From QCD to Hadrons and Nuclei Advanced Subatomic Physics Course (IV)

Luca Doria (<u>doria@uni-mainz.de</u>) PRISMA+ Cluster of Excellence and Institute for Nuclear Physics Johannes Gutenberg University Mainz

Sommersemester 2022

Syllabus

- 1. Introduction to strong interactions in the perturbative and non-perturbative regimes.
- 2. Hadrons and Nuclei
- elastic and inelastic scattering, resonances, deep inelastic physics.
- 3. Electron and neutrino scattering experiments on hadrons and nuclei: form factors, 4. Experimental methods and facilities with focus on MAMI and MESA at JGU Mainz.
- 5. Dark Matter
- 6. Search for dark matter with "intensity frontier" experiments, in particular, electron scattering experiments.
- 7. Search for dark matter with "direct detection" experiments with focus on argon. 8. Nuclear astrophysics and nuclear reactions of astrophysical relevance (in the Big Bang and
- stars).
- 9. Experiments for measuring astrophysical reactions with accelerators. 10. Discussion of a relevant published scientific paper on one of the topics discussed
- during the course.

Electron Scattering

Point-like charged object: Rutherford cross section	$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_R$
Extended charged object, spin-less	$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_R F(q) $
Extended charged object, spin 1/2: Mott cross section	$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_M F(q) $

$$F(q) = \int d^3r \ \rho($$

The form factor is the Fourier Transform of the charge distribution

$$\left(\frac{d\sigma}{d\Omega}\right)_R = \left(\frac{e^2 Z^2}{4E\sin^2\theta/2}\right)^2$$

|2|

 $(\mathbf{r}) \exp\left(i\mathbf{q}\cdot\mathbf{r}\right)$

Electron Scattering

Robert Hofstadter (1915-1990) 1961 Physics Nobel Prize

Luca Doria, JGU Mainz

Stanford Linear Accelerator

Electron Scattering: Kinematics

$$\begin{split} \epsilon &= \sqrt{\mathbf{k}^2 + m^2} \simeq |\mathbf{k}| & \qquad \omega^2 = |\mathbf{k}|^2 + |\mathbf{k}'|^2 - 2|\mathbf{k}||\mathbf{k}'| \\ \epsilon' &= \sqrt{\mathbf{k}'^2 + m^2} \simeq |\mathbf{k}'| & \Rightarrow \quad |\mathbf{q}|^2 = |\mathbf{k}|^2 + |\mathbf{k}'|^2 - 2|\mathbf{k}||\mathbf{k}'| \\ |\mathbf{q}|^2 = |\mathbf{k}|^2 + |\mathbf{k}'|^2 - 2|\mathbf{k}||\mathbf{k}'| \cos \theta \\ &\Rightarrow \mathbf{q}^2 \ge \omega^2 \quad \text{Space-like photon} \end{split}$$

Fourier Transform with spherical symmetry

$$F(q^2) = \int dx x^2 \rho(x) \int d\phi \sin \theta d\theta d\theta$$
$$= 2\pi \int dx x^2 \rho(x) \int \sin \theta d\theta d\theta$$
$$= \frac{4\pi}{q} \int dx x \rho(x) \sin qx$$

-> Only the radial (x) part contains the physics.

Luca Doria, JGU Mainz

Luca Doria, JGU Mainz

exponential,
$$F = (1+q^2a^2)^{-2}$$
;
Gaussian, $F = \exp(-q^2b^2/4)$;
uniform, $F = 3(\sin qkR - qkR \cos qkR)/(q^2)$

The Charge Radius

Considering the low-q limit (you don't "see" the details..)

$$F(q^2) = \frac{4\pi}{q} \int dx x \rho(x) \sin qx = \frac{4\pi}{q} \int dx x \rho(x) \left(qx - \frac{(qr)^2}{3!}\right) + \dots$$

$$= 4\pi \int dx x^2 \rho(x) - \frac{q^2}{6} 4\pi \int dx x^4 \rho(x) + \dots$$
$$= Z(1 - \frac{q^2}{6} \langle r^2 \rangle + \dots)$$
$$= 4\pi \int dr r^4 \rho(x)$$

The FF is just the charge at 1st order

1st correction proportional to RMS radius

The Charge Radius

The RMS radius can be extracted from the date the form factor at low-q and derive it wrt q^2 .

