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Motivation for extending Propositional Logic

e Propositional logic 1s quite expressive, but 1t has limitations.
e For example, what about sentences like:
- “All crows are black”™
- “There 1s a crow A”
- It should follow: *““A 1s black”™
e Propositional logic cannot describe this situation.
e To this aim we introduce variables, predicates, and functions.

e This leads to Predicate Logic (or first order logic, PL1)
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Base Example used 1n the following

Crown

I on head

ng J ohn chhard the Lionheart
Brothers

Person Person
ng
Father Father
eg

Krng Henry
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Syntax of PL1

Symbols of PL1 are divided in three classes:

- Constant Symbols (objects)
- Predicate Symbols (relations)
- Function Symbols

Predicates and Functions have an arity (number of arguments)

A model must provide information for determining 1f any given sentence 1s true or false.
Besides objects, relations and functions, a model includes an interpretation.

The interpretation specifies precisely which objects, relations, and functions are referred
to constant, predicate, and function symbols.

Luca Doria, KPH Mainz Introduction to Al



Interpretation Example

The symbol Richard —> Refers to Richard the Lionhaeart
The symbol John —> Refers to the King John
Brother —> Refers to the brotherhood relation, which 1s the set of tuples of objects:

{<Richard the Lionheart, King John> , <King John, Richard the Lionheart>}

Note: a tuple 1s a set of objects 1n fixed order between <,> brackets.

OnHead —> Refers to the relation between the crown and John
Person, King, Crown are unary relations identifying persons, kings and crowns.

LeftLeg —> Function defined by <King John>—John’s left leg ... and so on..

Many interpretations are possible, €.g. Richard could be related to the crown and be
king,...
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Terms

A term 1s a logical expression which refers to an object.

- Constant symbols are terms (John, Richard, ...)

- A constant with a predicate 1s a term: King(John)

- A function with 1ts argument 1s a term: f(a, b, c,...)
- Variables are terms (see next)
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Atomic and Complex Sentences

Atomic sentences (or atoms) are predicate symbols (optionally) followed by terms in
parentheses.
Example:

- Brother(Richard, John)
- Married(Father(Richard), Mother(John))

Complex sentences combine atoms with logical connectives:

Examples (which are true in the model of slide 3):

—Brother(LeftLeg(Richard), John)
Brother(Richard, John) V King(John)
—King(Richard) = King(John)
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Quantifiers

Having defined objects, we might be willing to express properties of groups of them.
Quantifiers do exactly that.

Universal quantification V

Existential quantification -
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Universal Quantifier

With this, we can finally compactly express concepts like:
“All the squares around a pit have a breeze”
“All squares around the Wumpus are smelly” ...

Introducing the new concept of variable (x for example), we can state:
Vx King(x) = Person(x)
Terms without variables are called ground terms.

Note: 1f we take x—John’s left leg, the previous statement might sound strange.
Since the implication is true even if its premise 1s false, still the statement holds.
So, the universally quantified sentence is true in our model under each extended
interpretation.(what you consider as “x”).
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Existential Quantifier

While the previous quantifier referred to every object, the existential quantifier refers to
some of them.

Example:
1x Crown(x) A OnHead(x,John)

Which can be instantiated in our model as (x—crown)
- The crown 1s a crown AND the crown 1s on Richard’s head

But also as (x—King John)
- King John 1s a crown AND King John 1s on John’s head (?)

Note that the connective AND seems the right one to use with 4, while the implication =
matches well with V .
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Connections between Quantifiers and Equality

Extension of the De Morgan’s Rules:

Ve =P = —-dx P ~(PV Q) = -PA-Q
Vo P = dx —P ~(PANQ) = PV Q
Ve P = —-dax P P A Q) = (=P V-Q)
dz P = —Va =P PV Q = (=P A Q)

Note that: V works similarly to a conjunction, while 3 to a disjunction.

The equality symbol “=" signify that two terms refer to the same object.
Example: Father(John)=Henry
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PL1 Summary

Sentence — AtomicSentence | ComplexSentence
AtomicSentence —  Predicate | Predicate(Term,...)| Term = Term

ComplexSentence — ( Sentence) | | Sentence ]
- Sentence

Sentence N\ Sentence
Sentence V Sentence
Sentence = Sentence

Sentence < Sentence

Quantifier Variable, ... Sentence Quantifier — V| 3
Constant — A| Xy | John | ---
Term —  Function(Term,...) Variable — a] x| s| -
Predicate — True | False | After | Loves | Raining
Constant |
| Function — Mother | LeftLeg | ---
Variable
OPERATOR PRECEDENCE : —, = A,V,=, &
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PL1 Summary

PL1 (or first-order logic) 1s a representation language which 1s much more expressive than
propositional logic.

Propositional logic commits only to the existence of facts.
PL1 commits to the existence of objects (ontological commitment) and to relations among them
(epistemological commitment).

Why we consider these languages? Because we would like to express knowledge 1n an expressive
way (better 1f also declarative and compositional).

