
© Laurent / Adobe Stock

Introduction to Artificial Intelligence
9: Predicate Logic

Luca Doria, KPH Mainz

Luca Doria, KPH Mainz Introduction to AI 2

Motivation for extending Propositional Logic
• Propositional logic is quite expressive, but it has limitations.

• For example, what about sentences like:

- “All crows are black”

- “There is a crow A”

- It should follow: “A is black”

• Propositional logic cannot describe this situation.

• To this aim we introduce variables, predicates, and functions.

• This leads to Predicate Logic (or first order logic, PL1)

Luca Doria, KPH Mainz Introduction to AI 3

Base Example used in the following

King John Richard the Lionheart
Brothers

Person

King

Person

Crown

King Henry

FatherFather LegLeg

on head

Luca Doria, KPH Mainz Introduction to AI 4

Syntax of PL1
Symbols of PL1 are divided in three classes:

- Constant Symbols (objects)

- Predicate Symbols (relations)

- Function Symbols

Predicates and Functions have an arity (number of arguments)

A model must provide information for determining if any given sentence is true or false.

Besides objects, relations and functions, a model includes an interpretation.

The interpretation specifies precisely which objects, relations, and functions are referred
to constant, predicate, and function symbols.

Luca Doria, KPH Mainz Introduction to AI 5

Interpretation Example
The symbol Richard —> Refers to Richard the Lionhaeart

The symbol John —> Refers to the King John

Brother —> Refers to the brotherhood relation, which is the set of tuples of objects:

{<Richard the Lionheart, King John> , <King John, Richard the Lionheart>}

Note: a tuple is a set of objects in fixed order between <,> brackets.

OnHead —> Refers to the relation between the crown and John

Person, King, Crown are unary relations identifying persons, kings and crowns.

LeftLeg —> Function defined by <King John> John’s left leg … and so on..

Many interpretations are possible, e.g. Richard could be related to the crown and be
king,…

→

Luca Doria, KPH Mainz Introduction to AI 6

Terms
A term is a logical expression which refers to an object.

- Constant symbols are terms (John, Richard, …)

- A constant with a predicate is a term: King(John)

- A function with its argument is a term: f(a, b, c,…)

- Variables are terms (see next)

Luca Doria, KPH Mainz Introduction to AI 7

Atomic and Complex Sentences
Atomic sentences (or atoms) are predicate symbols (optionally) followed by terms in
parentheses.

Example:

- Brother(Richard, John)

- Married(Father(Richard), Mother(John))

Complex sentences combine atoms with logical connectives:

Examples (which are true in the model of slide 3):

Brother(LeftLeg(Richard), John)

Brother(Richard, John) King(John)

King(Richard) King(John)

¬
∨

¬ ⇒

Luca Doria, KPH Mainz Introduction to AI 8

Quantifiers
Having defined objects, we might be willing to express properties of groups of them.

Quantifiers do exactly that.

Universal quantification

Existential quantification

∀

∃

Luca Doria, KPH Mainz Introduction to AI 9

Universal Quantifier
With this, we can finally compactly express concepts like:

“All the squares around a pit have a breeze”

“All squares around the Wumpus are smelly” …

Introducing the new concept of variable (x for example), we can state:

x King(x) Person(x)

Terms without variables are called ground terms.

Note: if we take x John’s left leg, the previous statement might sound strange.

Since the implication is true even if its premise is false, still the statement holds.

So, the universally quantified sentence is true in our model under each extended
interpretation.(what you consider as “x”).

∀ ⇒

→

Luca Doria, KPH Mainz Introduction to AI 10

Existential Quantifier
While the previous quantifier referred to every object, the existential quantifier refers to
some of them.

Example:

x Crown(x) OnHead(x,John)

Which can be instantiated in our model as (x crown)

- The crown is a crown AND the crown is on Richard’s head

But also as (x King John)

 - King John is a crown AND King John is on John’s head (?)

Note that the connective AND seems the right one to use with , while the implication
matches well with .

