
Object-Oriented
Programming Basics

Programming Paradigms

Imperative

Computation seen as a
sequence of statements
that directly change a
program state

Global variables

Direct assignments

No modularity

Structured

More structure is added
to imperative programming

Almost no GOTO allowed:
structure forced.

Introduction of indentation

Procedural

High Modularity

Local variables.

Globals avoided.

No GOTO: iteration

statements.

Programming Paradigms

Imperative
 Structured Procedural

Object-Oriented

Objects and Methods.

Encapsulation.

Inheritance.

Polymorphism.

!

Programming Paradigms

Imperative
 Structured Procedural

Object-OrientedDeclarative

Defines the logic

instead of the flow.

!

Functional

Sees computation as the
evaluation of mathematics-
like functions.

Coding by “expressions”

!

Programming Paradigms

Imperative
 Structured Procedural

Object-OrientedDeclarative Functional

- (Partial) Overlaps of the paradigms are common in programming languages.
- C++, C#, Java are Imperative, Structured, Procedural and OO languages.
- SQL is an example of declarative language.
- Python is closer to the functional approach.
- Some modern languages are “multiparadigm”: e.g. C# with some extensions.

Object-Oriented Programming

1) Objects and Methods

!
2) Encapsulation

!
3) Inheritance

!
4) Polymorphism

Objects and Methods

An Object is a data structure containing data and functions.

!
!
The data is usually called fields or attributes.

The functions are called methods.

!
!
In the following, we concentrate on OO languages like Java, C++, C#.

In these languages, an object is an instance of a class.

The Class
Example:

Let’s define a class (at this point we disregard the specific language

and some details we will discuss later):

class Car {!
! int NCylinders;!
! int HP;!
! int Npassengers;!
! float max_speed;!
! float price;!
! float weight;!
! float Specific_Power();!
};

Example:

Let’s define a class (at this point we disregard the specific language

and some details we will discuss later):

class Car {!
! int NCylinders;!
! int HP;!
! int Npassengers;!
! float max_speed;!
! float price;!
! float weight;!
! float Specific_Power();!
};

Data (attributes)

The Class

Example:

Let’s define a class (at this point we disregard the specific language

and some details we will discuss later):

Method

class Car {!
! int NCylinders;!
! int HP;!
! int Npassengers;!
! float max_speed;!
! float price;!
! float weight;!
! float Specific_Power();!
};

float Specific_Power(){!
! return this.HP/this.weight;!
}

The Class

The object is an instance of a class.

The class is similar to a new TYPE (like int, float, double, …): as you
declare a variable as e.g. int a; , an object is instantiated as:

The Object

!
Car Toyota;!

Now we have an object called “Toyota” which is an instance of the
class “Car”. We can access (with restrictions we will see later) the
data and methods as:
!
Toyota.HP = 100;!
!
float specificHP;!
specificHP = Toyota.Specific_Power();!

C++ as Object-Oriented Language
Let’s now turn to a specific OO language: C++.

Its syntax is quite close to Java or C#.

Rewriting the previous class:

class Car {!
! public:!
! int NCylinders;!
! int HP;!
! int Npassengers;!
! float max_speed;!
! float price;!
! float weight;!
! float Specific_Power();!
};

float Specific_Power(){!
! return this.HP/this.weight;!
}

C++ as Object-Oriented Language

class Car {!
! public:!
! int NCylinders;!
! int HP;!
! int Npassengers;!
! float max_speed;!
! float price;!
! float weight;!
! float Specific_Power();!
};

float Specific_Power(){!
! return this.HP/this.weight;!
}

C++ as Object-Oriented Language

class Car {!
! private:!
! int NCylinders;!
! int HP;!
! int Npassengers;!
! float max_speed;!
! float price;!
! float weight;!
! public:!
! float Specific_Power();!
};

float Specific_Power(){!
! return HP/weight;!
}

Full Example
#include <iostream> !
using namespace std; !
class Car {
private:
 int NCylinders;
 int HP;
 int Npassengers;
 float max_speed;
 float price;
 float weight;
public:
 Car();
 float Specific_Power();
 void SetCylinders(int c);
 void SetWeight(float w);
 void SetHP(int hp);
}; !
Car::Car(){} !
void Car::SetCylinders(int c){
 NCylinders = c;
} !
void Car::SetWeight(float w){
 weight = w;
} !
void Car::SetHP(int hp){
 HP=hp;
} !
float Car::Specific_Power(){
 return HP/weight;
} !

int main(){ !
 cout << "Hello World!" << endl; !
 Car Toyota;
 Toyota.SetWeight(1200.1);
 Toyota.SetHP(200); !
 cout << "Specific Power = " << Toyota.Specific_Power() << endl; !
 return 0; !
} !

In this example, we can notice:!
- Encapsulation
- Class Definition
- Methods
- Object Instantiation

The “this” pointer

class Box!
{!
 public:!
 Box(double l=2.0, double b=2.0, double h=2.0)!
 {!
 cout <<"Constructor called." << endl;!
 length = l;!
 breadth = b;!
 height = h;!
 }!
 double Volume()!
 {!
 return length * breadth * height;!
 }!
 int compare(Box box)!
 {!
 return this->Volume() > box.Volume();!
 }!
 private:!
 double length; !
 double breadth; !
 double height; !
};!

