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Introduction
Value-Oriented Abstract Data Types!
Some ADTs we encountered already were value-oriented. This means that storage 
and operations on elements contained in the data structure depend on the value of 
the elements themselves. 
!
The SortedList is one example if V-O ADT.

Refer to Chp. 18

Can you provide another example?

A new V-O ADT: The Dictionary 
A dictionary is an ADT for storing items of a certain type. The items are accessed by an 
associated key. 
This means that every item is associated by an unique key.  
!
The definition of a key can give significant advantages in some operations like search. 
The arrangement of the data and the choice of the key are important for the overall 
efficiency of this ADT. 



Examples

ID Name
1 John Doe
2 Steve Smith
3 Mike Miller
4 Jack Stanford

Key Value
ID

1

2

3

4

5

6

7

8

9

Key Value
Name John

Surname Doe
Tel 555-2845

Address 10 Maple Str

Name Steve
Surname Smith

Tel 555-2545
Address 20 Cypress Str

Note: Sometimes Dictionaries are also called Tables or Maps (Multi-maps).



An Interface for the Dictionary ADT

template<class ItemType, class KeyType> 
class DictionaryInterface 
{ 
public: 
    virtual bool isEmpty() const = 0; 
!
    virtual int getNumberOfItems() const = 0; 
!
  //Adds a new item according to the key value     
   virtual bool add(const KeyType& searchKey, const ItemType& newItem) = 0;   
!
   virtual bool remove(const KeyType& searchKey) = 0;   
     
    virtual void clear() = 0; 
!
    virtual ItemType getItem(const KeyType& searchKey) = 0; 
!
   virtual bool contains(const KeyType& searchKey) const = 0;   
!
  //Useful for applying a certain operation on every item     
   virtual void traverse(void visit(ItemType&)) const = 0;   
}; 

Note that there are no methods for modifying keys: why?
“Client Function”: defined outside the class



Dictionary Implementations
As usual, different implementations are possible and depend on the specific problem 
we would like to solve with the ADT. 
!
Implementations based on linear ADTs:!
 - by search-key sorted array 
 - by search-key sorted link-chain 
 - unsorted array 
 - unsorted link-chain

In-class exercise:!
Consider the sorted array and link-chain implementations of a dictionary. 
1) Discuss (from the time-complexity point of view) the insertion operation for these two 
implementations.  
Is it faster in one of the two cases?  
2) What is exactly the computational complexity on the insertion operation in the two 
cases? 
3) What about a search operation?



The Item a Dictionary: the “Entry”

template <class KeyType, class ItemType> 
class Entry 
{ 
private: 
   ItemType item; 
   KeyType searchKey; 
    
protected: 
   void setKey(const KeyType& searchKey); 
    
public: 
   Entry(); 
   Entry(ItemType newEntry, KeyType searchKey); 
   ItemType getItem() const; 
   KeyType getKey() const; 
   void setItem(const ItemType& newEntry); 
   bool operator==(const Entry<KeyType, ItemType>& rightHandItem) const; 
   bool operator>(const Entry<KeyType, ItemType>& rightHandItem) const; 
};  



Array Implementation
#include "DictionaryInterface.h"!
#include “Entry.h"!
!
template <class KeyType, class ItemType>!
class ArrayDictionary : public DictionaryInterface<KeyType, ItemType>!
{!
private:!
   static const int DEFAULT_CAPACITY = 21;                                          !
   Entry<KeyType, ItemType>* items; // Array of dictionary entries!
   int itemCount;                   // Current count of dictionary items!
   int maxItems;                    // Maximum capacity of the dictionary!
   void destroyDictionary();!
   int findEntryIndex(int firstIndex, int lastIndex,!
                      const KeyType& searchKey) const;!
public:!
   ArrayDictionary();!
   ArrayDictionary(int maxNumberOfEntries);!
   ArrayDictionary(const ArrayDictionary<KeyType, ItemType>& dict);!
   !
   virtual ~ArrayDictionary();!
   !
   bool isEmpty() const;!
   int getNumberOfItems() const;!
   bool add(const KeyType& searchKey, const ItemType& newItem);!
   bool remove(const KeyType& searchKey);!
   void clear();!
   ItemType getItem(const KeyType& searchKey) const;!
   bool contains(const KeyType& searchKey) const;!
   !
   void traverse(void visit(ItemType&)) const;!
};



What about Trees?
Is it possible to use a non-linear ADT for implementing a Dictionary? 
A Sorted Binary Tree seems a good choice. Why?

