz Introduction to AI 21

SAT and Local Search
• SAT can be formulated as a local search problem:

• Make a local “move” and try to reach a better state.

• Needed: a function to minimise (evaluation function) associated to the problem.

• Example: Number of satisfied clauses.

• Problem: local maxima.

• In this context, many algorithms can be used (Simulated Annealing, (Reactive)Tabu

Search, ….)

Luca Doria, KPH Mainz Introduction to AI 22

A local search algorithm: GSAT
function GSAT(clauses,Max-Flips, Max-Tries) returns truth assignment (if it exists)

for i=1 to Max-Tries:

T <— random truth assignment

for j=1 to <Max-Flips:

if T satisfies clauses then return T

v <— propositional variable such that a change in its truth assignment
gives the large increase in the # of clauses satisfied by T.

T <— T with truth assignment v reversed.

 return “no assignment found”

Chapter 8: Satisfiability and Model Construction

The Search Behavior of GSAT

In contrast to many other local search methods, we must also allow sideways
movements!

Most time is spent searching on plateaus.

Prof. Dr. Matthias Schott Introduction to AI (Ref A) April 9, 2022 25 / 30

Another variant: WalkSAT. Here the choice of which variable to flip
is different. First picks a random clause which is unsatisfied by the
current assignment T, then flips a variable within that clause. The
variable is picked that will result in the fewest previously
satisfied clauses becoming unsatisfied, with some probability of
picking one of the variables at random. When picking a guessed-
to-be-optimal variable, WalkSAT has to do less calculation than
GSAT because it is considering fewer possibilities.

Notice how GSAT
spends a lot of
time on plateaus.

Luca Doria, KPH Mainz Introduction to AI 23

Practical Improvements of DPLL

Component Analysis: If we discover sets of clauses which do not share unassigned
variables, we can decompose the original problem in two (or more) disjoined ones.

Variable/Value Ordering: Try first the unassigned variable which appears more frequently
in the remaining clauses (degree heuristic).

Intelligent Backtracking: Backtrack directly to the source of conflicts. Frequently used:
conflict clause learning (for not repeating the same “mistake” again).

Random restart: (remember hill climbing algorithms) in case of conflict, restart from a
random place in the previous search tree.

Clever Indexing: optimisation of the data structures indexing the different variables/
clauses.

Many ideas come from CSP algorithms:

Luca Doria, KPH Mainz Introduction to AI 24

SAT Status

• Since the beginning of the 90s: SAT competitions

• http://www.satcompetition.org/

• Largest instances > 107 variables

• Complete solvers dominate the performance ranking

• Incomplete local search solvers are best on random satisfiable instances

• Best solvers use meta-algorithmic methods like algorithm configuration/selection, ….

http://www.satcompetition.org/

Luca Doria, KPH Mainz Introduction to AI 25

Summary

• Algorithms solving SAT make strong use of resolution

• DPLL combines resolution with backtracking

• Very efficient implementation techniques

• Smart branching heuristics

• Clause learning