For nuclei: $R \simeq r_0 A^{1/3}$ with $r_0 = 1 - 1.25 \text{fm}$ This prediction (liquid drop model) is not followed by exotic nuclei (e.g. "halo nuclei" far from the stability valley).

a measuring
$$\langle r^2
angle = -6 rac{dF(q^2)}{dq^2} igg|_{q=0}$$

Luca Doria, JGU Mainz

Nucleon Form Factors

Advanced Subatomic Physics

11

Kinematics

Dynamics

Born invariant transition amplitude (1st order)

Hadronic "form factor":

$$\Gamma^{\mu} = P_1^{\mu} \Gamma_1 + P_2^{\mu} \Gamma_2 + \gamma^{\mu} \Gamma_3$$

There are three 4-vectors involved, so it depends from 3 structures proportional to them. In the case of on-shell particles, energy and momentum are linked, so we can choose that they depend only from Q². From current conservation:

$$q_\mu ar{u}_{P_2} \Gamma^\mu u_{P_1} = 0$$
 and this implies $\Gamma_1 = \Gamma_2$

Since only two structures are independent, we can parameterise the hadronic FF as

$$\Gamma^{\mu}=\gamma^{\mu}F_{1}\left(Q^{2}\right)+i\sigma^{\mu\nu}q_{\nu}\frac{\kappa}{2m_{p}}F_{2}\left(Q^{2}\right) \ \, \text{where}$$

)
$$\mathcal{M} = j_{\mu} \frac{g^{\mu\nu}}{q^2} J^{\nu} = j_{\mu} \frac{1}{q^2} J^{\mu}$$

 \downarrow
photon propagator

 \Rightarrow F₁ is the Dirac FF and F₂ the Pauli FF.

Dynamics

Using the derived invariant structures for calculating the cross section

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{0} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Mott}} \left[\left(F_{1}^{2} + \tau \left(\kappa F_{2}\right)^{2}\right) + 2\tau \left(F_{1} + \kappa F_{2}\right)^{2} \tan^{2}\frac{\theta}{2} \right]$$

Where the Mott cross section (Rutherford scattering with spin 1/2) is

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Mott}} = \frac{4Z^2 \alpha^2 E'^2}{Q^4} \frac{E'}{E} \left(1 - \beta^2 \sin^2\left(\frac{\theta}{2}\right)\right)$$

Introducing the linear combinations (also called Sachs Form Factors)

$$\begin{aligned} G_M &= F1 + \kappa F2 \quad \text{Magnetic Form Factor} \\ \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right) &= \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Mott}} \left[\frac{G_E^2\left(Q^2\right) + \tau G_M^2\left(Q^2\right)}{1 + \tau} + 2\tau G_M^2\left(Q^2\right) \tan^2\frac{\theta}{2}\right] = \left(\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Mott}} \frac{\varepsilon G_E^2 + \tau G_M^2}{\varepsilon\left(1 + \tau\right)}\right) \\ \end{aligned}$$

Luca Doria, JGU Mainz

$$\tau = Q^2/(4m_p^2)$$

 $G_E = F1 - \tau \kappa F2$ Electric Form Factor

Advanced Subatomic Physics

14

Form Factors

Advantages of defining the Sachs Form Factors: 1)Eliminate the mixing term F_1F_2 from the cross section. CS depends only on the squares of the Sachs FFs.

2)Physical interpretation: at $Q^2=0$, G_E is the electric charge and G_M the magnetic moment.

$$G_{E}(0) = 1$$

FFs are a fundamental strong-interaction property of nucleons. How to measure them? Traditional method: Rosenbluth Separation. Other methods: Polarisation, Model Fitting, ...

$$G_M(0) = \mu_p$$

Rosenbluth Separation

Luca Doria, JGU Mainz

$$+\tau)\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{0}/\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Mott}} = \left(\varepsilon G_{E}^{2}\left(Q^{2}\right) + \tau G_{M}^{2}\left(Q^{2}\right)\right)_{\mathrm{Mott}}$$

Linear in ϵ :

Measure at constant Q^2 and varying ϵ . G_E is the slope and G_M the intercept of a linear fit to the data.

16

$$P_{n} = 0$$

$$\pm hP_{l} = \pm h \left(\frac{E_{e} + E'_{e}}{M}\right) \frac{\sqrt{\tau(1+\tau)} G_{Mp}^{2}(Q^{2}) \tan^{2}}{G_{Ep}^{2}(Q^{2}) + \frac{\tau}{\epsilon} G_{Mp}^{2}(Q^{2})}$$

$$\pm hP_{t} = \mp h \frac{2\sqrt{\tau(1+\tau)} G_{Ep} G_{Mp} \tan\frac{\theta_{e}}{2}}{G_{Ep}^{2}(Q^{2}) + \frac{\tau}{\epsilon} G_{Mp}^{2}(Q^{2})}$$

Use a polarised electron beam and measure the recoil polarisation components of the proton.