#include "DictionaryInterface.h" 
#include "BinarySearchTree.h" 
#include "Entry.h" 
!
template <class KeyType, class ItemType> 
class TreeDictionary : public DictionaryInterface<KeyType, ItemType> 
{ 
private: 
   BinarySearchTree<Entry<KeyType, ItemType> > itemTree; 
!
   void traversalHelper(Entry<KeyType, ItemType>& theEntry); 
!
public: 
   TreeDictionary(); 
   TreeDictionary(const TreeDictionary<KeyType, ItemType>& dict); 
   virtual ~TreeDictionary(); 
!
   bool isEmpty() const; 
   int getNumberOfItems() const; 
   bool add(const KeyType& searchKey, const ItemType& newItem); 
   bool remove(const KeyType& searchKey); 
   void clear(); 
   ItemType getItem(const KeyType& searchKey) const; 
   bool contains(const KeyType& searchKey) const; 
!
   void traverse(void visit(ItemType&)) const; 
}; 



Computational Complexity Considerations

ADT Insertion Removal Retrieval Traversal

Unsorted Array O(1) O(N) O(N) O(N)

Unsorted Linked 
Chain O(1) O(N) O(N) O(N)

Sorted Array O(N) O(N) O(log O(N)

Sorted Linked 
Chain O(N) O(N) O(N) O(N)

Binary Search 
Tree O(log O(log O(log O(N)



Hashing
Is it possible to do better than a search tree for locating an item in a dictionary? 
This means to be faster than O(log2N)! 
A technique called Hashing allows retrieval times of order O(1). 
!
The idea is to have an “address calculator” which, given the search key, returns after O(1) 
calculations the exact address of the item in the dictionary.

Address 
Calculator

Item

Search Key

Dictionary

All this means to realize a mapping between keys and dictionary positions. 
What desirable properties should such map (function) have? 



A Simple Hashing Function
Example 1: Storing of a telephone address book. 
We can use the telephone numbers (they are unique!) as keys and store names and 
addresses as dictionary items. 
!
If the dictionary is an array, the hash function can be very simple: 
!
The phone number can be directly interpreted as the array position! 
!
!

555-2748   —>   items[5552748]!
!
!
!



Other Simple Hashing Techniques
Digit Selection:!
Considering again the previous example, if your phone book must store only a certain 
number of phone numbers (say, 1000), you can map the phone numbers into a 3-digit 
number selecting only certain digits from the number: 
!

555-2847 —-> 587 —-> items[587] 
!

Folding: 
Folding combines in a simple way the digits of the key. 
Example 1: sum of the digits of the key. 
Example 2: sum of groups of digits of the key.

Modulo Arithmetic 
A Hash Function can be constructed with the modulo (%) operation: 
!

h(key) = key % TableSize!
!

For example, key%101 maps key into [0-100]. 
The TableSize number must be carefully chosen for avoiding collisions. 
Can you see when a collision might happen?



String to Numbers Conversion
Since we can always covert a string into a number, it is sufficient to study only hash 
functions operating on integers. 
!
!
!
!
Example1: Assign to every letter a number. 
!
Example2: Example1 + apply folding 
!
Example3: Assign to every letter a binary code and then concatenate the numbers. 
!
Example4: Assign to every letter a binary ASCII code + concatenation.



String->Numbers conversion
Example: convert “NOTE” to a number using the ASCII encoding + concatenation:

N —> 011102 (1410) 
O —> 011112 (1510) 
T —> 101002 (2010) 
E —> 001012 (0510) 

!
Result: 

NOTE —> 011100111110100001012 = 47475710

NOTE: The folding by addition results in collisions. For example, the word “TONE” will 
result in the same address in the dictionary!

A computationally faster way to compute the hash function: Horner’s Rule. 

