
Recursion

“To iterate is human, to recurse divine.” 
(L. Peter Deutsch) 



Mathematical Interlude: Recursion and Induction

Example: The Factorial Function

Recursive Definition:
⇢

FACT (0) = 1
FACT (N) = N · FACT (N � 1)

N ! = FACT (N) = 1 · 2 · 3 · ... ·N

Exercise:

Use the recursive definition to calculate FACT(5) = 5!



Mathematical Interlude: Recursion and Induction

Recursion:!
A recursive definition of a function, involves the function itself.  
In a programming language, a recursive routine or function is a function 
which calls itself.

Induction:!
is a mathematical proof technique based on the properties of the 
natural numbers: 
!
1) Assume true an initial “base” statement (example: 0! =1). 
!
2) Assume the statement is true for N 
!
3) Prove it is true also for N+1

Mathematical induction is strongly related to recursion.



Exercise

Prove the integers summation formula by induction.

S(N) =
i=NX

i=1

i =
N(N + 1)

2



Analysis of the Recursive Factorial

void main(void) {!
! int n;!
! cin >> n;!
! cout << factorial(n) << endl;! !
}!
!
int factorial(int n) {!
! int result;!
!
! if(n==1) return 1;!
! else result = n * factorial(n - 1);!
! return result;!
}

Base Case

In constructing a recursive solution, the base case is crucial for the 
end of the computation. The base case is explicitly stated in the 
mathematical definition (see slides before).



8
<

:

FIB(1) = 1
FIB(2) = 1
FIB(N) = FIB(N � 1) + FIB(N � 2)

Another Example: The Fibonacci Sequence

c. 1170-1240

Exercise:!
1) Try to use recursion “on paper” 
2) Write a program implementing FIB by recursion 
3) Calculate the (approximate) limit of the FIB(N)/FIB(N-1) succession 
4) Would be an iterative solution better? If yes, why?



Another Example: Fermat’s Infinite Descent

c. 1601-1665

⇢
ID(1) = 2
ID(N) = 2 · ID(N � 1)

Exercise:!
1) Can you find a non recursive form of the ID function? ID(N) = … 
2) Write a program implementing ID.

This recursion enters in Fermat’s proof for the number 
of subsets of a set of N elements. 
Question: how many subsets the set A={1,2,3} has?



Just for fun: Fermat’s Proof:
Let S(n) be the number of subsets of a set of n elements. 
Consider the element x and consider the subsets containing it or not. 
!
There are S(n-1) subsets not containing x. 
There are also S(n-1) subsets containing x (since you can just take the 
sets without x and add it to them!). Therefore: 
!

S(n) = S(n� 1) + S(n� 1) = 2 · S(n� 1)

For a set with n-1 elements: 

S(n� 1) = 2 · S(n� 2)

Substituting the second formula in the first up to the base case, it is 
easy to infer that: 

S(n) = 2n



A more complicated case: The Towers of Hanoi

The game consists to move all the disks from the first peg to the last.  
You can move only one disk at a time and smaller disks can only stay on 
top of larger disks.



The Towers of Hanoi: Analysis
Initial State: all disks on peg A 
Simple case: 1 disk -> simply move it from A to C. 
For N disks: 
 - Solve the problem for N-1 disks (move from A to C, B is the spare). 
 - After this, only the largest disk remains on A 
 - Move the large disk from A to B 
 - Move the N-1 disks from C to B 
  this means to solve the problem with A as a spare this time. 
 

void solve(int count, char source, char dest, char spare){!
!
  if (count == 1) cout << "Move from " << source << " to " << dest << endl;!
!
  else {!
    solve(count-1,source,spare,dest); //move n-1 disks from A to C !
    solve(1,source,dest,spare);       //move the remaining disk from A to B !
    solve(count-1,spare,dest,source); //move n-1 disks from C to B ...!
  }!
}!
!
int main()!
{!
  solve(5,'A','B','C');!
}!

A B C



Binary Search
Search through an unordered structure is usually an O(N) process. 
A way to speed up a search is to operate on ORDERED (sorted) structures. 
!
EXAMPLE: Binary search on sorted arrays. 
Search the number 2:

1  2  3  4  5  6  7  8  9 

1  2  3  4

1 2

2



Binary Search: Recursion Solution

int binary_search(int array[], int left, int right ,int item)!
{!
  int middle;!
!
  //middle element of the array                                                                                                                         !
  middle = ( left + right ) / 2;!
!
  //element is in the left half of the array                                                                                                            !
  if (array[middle] > item) return binary_search(array, left, middle - 1,item);!
!
  //element is in the right half of the array                                                                                                           !
!
  else if (array[middle] < item) return binary_search(array, middle + 1, right,item);!
  //the element has been found                                                                                                                          !
!
  else return middle;!
}!