The transverse and longitudinal polarisation components are relative to the momentum transfer in the scattering plane.

17

First "crisis": polarisation data

Unexpected! Rosenbluth data almost flat, while polarisation data shows linear decrease:

- Rosenbluth separation very sensitive to radiative corrections. G_E difficult to obtain.

- In particular two-photon exchange very important and ϵ - dependent.

- Polarisation data less sensitive to twophoton exchange.

Experimental Results

For the neutron, results are more consistent given the absence of charge.

Two-photon exchange

Two-Photon Exchange and Elastic Electron-Proton Scattering

P.G. Blunden,^{1,2} W. Melnitchouk,² and J. A. Tjon^{2,3}

¹Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 ²Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA ³Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA (Received 25 June 2003; published 3 October 2003)

Two-photon exchange contributions to elastic electron-proton scattering cross sections are evaluated in a simple hadronic model including the finite size of the proton. The corrections are found to be small in magnitude, but with a strong angular dependence at fixed Q^2 . This is significant for the Rosenbluth technique for determining the ratio of the electric and magnetic form factors of the proton at high Q^2 , and partly reconciles the apparent discrepancy with the results of the polarization transfer technique.

Second "crisis": muonic atoms

Luca Doria, JGU Mainz

- CODATA (2002): 0.8750 ± 0.0068 fm
 - 2010: CREMA muonic atoms measurement
 - 2011: : Most precise ep scattering (MAMI)
 - 2017: MPI Munich atomic spectra. agrees with muons
 - 2019: York atomic spectroscopy exp. agrees with muons
 - 2018: CODATA revises to 0.8414 ± 0.0019 fm
 - 2019: JLab result consistent with muonic hydrogen Other muonic atoms results coming...
 - Disp. Relations Fits to scattering data OK with lower R. MUSE @ PSI coming up.
 - Story towards an end?
 - What was exactly the problem with electron scattering?

CREMA: 0.84184 ± 0.00067 fm

21

Luca Doria, JGU Mainz

How to apply an electric/magnetic field to a nucleon? Use photons! How large would be such a field? For a 100 MeV photon:

$$E = \frac{V}{d} =$$

Quite large. But nucleons are strongly-interacting systems and thus very "stiff": we need large fields to see an effect.

$$\frac{100MV}{10^{-15}} \approx 10^{23} V/m$$

How to calculate them?

Expand the interaction Hamiltonian in incident photon energy:

Oth order: mass and charge

1st order: magnetic moment

2nd order: scalar polarizabilities (analog to clo

3rd order: spin (or vector) polarizabilities.

More difficult to visualise. A classical analog might be the induced precession of the nucleon spin.

Luca Doria, JGU Mainz

Low Energy Expansion (LEX)
+
$$\beta_{M1}$$
) $(1 + z^2)(\alpha_{E1} - \beta_{M1})(1 - z^2)$]
 $z = \cos \theta$

The (sum and difference of) polarizabilities can be extracted from precise measurements of <u>unpolarised</u> cross sections and asymmetries. The difference (at low E) between Born and LEX quantifies the polarisability effect.

Luca Doria, JGU Mainz

Baldin Sum Rule: $\alpha_{E1} + \beta_{M1} = \frac{1}{2\pi^2} \int_{\omega_0}^{\infty} \frac{d\omega}{\omega^2} \sigma_{tot}(\omega)$

EPJ A49, 13 (2013)

Advanced Subatomic Physics

Luca Doria, JGU Mainz

Polarizabilities: Polarised Cross Sections

Polarized beam and target: $\frac{d\sigma}{d\Omega}\Big|_{\text{pol}} = \frac{d\sigma}{d\Omega}\Big|_{\text{unpol}} \left\{ \left(1 + \xi_3 \Sigma_3\right) + \zeta_y \Sigma_y + \xi_1 (\zeta_x \Sigma_{1x} + \zeta_z \Sigma_{1z}) \right) \right\}$ $+\xi_2(\zeta_x\Sigma_{2x}+\zeta_z\Sigma_{2z})+\xi_3\zeta_y\Sigma_{3y}\bigg\}.$

Unpolarized target

$$\Sigma_3 = \frac{d\sigma^{\parallel} - d\sigma^{\perp}}{d\sigma^{\parallel} + d\sigma^{\perp}}$$

Target polarised in y direction and un polarized beam

 $\Sigma_y = \frac{a\sigma_y - a\sigma_{-y}}{d\sigma_u + d\sigma_{-u}} \bullet Proton \text{ polarisation axis}$

Circularly polarized photon and polarized target

$$\Sigma_{2x} = \frac{d\sigma_x^R - d\sigma_x^L}{d\sigma_x^R + d\sigma_x^L} \quad \Sigma_{2z} = \frac{d\sigma_z^R - d\sigma_z^L}{d\sigma_z^R + d\sigma_z^L}$$

Direction of the photon polarisation wrt scattering plane.

