Exercise Sheet 2

Exercise 1

Consider the following

Problem

A group of 3 soldiers (Team-A) captured another group of 3 soldiers (Team-B).
Team-A must bring Team-B to their camp but for doing so they have to cross a river. The river can be crossed with a boat that can contain only 2 people at most (both from Team-A, Team-B, one for each Team, or nobody).
If the number of Team-B members at any time is larger than the one of Team-A on one of the two sides of the river, Team-A can be overtaken, therefore this should not happen ${ }^{1}$.
Find a sequence of moves which bring safely both Teams on the other side of the river.

- Represent the states with a triple ($\mathrm{x}, \mathrm{y}, \mathrm{z}$), where $x, y \in\{0,1,2,3\}$ and $z \in\{0,1\}$. $\mathrm{x}(\mathrm{y})$ represents the number of soldiers in Team-A(B) on the initial side of the river. z represents the location of the boat ($1=$ initial side, $0=$ other side).
- The initial state is $(3,3,0)$.
- The goal state is $(0,0,0)$.
- Solve the problem implementing a breadth-first search respecting the constraints of the problem.
- If possible, favour an object-oriented programming approach, making your breadthfirst search alfgorithm independent from the specific data structure of the problem.

Exercise 2

- What is the state-space size?
- How many states contains the path to the solution your BFS algorithm found? Report one solution and your code.

Due date: Wednesday, May 8th 2024

[^0]
[^0]: ${ }^{1} \mathrm{~A}$ situation where the \#Team- $\mathrm{A}=$ \#Team- B is therefore allowed.