Binary Search: Iterative Solution
int binary_search( int array[], int numItems, int item ) 
{ 
  int left = 0; 
  int right = numItems - 1; 
  int middle; 
  int found = FALSE; 
  int location = -1; 
!
  while( left <= right && !found ) 
    { 
!
      //middle element of the array                                                                                                                      
      middle = ( left + right ) / 2; 
!
      // element is in the left half of the array                                                                                                        
      if( item < array[middle]) 
        { 
          right = middle - 1; 
 }   
      // element is in right half of thr array                                                                                                           
      else if( item > array[ middle ] ) 
        { 
          left = middle + 1; 
 }   
      // the element has been found                                                                                                                      
      else 
        { 
          found = TRUE; 
          location = middle; 
        } 
    } 
  return location; 
} 
!

Sometimes the recursive solution code is 
much clearer (and shorter!) than the  
corresponding iterative one. 



Recursion vs Iteration

Is one technique better than the other? 
Depends… 
!
Use a recursive solution if:!
- There is a clear advantage 
- The problem/code is way clearer/shorter 
!
Do not use recursion if:!
- The iterative solution is much simpler 
- Memory requirements favor iteration 
!
And in general:!
- It depends very much on the structure of the problem.



Recursion vs Iteration
Example: The factorial function 
The factorial is a typical example where the iterative solution is 
in principle better, since for calculating F(N) you need F(N-1) which 
is already available as result of the previous iteration, without the need of  
memorizing all the intermediate steps. 

Another Example: The Fibonacci sequence 
For calculating F(N) you need F(N-1) and F(N-2): with an iterative solution you 
just memorize two previous results and not the full sequence. 

Binary Search: !
This is one example where the recursive solution is clearer than the iterative. We 
will see in the near future that recursive searches are very convenient in more 
complex data structures. 

The Tower of Hanoi:!
In this case, it is pretty clear that the recursive solution is superior from the 
point of view of : 
- Clarity 
- Implementation (short code)



From Recursion to Iteration, and back.

Question:!
Are recursion and iteration equivalent? I.e.: is it always possible to turn a 
recursive routine into an iterative one? 
!
Answer: YES!

Simplest Case: Tail-Recursion. 
A tail-recursive function is a function which ends by ONLY calling itself. 
The factorial is not a tail-recursive function, since it calls itself TIMES n. 
In the case of tail-recursive functions, the translation to iterative code is 
straightforward:

f (x){!
! if (<condition>) return f(x);!
! else return g(x); !
}

f(x){!
! while (condition)!
! ! x = k(x);!
! return g(x);!
}

More efficient!



In-class exercise
Implement a recursive version of the toVector function for the  
LinkedList ADT: 
!
void LinkedBag<T>::toVector2(vector<T>& content, Node<T>* curPtr) const

See Pg.148 in the book. 
The idea is to create a recursive “fillVector” function: 
!
void LinkedBag<T>::fillVector(vector<T>& bagContents, Node<T>* curPtr)!
!
which calls itself but referencing to the next pointer at each iteration: 
!
bagContents.push_back(curPtr->getItem());!
fillVector(bagContents,curPtr->getNext());



In-class exercise

Write a recursive algorithm which, given a vector, returns it in reverse order.



An important strategy: BackTracking
Backtracking is useful an useful recursive algorithms for solving constrained 
satisfaction problems. 
The algorithm: 
 - Builds incrementally on candidate solutions. 
 - “Backtracks” when it is clear that the final solution cannot be reached. 
!
!
!
Example problems: 
- The “8 Queens Problem” 
- Finding the way out from a maze 
- Solving crossword or sudoku puzzels 
- In general, constrained optimization problems 
!
!
!
A variant of the “maze” problem is proposed in the book:  
- Find a possible flight route between two cities. 
 - The constraints are: 
  The start-end cities 
  The allowed paths are the only ones where there is a flight available.



destination

origin



bool isPath(City origin , City destination){!
! bool result, done;!
! markVisited(origin);!
! !
! if (origin == destination) result = true;!
! else {!
! ! done = false;!
! ! City next = getNext(origin);!
! !
! ! while (!done && next != NO_CITY){!
! ! ! done = isPath(next,destination);!
! ! ! if (!done) next = getNext(origin);!
! ! }!
!
! }!
!
! return result;!
}

Find a Flight Path with Backtracking

Where is the backtracking code?