∃ ∧

→

→

∃ ⇒
∀

Luca Doria, KPH Mainz Introduction to AI 11

Connections between Quantifiers and Equality

��� #HAPTER �� &IRST
/RDER ,OGIC

#ONSECUTIVE QUANTIlERS OF THE SAME TYPE CAN BE WRITTEN AS ONE QUANTIlER WITH SEVERAL VARI

ABLES� &OR EXAMPLE� TO SAY THAT SIBLINGHOOD IS A SYMMETRIC RELATIONSHIP� WE CAN WRITE

∀x, y Sibling(x, y) ⇔ Sibling(y, x) .

)N OTHER CASES WE WILL HAVE MIXTURES� h%VERYBODY LOVES SOMEBODYv MEANS THAT FOR EVERY
PERSON� THERE IS SOMEONE THAT PERSON LOVES�

∀x ∃ y Loves(x, y) .

/N THE OTHER HAND� TO SAY h4HERE IS SOMEONE WHO IS LOVED BY EVERYONE�v WE WRITE

∃ y ∀x Loves(x, y) .

4HE ORDER OF QUANTIlCATION IS THEREFORE VERY IMPORTANT�)T BECOMES CLEARER IF WE INSERT PAREN

THESES� ∀x (∃ y Loves(x, y)) SAYS THAT everyone HAS A PARTICULAR PROPERTY� NAMELY� THE PROP

ERTY THAT THEY LOVE SOMEONE� /N THE OTHER HAND� ∃ y (∀x Loves(x, y)) SAYS THAT someone IN
THE WORLD HAS A PARTICULAR PROPERTY� NAMELY THE PROPERTY OF BEING LOVED BY EVERYBODY�

3OME CONFUSION CAN ARISE WHEN TWO QUANTIlERS ARE USED WITH THE SAME VARIABLE NAME�
#ONSIDER THE SENTENCE

∀x (Crown(x) ∨ (∃x Brother (Richard , x))) .

(ERE THE x IN Brother (Richard , x) IS e[istentially QUANTIlED� 4HE RULE IS THAT THE VARIABLE
BELONGS TO THE INNERMOST QUANTIlER THAT MENTIONS IT� THEN IT WILL NOT BE SUBJECT TO ANY OTHER
QUANTIlCATION� !NOTHER WAY TO THINK OF IT IS THIS� ∃x Brother (Richard , x) IS A SENTENCE
ABOUT 2ICHARD �THAT HE HAS A BROTHER	� NOT ABOUT x� SO PUTTING A ∀x OUTSIDE IT HAS NO EFFECT�)T
COULD EQUALLY WELL HAVE BEEN WRITTEN ∃ z Brother (Richard , z)� "ECAUSE THIS CAN BE A SOURCE
OF CONFUSION� WE WILL ALWAYS USE DIFFERENT VARIABLE NAMES WITH NESTED QUANTIlERS�

Connections between ∀ and ∃

4HE TWO QUANTIlERS ARE ACTUALLY INTIMATELY CONNECTED WITH EACH OTHER� THROUGH NEGATION� !S

SERTING THAT EVERYONE DISLIKES PARSNIPS IS THE SAME AS ASSERTING THERE DOES NOT EXIST SOMEONE
WHO LIKES THEM� AND VICE VERSA�

∀x ¬Likes(x,Parsnips) IS EQUIVALENT TO ¬∃x Likes(x,Parsnips) .

7E CAN GO ONE STEP FURTHER� h%VERYONE LIKES ICE CREAMv MEANS THAT THERE IS NO ONE WHO DOES
NOT LIKE ICE CREAM�

∀x Likes(x, IceCream) IS EQUIVALENT TO ¬∃x ¬Likes(x, IceCream) .

"ECAUSE ∀ IS REALLY A CONJUNCTION OVER THE UNIVERSE OF OBJECTS AND ∃ IS A DISJUNCTION� IT SHOULD
NOT BE SURPRISING THAT THEY OBEY $E -ORGAN�S RULES� 4HE $E -ORGAN RULES FOR QUANTIlED AND
UNQUANTIlED SENTENCES ARE AS FOLLOWS�

∀x ¬P ≡ ¬∃x P ¬(P ∨Q) ≡ ¬P ∧ ¬Q

¬∀x P ≡ ∃x ¬P ¬(P ∧Q) ≡ ¬P ∨ ¬Q

∀x P ≡ ¬∃x ¬P P ∧Q ≡ ¬(¬P ∨ ¬Q)

∃x P ≡ ¬∀x ¬P P ∨Q ≡ ¬(¬P ∧ ¬Q) .