+ 3 double polarizations with linearly polarised photon and target.

Generalised Polarizabilities

Luca Doria, JGU Mainz

Generalised Polarizabilities

5-fold cross section (coincidence detection of e and p)

 $d^{5}\sigma^{Exp} = d^{5}\sigma^{BH+B} + \phi q' [(\mathcal{M}_{0} - \mathcal{M}^{BH+Born}) + \mathcal{O}(q')]$ Structure effects: GPs

Rosenbluth-like Separation: $\Psi_0 = \mathcal{M}_0 - \mathcal{M}^{BH+Born} = v_{LL} \left[P_{LL}(q) - \right]$

$$\left[-\frac{1}{\epsilon} P_{TT} \right] + v_{LT} P_{LT}(q)$$

Gener	al	ised Polarizabilities
Structure functions		
$P_{LL}(q)$	—	$-2\sqrt{6}MG_EP^{(01,01)0}(q)$,
$P_{TT}(q)$	—	$-3G_M \frac{q^2}{\tilde{q}_0} \left(P^{(11,11)1}(q) - \sqrt{2}\tilde{q}_0 \right)$
$P_{LT}(q)$	—	$\sqrt{\frac{3}{2}} \frac{Mq}{\tilde{Q}} G_E P^{(11,11)0}(q) + \frac{3}{2} \frac{\tilde{Q}q}{\tilde{q}_0}$
$P_{LT}^{z}(q)$	—	$\frac{3\tilde{Q}q}{2\tilde{q_0}}G_M P^{(01,01)1}(q) - \frac{3Mq}{\tilde{Q}}G_M$
$P_{LT}^{'z}(q)$	—	$-\frac{3}{2}\tilde{Q}G_M P^{(01,01)1}(q) + \frac{3Mq^2}{\tilde{Q}\tilde{q_0}}G_{M} Q^2 q_{0}$
$P_{LT}^{\prime \perp}(q)$	—	$\frac{3q\tilde{Q}}{2\tilde{q_0}}G_M\left(P^{(01,01)1}(q) - \sqrt{\frac{3}{2}}\tilde{q_0}\right)$

$$D^{(01,12)1}(q)$$

$$E^{(01,01)1}$$

$$E^{(11,11)1}$$

$$G_E P^{(11,11)1}$$

Unpolarized measurement

Polarization needed

Advanced Subatomic Physics

31

Generalised Polarizabilities

Evolution of electric and magnetic polarizabilities with q (FF=space distribution)

- 6 Independent structure functions:
- 2 generalised polarizabilities
- 4 "spin" generalised polarizabilities.

Generalised Polarizabilities: Experimental results

Resonances

Resonances

1952: First hint of the DELTA resonance in pion-nucleon scattering 1964: Resonances important for the quark model **2010:** Lattice QCD reproduces the barion spectrum **2015+** : Resonances relevant for QGP physics

Total Cross Sections of Positive Pions in Hydrogen*

H. L. ANDERSON, E. FERMI, E. A. LONG, † AND D. E. NAGLE Institute for Nuclear Studies, University of Chicago, Chicago, Illinois (Received January 21, 1952)

> Anderson, H.L.; Fermi, E.; Long, E.A.; Nagle, "Total cross-sections of positive pions in hydrogen". *Physical Review.* **85** (5): 936 (1952).

The Delta resonance

Proton

Advanced Subatomic Physics

Luca Doria, JGU Mainz

Δ^{++} Resonance

UUU

<u>Relevant for the quark model:</u>

- Charge +2 = 2/3 + 2/3 + 2/3

Spin 3/2: alignment of 3 1/2 spins

Pauli principle: new quantum number should exist: color.

The Roper resonance

- Discovered in 1963
- * Looks like a proton but 50% heavier: mass value unexplained.
- * First radial excitation of the proton, but mass hard to explain with 3 valence quarks.
- * <u>Emerging picture</u>: quark core + meson cloud which reduces the core mass

Luca Doria, JGU Mainz

value unexplained. Iss hard to explain with 3 valence quarks. d which reduces the core mass

Original paper: Roper, L. D., R. M. Wright, and B. T. Feld, 1965, Phys. Rev. 138, B190.

Resonances

Luca Doria, JGU Mainz