In this example:!
- “this” pointer
- “inline” method construction
- default parameters

(Multiple) Inheritance and Multiple Constructors
class Shape !
{!
 public:!
! Shape();!
! Shape(int w, int h);!
 void setWidth(int w)!
 {!
 width = w;!
 }!
 void setHeight(int h)!
 {!
 height = h;!
 }!
 private:!
 int width;!
 int height;!
};!
!
!
class Rectangle: public Shape!
{!
 public:!
 int getArea()!
 { !
 return (width * height); !
 }!
};

Polymorphism
Polymorphism (“multiple form”) occurs when there is a hierarchy of
classes generated by inheritance.

Polymorphism implies that a call to a member function will cause a
different function to be executed depending on the type of object that
invokes the function.
!
Example:

class Shape {!
 protected:!
 int width, height;!
 public:!
 Shape(int a=0, int b=0)!
 {!
 width = a;!
 height = b;!
 }!
 int area()!
 {!
 cout << "Parent class area" <<endl;!
 return 0;!
 }!
};

class Rectangle: public Shape{!
 public:!
 Rectangle(int a=0, int b=0):Shape(a, b) { }!
 int area ()!
 { !
 cout << "Rectangle class area :" <<endl;!
 return (width * height); !
 }!
};

Polymorphism
class Shape {!
 protected:!
 int width, height;!
 public:!
 Shape(int a=0, int b=0)!
 {!
 width = a;!
 height = b;!
 }!
 int area()!
 {!
 cout << "Parent class area" <<endl;!
 return 0;!
 }!
};

class Rectangle: public Shape{!
 public:!
 Rectangle(int a=0, int b=0):Shape(a, b) { }!
 int area ()!
 { !
 cout << "Rectangle class area :" <<endl;!
 return (width * height); !
 }!
};

Notice that the “area” function is present in the parent and in the derived
class. When we instantiate a “rectangle”, which area function will be
called?

int main(){!
 Shape *shape;!
 Rectangle rec(10,7);!
!
 shape = &rec;!
 shape->area();!
}

If we store the address of rec in a shape pointer,
the “area” of shape will be called.

Polymorphism solution

class Shape {!
 protected:!
 int width, height;!
 public:!
 Shape(int a=0, int b=0)!
 {!
 width = a;!
 height = b;!
 }!
 virtual int area()!
 {!
 cout << "Parent class area :" <<endl;!
 return 0;!
 }!
};

A virtual function is a function in a base class that is declared using the
keyword virtual. Defining a virtual function with another version in a
derived class, signals to the compiler that we don't want static linkage.
What we do want is choosing the function to be called at a given point
in the program to be based on the kind of object for which is called.
This is referred to as dynamic linkage (or late binding).

!

Purely Virtual Functions

class Shape {!
 protected:!
 int width, height;!
 public:!
 Shape(int a=0, int b=0)!
 {!
 width = a;!
 height = b;!
 }!
 // pure virtual function!
 virtual int area() = 0;!
};

Purely virtual functions are defined in a base class without any
implementation. An implementation is required in the derived classes.

Summary

!
- Programming Paradigms
!
With C++ as example:
!
- Classes and Objects: Instantiation
- Methods
- Encapsulation
- Inheritance
- Polymorphism

!

EXERCISES
1) Write a Class implementing the type “Animal” with the
 protected data: name, age, size.
2) Add the corresponding constructor
3) Add an additional constructor with data initialization
4) Add the following methods:
 Set/Get methods.
 A purely virtual method which prints the animal’s group: Group()
5) Derive the following classes:
 - Mammal (add IsVegetarian data/methods)
 - Reptile (add Nlegs data/method),
 - Bird (add Colour data/method),
 - Fish (add Sea data/method),
 - Amphibian.
 For all of them, define the corresponding Group() method.
5) Instantiate the class and test it!
6) Create the class corresponding to an animal which is at the same
 time mammal, reptile and Bird. Solve the so-called “diamond problem”
 of multiple inheritance.

Animal

Mammal Reptile Bird Fish

Polymorphopulus

Add to every constructor a print-out message
and check how many constructors are called
when a “Polymorphopulus” is instantiated.
!
Next, try to include the “virtual” keyword in the
inheritance statement, eg:
!
class Reptile:virtual Animal { … };

The “virtual” keyword

In C++, “virtual” is used in different contexts:
!
1) A pure virtual function can be overridden by a function with the

same name in a derived class. This is the case when we create
abstract base classes:

!
 class AbstractClass {
 public:
 virtual void AbsClassMethod() = 0;
 };
!
 This forces all the derived classes to implement such a method.
!
2) See example before (the “diamond problem”): a class at a lower

level of inheritance when instantiated calls only one instance of the
original base class.

Virtual destructors
When a delete statement is used to delete a pointer of type base class which actually
points to derivedclass, what is really destroyed?
The solution is to use a virtual destructor in the base class:
!
class BaseClass {!
….!
virtual ~BaseClass(); //virtual destructor!
!
};

Copy Constructors

class BaseClass!
{!
! public:!
! ! virtual BaseClass* Clone() const = 0;!
}!
!
class DerivedClass : public BaseClass!
{!
! DerivedClass* Clone(){!
! ! return new DerivedClass (*this);!
! }!
};

For ensuring a deep copy of an object, C++ does not provide ways to define virtual
constructors, so a virtual “clone” functions has to be specified.