4HUS� WE DO NOT REALLY NEED BOTH ∀ AND ∃� JUST AS WE DO NOT REALLY NEED BOTH ∧ AND ∨� 3TILL�
READABILITY IS MORE IMPORTANT THAN PARSIMONY� SO WE WILL KEEP BOTH OF THE QUANTIlERS�

Extension of the De Morgan’s Rules:

Note that: works similarly to a conjunction, while to a disjunction.

The equality symbol “=” signify that two terms refer to the same object.

Example: Father(John)=Henry

∀ ∃

Luca Doria, KPH Mainz Introduction to AI 12

3ECTION ���� 3YNTAX AND 3EMANTICS OF &IRST
/RDER ,OGIC ���

Sentence → AtomicSentence | ComplexSentence

AtomicSentence → Predicate | Predicate(Term , . . .) | Term Term

ComplexSentence → � Sentence � | > Sentence @
| ¬ Sentence

| Sentence ∧ Sentence

| Sentence ∨ Sentence

| Sentence ⇒ Sentence

| Sentence ⇔ Sentence

| Quantifier Variable , . . . Sentence

Term → Function(Term, . . .)

| Constant

| Variable

Quantifier → ∀ | ∃

Constant → A | X1 | John | · · ·

Variable → a | x | s | · · ·

Predicate → True | False | After | Loves | Raining | · · ·

Function → Mother | LeftLeg | · · ·

/0%2!4/2 02%#%$%.#% : ¬, =,∧,∨,⇒,⇔

Figure 8�3 4HE SYNTAX OF lRST
ORDER LOGIC WITH EQUALITY� SPECIlED IN "ACKUSn.AUR FORM
�SEE PAGE ���� IF YOU ARE NOT FAMILIAR WITH THIS NOTATION	� /PERATOR PRECEDENCES ARE SPECIlED�
FROM HIGHEST TO LOWEST� 4HE PRECEDENCE OF QUANTIlERS IS SUCH THAT A QUANTIlER HOLDS OVER
EVERYTHING TO THE RIGHT OF IT�

R JR JR J R J R J R J

.

Figure 8�4 3OME MEMBERS OF THE SET OF ALL MODELS FOR A LANGUAGE WITH TWO CONSTANT SYM

BOLS� R AND J � AND ONE BINARY RELATION SYMBOL� 4HE INTERPRETATION OF EACH CONSTANT SYMBOL IS
SHOWN BY A GRAY ARROW� 7ITHIN EACH MODEL� THE RELATED OBJECTS ARE CONNECTED BY ARROWS�

PL1 Summary

3ECTION ���� 3YNTAX AND 3EMANTICS OF &IRST
/RDER ,OGIC ���

Sentence → AtomicSentence | ComplexSentence

AtomicSentence → Predicate | Predicate(Term , . . .) | Term Term

ComplexSentence → � Sentence � | > Sentence @
| ¬ Sentence

| Sentence ∧ Sentence

| Sentence ∨ Sentence

| Sentence ⇒ Sentence

| Sentence ⇔ Sentence

| Quantifier Variable , . . . Sentence

Term → Function(Term, . . .)

| Constant

| Variable

Quantifier → ∀ | ∃

Constant → A | X1 | John | · · ·

Variable → a | x | s | · · ·

Predicate → True | False | After | Loves | Raining | · · ·

Function → Mother | LeftLeg | · · ·

/0%2!4/2 02%#%$%.#% : ¬, =,∧,∨,⇒,⇔

Figure 8�3 4HE SYNTAX OF lRST
ORDER LOGIC WITH EQUALITY� SPECIlED IN "ACKUSn.AUR FORM
�SEE PAGE ���� IF YOU ARE NOT FAMILIAR WITH THIS NOTATION	� /PERATOR PRECEDENCES ARE SPECIlED�
FROM HIGHEST TO LOWEST� 4HE PRECEDENCE OF QUANTIlERS IS SUCH THAT A QUANTIlER HOLDS OVER
EVERYTHING TO THE RIGHT OF IT�

R JR JR J R J R J R J

.