A possible world or model for PL1 1s:
1) asetof objects
2) an interpretation that maps constant symbols to objects and predicate
symbols to functions on objects.
An extended interpretation maps quantifier variables to objects in the model and thus define the
truth of quantified sentences.
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Resolution

Is 1t possible to extend the resolution technique of propositional logic to PL1 as
inference procedure.

The 1dea 1s similar: reduce a sentence to conjunctive normal form (CNF) and then
apply a version of the resolution procedure. The reduction to CNF will be more

complex (we need to deal with the quantifiers!).

Reminder: the 1dea 1s to reduce our KB to CNF and then prove
KB F ¢
by proving (by contradiction) that

KB A = ¢ 1s unsatisfiable.
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Step 1: Eliminate implications

Example:
“Everyone who loves all animals is loved by someone”:

Vx [Vy Animal(y) = Loves(x,y)] = [d y Loves(y,x)]
Implication elimination: P = Q 1s equivalent to =P VvV Q :

First implication: Vx =[Vy Animal(y) = Loves(x,y)] V [d y Loves(y,x)]

Second implication: Vx =[Vy =Animal(y) V Loves(x,y)] V [d y Loves(y,x)]

Luca Doria, KPH Mainz Introduction to Al



Step 2: Move negations inwards

The negation rules with quantifiers are:
R1: =VxP 1sequivalent to dx —P
R2: —dx P 1s equivalent to Vx —P

Previous step: Vx —[Vy "Animal(y) V Loves(x,y)] V [d y Loves(y,x)]
Apply R1: VX [dy 7(—mAnmmal(y) V Loves(x,y))] V [d y Loves(y,x)]
De Morgan: VX [dy == Animal(y) A =Loves(x,y))] V [d y Loves(y,x)]
Double negation: Vx [dy Animal(y) A 7Loves(x,y))] V [d y Loves(y,x)]

Now the sentence reads: “Either there is some animal that x doesn t love, or if this is not
the case, someone loves x”°, which 1s equivalent to the original one (check 1t!)
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Step 3: Variables Standardization

For each sentence of the form: (dxP(x)) V (dxQ(x)) where we use the same
variable twice, we change the name of one variable.
This will prevent confusion later on, where the quantifiers will be dropped.

In our example case:

Last Step: Vx [dy Animal(y) A =Loves(x,y))] V [ y Loves(y,x)]

After Standardization: Vx [dy Animal(y) A =Loves(x,y))] V [d z Loves(z,x)]
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Step 4: ““Skolemization™

The “skolemization” procedure consists 1in the removal of existential
quantifiers applying instead Skolem Functions.

Previous step: Vx [dy Animal(y) A 7Loves(x,y))] V [d z Loves(z,x)]

T. A. Skolem (1887 -1963

After Skolemization: Vx [Animal(F(x)) A 7Loves(x,F(x))] V Loves(G(x),x)

The Skolem function “picks” the right element (realising 4) among V .
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Step S: Drop universal quantifier

After Skolemization: Vx [Animal(F(x)) A 7Loves(x,F(x))] V Loves(G(x),x)

Note that the only variable left 1s “x” and without possibility of confusion,
we can drop the universal quantifier :

[ Animal(F(x)) A =Loves(x,F(x))] V Loves(G(x),x)
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Step 6: Apply Distributive Law

Previous step: [Animal(F(x)) A 7Loves(x,F(x))] V Loves(G(x),x)

Distributing V over A:

| Animal(F(x)) V Loves(G(x),x)] A [Loves(x,F(x)) V Loves(G(x),x)]

Which 1s finally in CNF: we can apply Resolution
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Resolution Example: Statement of the problem

* Everyone who loves animals 1s loved by someone

* Anyone who kills an animal 1s loved by no-one

» Jack loves all animals.

* Either Jack or Curiosity killed the cat, who 1s named Tuna.
* D1d curiosity kill the cat?

A. Vx Vy Animal(y) = Loves(x,y)| = |y Loves(y,x)]
Ve [z Animal(z) A\ Kills(z,z)| = |[Vy —Loves(y,x)]

B.
C. Va Animal(x) = Loves(Jack,x)

D. Kills(Jack, Tuna) V Kills( Curiosity, Tuna)
E. Cat(Tuna)

F. Vx Cat(z) = Animal(x)
G. —Kills(Curiosity, Tuna) | Negated consequence
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Resolution Example : Reduction to CNF

Al.
A2.

B
C.
D.
E
F

—(@.

