

Heaps

A Heap is a complete binary tree with the following (recursive!)
definition:

A heap Is either empty or whose root:

- contains a value greater or equal to that of each of its children.
- has heaps as subtrees.

The heap resembles a search tree, but a search tree is really sorted,
while the heap iIs ordered in a weaker sense.

Moreover, a heap is always complete.

In a Maxheap, the root contains the largest value, in a Minheap, the
root contains the smallest value.

Example

Which tree is a heap” Which one is a sorted binary tree?

template<class ItemType> A Heap Interface

class HeapInterface

{
public:

virtual bool isEmpty() const = 0;

//Returns the number of nodes in the Heap
virtual int getNumberOfNodes() const = 0;

// Height of the heap
virtual int getHeight() const = 0;

//Returns the data in the root
virtual ItemType peekTop() const = 0;

//Adds a new data to the Heap
virtual bool add(const ItemType& newData) = 0;

//Remove the root node
virtual bool remove() = 0;

//Remove all the nodes
virtual void clear() = 0;

}i

Heap Implementation

Since a Heap is a complete binary tree, an array implementation is most of the times the
most convenient (at least it you know the maximum number of nodes you'll need).
Question: Why?

Completeness allows us an efticient implementation:

1tems
0 Jane
_avel 1 , 8ob
2 Tom
.evel 2 3 Alan
4 Elisa
5 Nancy
.evel 3 5
7

Consider the element items[1].
The left child is items[2*1i+1]
ne right childis items[2*i+2]
ne parent is items[(i-1)/2]

Node removal

Celete 10

(o) m >

4
GY G OO

Heap Disicint heaps

(b} e @ ° S a
e o o Ec:py tem in last o °

node to root
Heap Semiheap

(e} ﬂ Trickle down
/N = by swapping

OO -

Semiheap

Recursive “"Trickle down” procedure (for Node Removal)

//This is pseudo-code
heapRebuild(int rootIndex , T items, 1int itemCount) {
1f (root 1is not a leaf){

largerChildIndex = 2*rootIndex + 1 //left child always exists
1f (right child exists){
rightChildIndex = 2*rootIndex + 2;
if (items[rightChildIndex]>items[largerChildIndex])
largerChildIndex = rightChildIndex;

}

1f (items[rootIndex]<items[largerChildIndex])/{
swap items[rootIndex] with items[largerChildIndex];

heapRebuild(largerChildIndex,items,itemCount);

Node insertion

The idea is the opposite of the removal. This time you insert the new node as a new
leaf and then you “trickle up” the node in the correct position.

/ /Pseudo-code

items[itemCount]=newData; //insert at the end of the tree
newDataIndex = itemCount;

while (newDatalIndex>=0) && !1inPlace{

parentIndex = (newDataIndex-1)/2;
1f (items[newDataIndex])<=items|[parentIndex] inPlace= true;
else {

swap items[newDataIndex] with items[parentIndex]
newDatalIndex = parentIndex;

}
}

itemCount++;

Heap Implementation

template<class ItemType>
class ArrayMaxHeap : public HeapInterface<ItemType>

{
private:
static const int ROOT_INDEX = 0; // Helps with readability
static const int DEFAULT_CAPACITY = 21; // Small capacity to test for a full heap
ItemTypex items; // Array of heap items
int itemCount; // Current count of heap items
int maxItems; // Maximum capacity of the heap

// Returns the array index of the left child (if it exists).
int getLeftChildIndex(const int nodeIndex) const;

// Returns the array index of the right child (if it exists).
int getRightChildIndex(int nodeIndex) const;

// Returns the array index of the parent node.
int getParentIndex(int nodeIndex) const;

// Tests whether this node is a leaf.
bool isLeaf(int nodeIndex) const;

// Converts a semiheap to a heap.
void heapRebuild(int subTreeRootIndex);

// Creates a heap from an unordered array.
void heapCreate();

public:
ArrayMaxHeap() ;
ArrayMaxHeap(const ItemType someArrayl[], const int arraySize);
virtual ~ArrayMaxHeap();

// HeapInterface Public Methods:
bool isEmpty() const;
int getNumberOfNodes() const;
int getHeight() const;
ItemType peekTop() const throw(PrecondViolatedExcep);
bool add(const ItemType& newData);
bool remove();
void clear();
}; // end ArrayMaxHeap

Heap as Priority Queue

We have already seen the implementation of a PQ as a sorted list or
array.

It is easy to realize that the structure of a Heap is exactly the same as
the one of a priority gueue. The root of the heap acts as the front of the
gueue.

A PQ can be therefore realized inheriting the heap implementation we
discussed.

Advantages of the Heap implementation:

- The heap is balanced by definition (it is a complete tree)

- A sorted tree can be used instead of an heap, but it can become
unbalanced,

degrading performance.

- Heap operations are easier than the ones required by a self-
balancing tree.

Heap Sort

Array anArray

Tree representation of Heap region

Heap S0,
Problem: sort an array. L AT
Heap IEc:rted i
Idea: convert the array into a heap and then - j — 3,%2 ©
keep peeking the root content and the remove Heap Sorted N
the root itself. s]s]e[s]2 | 10 R 6
The heapRebuild routine (see before) will then T >
restructure the heap before the next removal. T 3J e jsf"‘g
T TR % o ;
Second idea: - sHea"; - I Zorte‘:o 5/5\2
Use the same array to store the heap and the o % @ & A 8 {
sorted array. — I L E 7y
X ¥ a E % %
Complexity: Heap | Sorted i
O(N logzN) in both average and worst cases! e s o L 3)
Remember that MergeSort has the same Heap } Sorted E
properties but it needs an additional array. 2 12 IeRter) oRlio 3
Quicksort has a O(N2) in the worst case. Heap oo 3
B I K /
Questions: o o :
1) What is the worst case for QuickSort? 2 I 3[s[6]a]io

2) Can you see why it is not the case for
HeapSort? ST

