
Algorithmic
Complexity

Historical Perspective

1936: The Turing Machine
1940-50: Development of digital computers
1960s: Hartmanis and Stearns develop computational complexity.
 P and NP classes, P=NP problem.
1970s: Cook and Karnap: NP-completeness
 Cook-Levin Theorem
1980s: Combinatorial techniques introduced, circuits.
1990s: A new model of computation: the quantum computer.

Mathematical Interlude: How functions grow

x

f(x)

Remember: the “big-O” notation:
O(1) < O(log2 N) < O(n) < O(n log2 n) < O(n2

) < O(n3
) < ... < O(2

N
) < ...

?

Algorithms
How much time will and algorithm take for producing the result? —> Time Complexity
!
How much memory will an algorithm need? —> Space Complexity

We are interested in the asymptotic behaviour of the algorithms —> “big-O” notation.
!
We would like to estimate the asymptotic time/space requirements of an algorithm,
given the size N of the input problem. Moreover, we would like to give an answer
which is independent from the kind of computer we are using.
!
Example:
How much time/space do I need for multiplying two vectors of length N?

Other “Big-” Notations

Upper bound

Double-sided bound

Lower bound

O(f(N))

⌦(f(N))

⇥(f(N))

f(N) 2 O(g(N)) if lim
N!1

|f(N)|
|g(N)| < 1

f(N) 2 ⌦(g(N)) if 9C, k : |f(N)| � |g(N)|8N > k

f(N) 2 ⇥(g(N)) if f 2 O(g(N)) ^ f 2 ⌦(g(N))

Examples
- Simple operations
- Nested Loops
- Arrays vs Linked Lists
- Binary Search / Divide and Conquer Algorithms.
!
- What about the time complexity of recursive algorithms?

The Master Theorem
Consider a recursive equation with the following form:

T (N) = aT (N/b) + f(N)

where a>=1 and b>1 and f is asymptotically positive.
The possible solutions to the equation are (3 cases):

f(N) 2 O(N c
), c < logb a) T (N) 2 ⇥(N logb a

)

f(N) 2 ⇥(nc
log

k N), c = logb a) T (N) 2 ⇥(nc
log

k+1 n)

f(N) 2 ⌦(N c
), c > logb a, af(N/b)  kf(N)) T (N) 2 ⇥(f(N))

NOTE: The Master theorem does not exhaust all the possible functional forms.

The Master Theorem: Application to the Binary Search

T (n) = T
⇣n
2

⌘
+O(1)

int binary_search(int array[], int left, int right ,int item)!
{!
! int middle = (left + right) / 2;!
 if (array[middle] > item) return binary_search(array, left, middle - 1,item);!
 else if (array[middle] < item) return binary_search(array, middle + 1, right,item);!
!
 else return middle;!
}! f(N)

Apply Master Theorem in the second case with:

c = logb a
a=1
b=2
c=0
k=0
The result is: T (N) 2 ⇥(log2 N)

The Master Theorem: Application to the Towers of Hanoi
void solve(int count, char source, char dest, char spare){!
!
 if (count == 1) cout << "Move from " << source << " to " << dest << endl;!
!
 else {!
 solve(count-1,source,spare,dest); //move n-1 disks from A to C !
 solve(1,source,dest,spare); //move the remaining disk from A to B !
 solve(count-1,spare,dest,source); //move n-1 disks from C to B ...!
 }!
}

T (N) = T (N � 1) + T (N � 1) + 1 = 2T (N � 1) + 1

n = log2 mSubstituting

we can bring the equation in a form suitable to the Master Theorem,
which in turn proves that:

T (N) = ⇥(2N)

The legend says that the monks in a remote temple have to bring 64 disks from the first peg to the third.
When done, the world will end. If it takes 1s for them to bring a disk from one peg to the other, should we
worry about the end of the world? The answer tells you something about the power of exponentials!