Instead of converting the binary number to a decimal, we can do the following. After 
observing that our binary numbers are represented by 5 digits (25=32) we can write:

474757 = 14x323+15x322+20x321+5x320 = ((14x32+15)x32+20)x32 +5

according to the Horner’s rule:

p(x) =
NX

i=0

aix
i = a0 + x(a1 + x(a2 + ...+ x(an�1 + anx)))



Collisions

When two keys are mapped by the hash function into the same location, we have a 
potential collision. 
The collision is indeed realized if the spot in the dictionary is already occupied. 
!
There are different techniques for resolving collisions: 
!
Approach 1: Open Addressing 
 - Linear Probing 
 - Quadratic Probing 
 - Double Hashing 
 - Increase hash table size 
!
Approach 2: Table Restructuring 
 - Buckets Technique 
 - Separate Chaining



Linear and Quadratic Probing
In the case of collision, a simple strategy is linear probing: you probe if the next spot is 
empty and you keep trying in a sequential way increasing the locating index linearly. 
!

dict[h(key)] —> dict[h(key)+1] —> dict[h(key)+2] —> …!
!
The retrieval operation works in the exact same way (indeed calculating a key->position 
map is exactly the same operation you do while retrieving). 
!
The removal is more complicated: if you place an item after a collision and then remove the 
previous item, you loose the probing sequence! 
The problem is solved placing a code in the empty entries, for example: 
- occupied , empty , removed 
!
Linear probing has the drawback that after many insert/removal operations, items tend to 
cluster in the same locations of the dictionary.  
This phenomenon is known as primary clustering. 
!
A simple solution to primary clustering is quadratic probing: 
!

dict[h(key)] —> dict[h(key)+12] —> dict[h(key)+22] —> …!
!

NOTE: Quadratic probing can result in secondary clustering, since with items hashed in the same location, 
quadratic probing uses the same probing sequence for both (this is common in all the methods where the 
sequence is independent form the key). The result is a slower search process. This problem is anyway smaller 
than primary clustering. 



Double Hashing
Double hashing is designed for greatly reducing clustering. 
The idea is to construct key-dependent probe sequences (see for comparison the note 
at the end of the previous slide). 
!
The method is based on two hash functions: 
!
h1(key) determines the starting location of the probing 
h2(key) determines the size of the steps taken (h2(key) must be always non-zero). 
!
Example: 
!
h1(key) = key % 11 
h2(key) = 7 - (key % 7)  
!
Your probe sequences will visit all the locations of the table if the table size and the step 
are prime among each other.

Exercise: Find the probing sequence in the example given before, given key = 22. 



Dictionary Size Change
As you fill up the hash table, the chance of collision increases. A solution could be to 
increase the size of the table. 
!
There are some problems with this: you have to increase the size to another prime 
number (just doubling it is not a good idea: why?) 
!
Increasing the table size, means recalculating new positions for the already present 
items. 
This process is known as rehashing.



Restructuring the Hash Table
Another way to resolve collisions is to restructure the hash table. This can be done 
with different techniques. The basic idea is to store more items at the same location. 
!
Use of buckets:!
We can turn the location within the table array into an array too: in this way we can 
store more items. The array at a specific location is called a “bucket”. 
The size of the bucket must be chosen carefully: if too small, it allows collisions, if too 
large, it degrades hash table performance. 
!
Separate Chaining:!
This approach is similar to the buckets one, but it is fully dynamic. 
The dictionary itself is organized as a linked chain and also the buckets are linked 
chains. I this way a collision can be resolved in any case. 



Hashing Efficiency Considerations

Load Factor: ↵ =

Number of table items

table size

The hashing efficiency decreases as the load factor increases, since the collision 
probability is higher for higher occupancy. 



Hashing Efficiency Considerations
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Hashing Function Properties

In constructing a hash function (which is rarely “perfect”), the following questions are 
relevant: 
!
1) Is the function easy to computer?!
!
2) Does the function scatter the data evenly?!
!
3) How well are random data scattered?!
!
4) How well are non-random data scattered?!
!
!

Two final comments:!
Although hash tables are designed for fast retrieval (O(1), typically), there is an operation 
which is quite inefficient: the traversal in a certain order. Do you understand why? 
!
Hashing ultimately calculates where to look, eliminating the need of searching!



A STL Implementation of an Hash Table
template < class Key,                                    !
           class T,                                     !
           class Hash = hash<Key>,                      !
           class Pred = equal_to<Key>,                  !
           class Alloc = allocator< pair<const Key,T> > !
           > class unordered_map;

#include <iostream> 
#include <unordered_map> 
!
using namespace std; 
!
int main(){ 
!
  unordered_map<int,char> hash; 
!
  hash[0] = 'a'; 
  hash[1] = 'b'; 
  hash[2] = 'c'; 
  hash[3] = 'd'; 
!
  for (auto &pair : hash) cout << pair.first << " " << pair.second << endl; 
!
  return 0; 
!
} 