Figure 8�4 3OME MEMBERS OF THE SET OF ALL MODELS FOR A LANGUAGE WITH TWO CONSTANT SYM

BOLS� R AND J � AND ONE BINARY RELATION SYMBOL� 4HE INTERPRETATION OF EACH CONSTANT SYMBOL IS
SHOWN BY A GRAY ARROW� 7ITHIN EACH MODEL� THE RELATED OBJECTS ARE CONNECTED BY ARROWS�

Luca Doria, KPH Mainz Introduction to AI 13

PL1 Summary
PL1 (or first-order logic) is a representation language which is much more expressive than
propositional logic.

Propositional logic commits only to the existence of facts.

PL1 commits to the existence of objects (ontological commitment) and to relations among them
(epistemological commitment).

Why we consider these languages? Because we would like to express knowledge in an expressive
way (better if also declarative and compositional).

A possible world or model for PL1 is:

1) a set of objects

2) an interpretation that maps constant symbols to objects and predicate

symbols to functions on objects.

An extended interpretation maps quantifier variables to objects in the model and thus define the
truth of quantified sentences.

Luca Doria, KPH Mainz Introduction to AI 14

Resolution
Is it possible to extend the resolution technique of propositional logic to PL1 as
inference procedure.

The idea is similar: reduce a sentence to conjunctive normal form (CNF) and then
apply a version of the resolution procedure. The reduction to CNF will be more
complex (we need to deal with the quantifiers!).

Reminder: the idea is to reduce our KB to CNF and then prove

KB

by proving (by contradiction) that

KB is unsatisfiable.

⊧ ϕ

∧ ¬ ϕ

Luca Doria, KPH Mainz Introduction to AI 15

Step 1: Eliminate implications
Example:

“Everyone who loves all animals is loved by someone”:

x [y Animal(y) Loves(x,y)] [y Loves(y,x)]∀ ∀ ⇒ ⇒ ∃

Implication elimination: P Q is equivalent to P Q :⇒ ¬ ∨

First implication: x [y Animal(y) Loves(x,y)] [y Loves(y,x)]∀ ¬ ∀ ⇒ ∨ ∃

Second implication: x [y Animal(y) Loves(x,y)] [y Loves(y,x)]∀ ¬ ∀ ¬ ∨ ∨ ∃

Luca Doria, KPH Mainz Introduction to AI 16

Step 2: Move negations inwards

Previous step: x [y Animal(y) Loves(x,y)] [y Loves(y,x)]

Apply R1: x [y (Animal(y) Loves(x,y))] [y Loves(y,x)]

De Morgan: x [y Animal(y) Loves(x,y))] [y Loves(y,x)]

Double negation: x [y Animal(y) Loves(x,y))] [y Loves(y,x)]

∀ ¬ ∀ ¬ ∨ ∨ ∃

∀ ∃ ¬ ¬ ∨ ∨ ∃

∀ ∃ ¬¬ ∧ ¬ ∨ ∃

∀ ∃ ∧ ¬ ∨ ∃

The negation rules with quantifiers are:

R1: x P is equivalent to x P

R2: x P is equivalent to x P

¬∀ ∃ ¬
¬∃ ∀ ¬

Now the sentence reads: “Either there is some animal that x doesn’t love, or if this is not
the case, someone loves x”, which is equivalent to the original one (check it!)

Luca Doria, KPH Mainz Introduction to AI 17

Step 3: Variables Standardization
For each sentence of the form: (xP(x)) (xQ(x)) where we use the same

variable twice, we change the name of one variable.

This will prevent confusion later on, where the quantifiers will be dropped.

In our example case:

∃ ∨ ∃

Last Step: x [y Animal(y) Loves(x,y))] [y Loves(y,x)]∀ ∃ ∧ ¬ ∨ ∃

After Standardization: x [y Animal(y) Loves(x,y))] [z Loves(z,x)]∀ ∃ ∧ ¬ ∨ ∃

Luca Doria, KPH Mainz Introduction to AI 18

Step 4: “Skolemization”

T. A. Skolem (1887 -1963)

The “skolemization” procedure consists in the removal of existential
quantifiers applying instead Skolem Functions.

