
Algorithmic 
Complexity



Historical Perspective

1936: The Turing Machine 
1940-50: Development of digital computers 
1960s: Hartmanis and Stearns develop computational complexity. 
      P and NP classes, P=NP problem. 
1970s: Cook and Karnap: NP-completeness 
      Cook-Levin Theorem 
1980s: Combinatorial techniques introduced, circuits. 
1990s: A new model of computation: the quantum computer. 



Mathematical Interlude: How functions grow
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Algorithms
How much time will and algorithm take for producing the result? —> Time Complexity 
!
How much memory will an algorithm need? —> Space Complexity

We are interested in the asymptotic behaviour of the algorithms —> “big-O” notation. 
!
We would like to estimate the asymptotic time/space requirements of an algorithm, 
given the size N of the input problem. Moreover, we would like to give an answer 
which is independent from the kind of computer we are using. 
!
Example: 
How much time/space do I need for multiplying two vectors of length N?



Other “Big-” Notations

Upper bound

Double-sided bound

Lower bound 

O(f(N))

⌦(f(N))

⇥(f(N))

f(N) 2 O(g(N)) if lim
N!1

|f(N)|
|g(N)| < 1

f(N) 2 ⌦(g(N)) if 9C, k : |f(N)| � |g(N)|8N > k

f(N) 2 ⇥(g(N)) if f 2 O(g(N)) ^ f 2 ⌦(g(N))



Examples
- Simple operations 
- Nested Loops 
- Arrays vs Linked Lists 
- Binary Search / Divide and Conquer Algorithms. 
!
- What about the time complexity of recursive algorithms?



The Master Theorem
Consider a recursive equation with the following form:

T (N) = aT (N/b) + f(N)

where a>=1 and b>1 and f is asymptotically positive. 
The possible solutions to the equation are (3 cases):

f(N) 2 O(N c
), c < logb a ) T (N) 2 ⇥(N logb a

)

f(N) 2 ⇥(nc
log

k N), c = logb a ) T (N) 2 ⇥(nc
log

k+1 n)

f(N) 2 ⌦(N c
), c > logb a, af(N/b)  kf(N) ) T (N) 2 ⇥(f(N))

NOTE: The Master theorem does not exhaust all the possible functional forms.



The Master Theorem: Application to the Binary Search

T (n) = T
⇣n
2

⌘
+O(1)

int binary_search(int array[], int left, int right ,int item)!
{!
! int middle = ( left + right ) / 2;!  
  if (array[middle] > item) return binary_search(array, left, middle - 1,item);!
  else if (array[middle] < item) return binary_search(array, middle + 1, right,item);!
!
  else return middle;!
}! f(N)

Apply Master Theorem in the second case with: 

c = logb a
a=1 
b=2 
c=0 
k=0
The result is: T (N) 2 ⇥(log2 N)



The Master Theorem: Application to the Towers of Hanoi
void solve(int count, char source, char dest, char spare){!
!
  if (count == 1) cout << "Move from " << source << " to " << dest << endl;!
!
  else {!
    solve(count-1,source,spare,dest); //move n-1 disks from A to C !
    solve(1,source,dest,spare);       //move the remaining disk from A to B !
    solve(count-1,spare,dest,source); //move n-1 disks from C to B ...!
  }!
}

T (N) = T (N � 1) + T (N � 1) + 1 = 2T (N � 1) + 1

n = log2 mSubstituting

we can bring the equation in a form suitable to the Master Theorem, 
which in turn proves that:

T (N) = ⇥(2N )

The legend says that the monks in a remote temple have to bring 64 disks from the first peg to the third. 
When done, the world will end. If it takes 1s for them to bring a disk from one peg to the other, should we 
worry about the end of the world? The answer tells you something about the power of exponentials!