Animal(F(x)) V Loves(G(x), x)

—Loves(x, F'(z)) V Loves(G(x), x)
—Loves(y,x) V mAnimal(z) V - Kills(x, 2)
- Animal(x) V Loves(Jack, x)

Kills(Jack, Tuna) V Kills( Curiosity, Tuna)
Cat( Tuna)

- Cat(z) V Animal(x)

- Kills( Curiosity, Tuna)
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Resolution Example : Proot by Resolution

Cat(Tuna) ~Cat(x) VAnimal(x) | |Kills(Jack, Tuna) V Kills(Curiosity, Tuna)| | —~Kills(Curiosity, Tuna)

\—

\/

Animal(Tuna) —Loves(y, x)V "Animal(z) V- Kills(x, z)

Kills(Jack, Tuna) | | ~Loves(x, F(x))V Loves(G(x), x)

—Animal(x) Vv Loves(Jack, x)

e L

—Loves(y, x) V - Kills(x, Tuna)

—Loves(y, Jack)

A S—

I —Animal(F(Jack)) V Loves(G(Jack), Jack) | |Animal(F(x)) V Loves(G(x), x)

Loves(G(Jack), Jack)
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The Alphabet of PL1

Symbols
Operators: 7, A,V,V,d,=,=> , &
Variables: x, x,,...,x, x",w,y, z,..(lower case letters)
Brackets: (), [], ..

Function Symbols e.g.: weight() , color(), ...
Predicate Symbols e.g.: Crow(), Black(), ...

Predicates and Symbols have an arity (number of arguments).
0-ary predicate = propositional logic atoms (P, Q, ...)

0-ary function = constants: a, b, ¢ ...

We assume a countable set of predicates and functions of any arity.
Note: “=" 1s not considered a predicate but a logical symbol.
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The Grammar of PL1

Terms (represent objects)
Every variable 1s a term.
If t1, to, ..., taare terms and f an n-ary function, then f(ti, t2, ..., tn) 1s also a term.
Variables: x;, x,, ..., x, x",w,y,z,..
Brackets: (), [], ..

Function without variables (ground terms) e.g.: () , f(g(), h(), ...), ...

Atomic formulae (statements about objects)

If t1, to, ..., taare terms and P 1s an n-ary predicate, then P(ti, t2, ..., tn) 1S an atomic
formula.

If t1, t2 are terms t;=t2 1s an atomic formula.

Atomic formulae without variables are ground atoms.
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The Grammar of PL1

Atomic formulae (statements about objects)
- Every atomic formula 1s a formula

- If ¢ and y are formula and x 1s a variable, then
“OAY, OV Y, Q= y, P <y, dxg and Vg

are also a formulae.

- V, d are as strongly binding as —..

Propositional logic 1s part of the PL1 language
- Atomic formulae: only 0-ary predicates
- Neither variables nor quantifiers
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Meaning of PL1 Formulae

Vx[Crow(x) = Black(x)| , Crow(a)

Means: for all objects x: 1f x 1s a Crow, then x 1s black and 1t 1s a crow.

In general:
- Terms are interpreted as objects

- Universally-quantified variables denote all objects in the universe made true by the
quantified expression.

- Predicates represent subsets of the universe (e.g. some objects of the universe are
CITOWS).

Analogously to propositional logic, we define interpretations, satistiability, models,
validity, ...
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Summary of Reduction to Clausal Form

The clausal form 1s a standardization for PL1 formulas useful for automated reasoning.
The conversion process consists 1n the following steps:

1. Removing implications and biconditionals.

2. Moving negations inward.

3. Standardizing variables.

4. Moving quantifiers to the front.

5. Skolemization to eliminate existential quantifiers.
6. Dropping universal quantifiers.

7. Converting to conjunctive normal form (CNF).

8. Extracting clauses.

Clausal form allows efficient application of logical inference techniques like resolution.
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Limaitations of Logic Systems

A logical system 1s sound 1f every
theorem that can be derived using the
system's inference rules 1s logically valid
(1.e., true 1n all models).

- =k

A logical system 1s complete 1if every
logically valid formula (1.e., true in all
models) can be derived using the system's
inference rules.

E = -

Propositional logic

Propositional logic 1s sound. If a
formula can be derived using the
inference rules of propositional
logic, then 1t 1s true 1n all possible
interpretations (truth assignments).

Propositional logic 1s complete. It
a formula 1s true in all possible
interpretations, 1t can be derived
using the 1nference rules of
propositional logic.
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First Order Logic

First-order logic 1s sound. If a
formula can be derived using the
inference rules of first-order logic,
then 1t 1s true 1n all models.

First-order logic 1s complete, as
proven by Godel's Completeness
Theorem. This theorem states that
1f a formula 1s true 1n all models, 1t
can be derived using the axioms
and 1nference rules of first-order
logic.
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Godel’s Theorems

First Incompleteness Theorem:

In any consistent formal system F that 1s capable of expressing elementary arithmetic
(allowing induction, includes Turing machines..), there exist statements that are true but not
provable within the system.

This means that no sufficiently powerful and consistent formal system can be both complete
and sound. There will always be true arithmetic statements that the system cannot prove.

Second Incompleteness Theorem

A sufficiently powerful and consistent formal system F cannot prove its own consistency (1.€.
you cannot prove P and —P).

This means that the consistency of a formal system capable of arithmetic cannot be
established by the system itself.
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