Previous step: x [y Animal(y) Loves(x,y))] [z Loves(z,x)]∀ ∃ ∧ ¬ ∨ ∃

After Skolemization: x [Animal(F(x)) Loves(x,F(x))] Loves(G(x),x)∀ ∧ ¬ ∨

The Skolem function “picks” the right element (realising) among .∃ ∀

Luca Doria, KPH Mainz Introduction to AI 19

After Skolemization: x [Animal(F(x)) Loves(x,F(x))] Loves(G(x),x)∀ ∧ ¬ ∨

Step 5: Drop universal quantifier

Note that the only variable left is “x” and without possibility of confusion,

we can drop the universal quantifier :

[Animal(F(x)) Loves(x,F(x))] Loves(G(x),x)∧ ¬ ∨

Luca Doria, KPH Mainz Introduction to AI 20

Step 6: Apply Distributive Law

Previous step: [Animal(F(x)) Loves(x,F(x))] Loves(G(x),x)∧ ¬ ∨

Distributing over : ∨ ∧

[Animal(F(x)) Loves(G(x),x)] [Loves(x,F(x)) Loves(G(x),x)]∨ ∧ ∨

Which is finally in CNF: we can apply Resolution

Luca Doria, KPH Mainz Introduction to AI 21

Resolution Example: Statement of the problem

K
no

w
le

dg
e

B
as

e

3ECTION ���� 2ESOLUTION ���

&IRST� WE EXPRESS THE ORIGINAL SENTENCES� SOME BACKGROUND KNOWLEDGE� AND THE NEGATED GOAL
' IN lRST
ORDER LOGIC�

!� ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

"� ∀x [∃ z Animal(z) ∧Kills(x, z)] ⇒ [∀ y ¬Loves(y, x)]

#� ∀x Animal(x) ⇒ Loves(Jack , x)

$� Kills(Jack ,Tuna) ∨Kills(Curiosity ,Tuna)

%� Cat(Tuna)

&� ∀x Cat(x)⇒ Animal(x)

¬'� ¬Kills(Curiosity ,Tuna)

.OW WE APPLY THE CONVERSION PROCEDURE TO CONVERT EACH SENTENCE TO #.&�

!�� Animal(F (x)) ∨ Loves(G(x), x)

!�� ¬Loves(x, F (x)) ∨ Loves(G(x), x)

"� ¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)

#� ¬Animal(x) ∨ Loves(Jack , x)

$� Kills(Jack ,Tuna) ∨Kills(Curiosity ,Tuna)

%� Cat(Tuna)

&� ¬Cat(x) ∨ Animal(x)

¬'� ¬Kills(Curiosity ,Tuna)

4HE RESOLUTION PROOF THAT #URIOSITY KILLED THE CAT IS GIVEN IN &IGURE �����)N %NGLISH� THE PROOF
COULD BE PARAPHRASED AS FOLLOWS�

3UPPOSE #URIOSITY DID NOT KILL 4UNA� 7E KNOW THAT EITHER *ACK OR #URIOSITY DID� THUS
*ACK MUST HAVE� .OW� 4UNA IS A CAT AND CATS ARE ANIMALS� SO 4UNA IS AN ANIMAL� "ECAUSE
ANYONE WHO KILLS AN ANIMAL IS LOVED BY NO ONE� WE KNOW THAT NO ONE LOVES *ACK� /N THE
OTHER HAND� *ACK LOVES ALL ANIMALS� SO SOMEONE LOVES HIM� SO WE HAVE A CONTRADICTION�
4HEREFORE� #URIOSITY KILLED THE CAT�

�/RYeV�\,�-DFN� /RYeV�*�-DFN�,�-DFN�

�.LOOV�&urLRVLt\,�7uQD�Kills�Jack,�Tuna	��� .LOOV�&urLRVLt\,�7uQD��&Dt�[���� Animal�[&Dt�7uQD�

�$QLPDO�)�-DFN����� Loves�G�Jack	,�Jack	 $QLPDO�)�[����� Loves�G�[,�[��Loves�y,�[��� �.LOOV�[,�7uQD�

.LOOV�-DFN,�7uQD��Loves�y,�[��� �$QLPDO�]���� �Kills�[,�]	$QLPDO�7uQD� �/RYeV�[,)�[����� Loves�G�[,�[�Animal�[��� /RYeV�-DFN,�[�

>>

> > > >

>>>

Figure 9�12 ! RESOLUTION PROOF THAT #URIOSITY KILLED THE CAT� .OTICE THE USE OF FACTORING
IN THE DERIVATION OF THE CLAUSE Loves(G(Jack), Jack)� .OTICE ALSO IN THE UPPER RIGHT� THE
UNIlCATION OF Loves(x, F (x)) AND Loves(Jack, x) CAN ONLY SUCCEED AFTER THE VARIABLES HAVE
BEEN STANDARDIZED APART�

Negated consequence

•Everyone who loves animals is loved by someone

•Anyone who kills an animal is loved by no-one

•Jack loves all animals.

•Either Jack or Curiosity killed the cat, who is named Tuna.

•Did curiosity kill the cat?

Luca Doria, KPH Mainz Introduction to AI 22

Resolution Example : Reduction to CNF

3ECTION ���� 2ESOLUTION ���

&IRST� WE EXPRESS THE ORIGINAL SENTENCES� SOME BACKGROUND KNOWLEDGE� AND THE NEGATED GOAL
' IN lRST
ORDER LOGIC�

!� ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

"� ∀x [∃ z Animal(z) ∧Kills(x, z)] ⇒ [∀ y ¬Loves(y, x)]

#� ∀x Animal(x) ⇒ Loves(Jack , x)

$� Kills(Jack ,Tuna) ∨Kills(Curiosity ,Tuna)

%� Cat(Tuna)

&� ∀x Cat(x)⇒ Animal(x)

¬'� ¬Kills(Curiosity ,Tuna)

.OW WE APPLY THE CONVERSION PROCEDURE TO CONVERT EACH SENTENCE TO #.&�

!�� Animal(F (x)) ∨ Loves(G(x), x)

!�� ¬Loves(x, F (x)) ∨ Loves(G(x), x)

"� ¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)

#� ¬Animal(x) ∨ Loves(Jack , x)

$� Kills(Jack ,Tuna) ∨Kills(Curiosity ,Tuna)

%� Cat(Tuna)

&� ¬Cat(x) ∨ Animal(x)

¬'� ¬Kills(Curiosity ,Tuna)

4HE RESOLUTION PROOF THAT #URIOSITY KILLED THE CAT IS GIVEN IN &IGURE �����)N %NGLISH� THE PROOF
COULD BE PARAPHRASED AS FOLLOWS�

3UPPOSE #URIOSITY DID NOT KILL 4UNA� 7E KNOW THAT EITHER *ACK OR #URIOSITY DID� THUS
*ACK MUST HAVE� .OW� 4UNA IS A CAT AND CATS ARE ANIMALS� SO 4UNA IS AN ANIMAL� "ECAUSE
ANYONE WHO KILLS AN ANIMAL IS LOVED BY NO ONE� WE KNOW THAT NO ONE LOVES *ACK� /N THE
OTHER HAND� *ACK LOVES ALL ANIMALS� SO SOMEONE LOVES HIM� SO WE HAVE A CONTRADICTION�
4HEREFORE� #URIOSITY KILLED THE CAT�

�/RYeV�\,�-DFN� /RYeV�*�-DFN�,�-DFN�

�.LOOV�&urLRVLt\,�7uQD�Kills�Jack,�Tuna	��� .LOOV�&urLRVLt\,�7uQD��&Dt�[���� Animal�[&Dt�7uQD�

�$QLPDO�)�-DFN����� Loves�G�Jack	,�Jack	 $QLPDO�)�[����� Loves�G�[,�[��Loves�y,�[��� �.LOOV�[,�7uQD�

.LOOV�-DFN,�7uQD��Loves�y,�[��� �$QLPDO�]���� �Kills�[,�]	$QLPDO�7uQD� �/RYeV�[,)�[����� Loves�G�[,�[�Animal�[��� /RYeV�-DFN,�[�

>>

> > > >

>>>

Figure 9�12 ! RESOLUTION PROOF THAT #URIOSITY KILLED THE CAT� .OTICE THE USE OF FACTORING
IN THE DERIVATION OF THE CLAUSE Loves(G(Jack), Jack)� .OTICE ALSO IN THE UPPER RIGHT� THE
UNIlCATION OF Loves(x, F (x)) AND Loves(Jack, x) CAN ONLY SUCCEED AFTER THE VARIABLES HAVE
BEEN STANDARDIZED APART�

Luca Doria, KPH Mainz Introduction to AI 23

Resolution Example : Proof by Resolution

3ECTION ���� 2ESOLUTION ���

&IRST� WE EXPRESS THE ORIGINAL SENTENCES� SOME BACKGROUND KNOWLEDGE� AND THE NEGATED GOAL
' IN lRST
ORDER LOGIC�

!� ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

"� ∀x [∃ z Animal(z) ∧Kills(x, z)] ⇒ [∀ y ¬Loves(y, x)]

#� ∀x Animal(x) ⇒ Loves(Jack , x)

$� Kills(Jack ,Tuna) ∨Kills(Curiosity ,Tuna)

%� Cat(Tuna)

&� ∀x Cat(x)⇒ Animal(x)

¬'� ¬Kills(Curiosity ,Tuna)

.OW WE APPLY THE CONVERSION PROCEDURE TO CONVERT EACH SENTENCE TO #.&�

!�� Animal(F (x)) ∨ Loves(G(x), x)

!�� ¬Loves(x, F (x)) ∨ Loves(G(x), x)

"� ¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)

#� ¬Animal(x) ∨ Loves(Jack , x)

$� Kills(Jack ,Tuna) ∨Kills(Curiosity ,Tuna)

%� Cat(Tuna)

&� ¬Cat(x) ∨ Animal(x)

¬'� ¬Kills(Curiosity ,Tuna)

4HE RESOLUTION PROOF THAT #URIOSITY KILLED THE CAT IS GIVEN IN &IGURE �����)N %NGLISH� THE PROOF
COULD BE PARAPHRASED AS FOLLOWS�

3UPPOSE #URIOSITY DID NOT KILL 4UNA� 7E KNOW THAT EITHER *ACK OR #URIOSITY DID� THUS
*ACK MUST HAVE� .OW� 4UNA IS A CAT AND CATS ARE ANIMALS� SO 4UNA IS AN ANIMAL� "ECAUSE
ANYONE WHO KILLS AN ANIMAL IS LOVED BY NO ONE� WE KNOW THAT NO ONE LOVES *ACK� /N THE
OTHER HAND� *ACK LOVES ALL ANIMALS� SO SOMEONE LOVES HIM� SO WE HAVE A CONTRADICTION�
4HEREFORE� #URIOSITY KILLED THE CAT�

�/RYeV�\,�-DFN� /RYeV�*�-DFN�,�-DFN�

�.LOOV�&urLRVLt\,�7uQD�Kills�Jack,�Tuna	��� .LOOV�&urLRVLt\,�7uQD��&Dt�[���� Animal�[&Dt�7uQD�

�$QLPDO�)�-DFN����� Loves�G�Jack	,�Jack	 $QLPDO�)�[����� Loves�G�[,�[��Loves�y,�[��� �.LOOV�[,�7uQD�

.LOOV�-DFN,�7uQD��Loves�y,�[��� �$QLPDO�]���� �Kills�[,�]	$QLPDO�7uQD� �/RYeV�[,)�[����� Loves�G�[,�[�Animal�[��� /RYeV�-DFN,�[�

>>

> > > >

>>>

Figure 9�12 ! RESOLUTION PROOF THAT #URIOSITY KILLED THE CAT� .OTICE THE USE OF FACTORING
IN THE DERIVATION OF THE CLAUSE Loves(G(Jack), Jack)� .OTICE ALSO IN THE UPPER RIGHT� THE
UNIlCATION OF Loves(x, F (x)) AND Loves(Jack, x) CAN ONLY SUCCEED AFTER THE VARIABLES HAVE
BEEN STANDARDIZED APART�

Notice Factoring (A A) A∨ ≡

Luca Doria, KPH Mainz Introduction to AI

The Alphabet of PL1
Symbols

Operators:

Variables: (lower case letters)

Brackets: (), [] , ..

Function Symbols e.g.: weight() , color(), …

Predicate Symbols e.g.: Crow(), Black(), …

Predicates and Symbols have an arity (number of arguments).

0-ary predicate = propositional logic atoms (P, Q, …)

0-ary function = constants: a, b, c …

We assume a countable set of predicates and functions of any arity.

Note: “=” is not considered a predicate but a logical symbol.

¬, ∧ , ∨ , ∀, ∃, = , ⇒ , ⇔
x1, x2, . . . , x′￼, x′￼′￼, w, y, z, . .

Luca Doria, KPH Mainz Introduction to AI 25

The Grammar of PL1
Terms (represent objects)

Every variable is a term.

If t1, t2, …, tn are terms and f an n-ary function, then f(t1, t2, …, tn) is also a term.

Variables:

Brackets: (), [] , ..

Function without variables (ground terms) e.g.: f() , f(g(), h(), …), …

Atomic formulae (statements about objects)

If t1, t2, …, tn are terms and P is an n-ary predicate, then P(t1, t2, …, tn) is an atomic
formula.

If t1, t2 are terms t1=t2 is an atomic formula.

Atomic formulae without variables are ground atoms.

x1, x2, . . . , x′￼, x′￼′￼, w, y, z, . .

Luca Doria, KPH Mainz Introduction to AI 26

The Grammar of PL1

Atomic formulae (statements about objects)

- Every atomic formula is a formula

- If and are formula and x is a variable, then

are also a formulae.

- are as strongly binding as .

Propositional logic is part of the PL1 language

- Atomic formulae: only 0-ary predicates

- Neither variables nor quantifiers

ϕ ψ
¬ϕ ∧ ψ, ϕ ∨ ψ, ϕ ⇒ ψ, ϕ ⇔ ψ, ∃xϕ and ∀xϕ

∀, ∃ ¬

Luca Doria, KPH Mainz Introduction to AI 27

Meaning of PL1 Formulae

Means: for all objects x: if x is a Crow, then x is black and it is a crow.

In general:

- Terms are interpreted as objects

- Universally-quantified variables denote all objects in the universe made true by the

quantified expression.

- Predicates represent subsets of the universe (e.g. some objects of the universe are

crows).

Analogously to propositional logic, we define interpretations, satisfiability, models,
validity, …

∀x[Crow(x) ⇒ Black(x)] , Crow(a)

Luca Doria, KPH Mainz Introduction to AI 28

The clausal form is a standardization for PL1 formulas useful for automated reasoning.

The conversion process consists in the following steps:

1. Removing implications and biconditionals.

2. Moving negations inward.

3. Standardizing variables.

4. Moving quantifiers to the front.

5. Skolemization to eliminate existential quantifiers.

6. Dropping universal quantifiers.

7. Converting to conjunctive normal form (CNF).

8. Extracting clauses.

Clausal form allows efficient application of logical inference techniques like resolution.

Summary of Reduction to Clausal Form

Luca Doria, KPH Mainz Introduction to AI 29

Limitations of Logic Systems

A logical system is sound if every
theorem that can be derived using the
system's inference rules is logically valid
(i.e., true in all models).

A logical system is complete if every
logically valid formula (i.e., true in all
models) can be derived using the system's
inference rules.

Propositional logic is sound. If a
formula can be derived using the
inference rules of propositional
logic, then it is true in all possible
interpretations (truth assignments).

Propositional logic

Propositional logic is complete. If
a formula is true in all possible
interpretations, it can be derived
using the inference rules of
propositional logic.

First-order logic is sound. If a
formula can be derived using the
inference rules of first-order logic,
then it is true in all models.

First Order Logic

First-order logic is complete, as
proven by Gödel's Completeness
Theorem. This theorem states that
if a formula is true in all models, it
can be derived using the axioms
and inference rules of first-order
logic.

⊢ ⇒ ⊧

⊧ ⇒ ⊢

Luca Doria, KPH Mainz Introduction to AI 30

First Incompleteness Theorem:

In any consistent formal system F that is capable of expressing elementary arithmetic
(allowing induction, includes Turing machines..), there exist statements that are true but not
provable within the system.

This means that no sufficiently powerful and consistent formal system can be both complete
and sound. There will always be true arithmetic statements that the system cannot prove.

Second Incompleteness Theorem

A sufficiently powerful and consistent formal system F cannot prove its own consistency (i.e.
you cannot prove P and P).

This means that the consistency of a formal system capable of arithmetic cannot be
established by the system itself.

¬

Gödel’s Theorems

