Recursion

"o cterate o haman, To recarde divive.

(L. Peter Deutsch)

Mathematical Interlude: Recursion and Induction

Example: The Factorial Function

N!=FACT(N)=1-2-3-..-N

Recursive Definition:

{ FACT(0) =1
FACT(N)=N-FACT(N —1)

Exercise:

Use the recursive definition to calculate FACT(5) = 5!

Mathematical Interlude: Recursion and Induction

Recursion:

A recursive definition of a function, involves the function itself.

In a programming language, a recursive routine or function is a function
which calls itself.

Induction:

IS a mathematical proof technique based on the properties of the
natural numbers:

1) Assume true an initial “base” statement (example: 0! =1).

2) Assume the statement is true for N

3) Prove it is true also for N+1

Mathematical induction is strongly related to recursion.

Exercise

Prove the integers summation formula by induction.

(V) — ii: N(N2+1)

Analysis of the Recursive Factorial

void main(void) {
int n;
cin >> n;
cout << factorial(n) << endl;

}
Base Case

int factorial(int n) {
int result;

i1f(n==1) return 1;
else result = n * factorial(n - 1);
return result;

In constructing a recursive solution, the base case is crucial for the
end of the computation. The base case is explicitly stated in the
mathematical definition (see slides before).

Another Example: The Fibonacci Sequence

FIB(1)
FIB(2)
FIB(N) = FIB(N — 1)+ FIB(N — 2)

c. 1170-1240

Exercise:

1) Try to use recursion “on paper”
) Write a program implementing FIB by recursion

3) Calculate the (approximate) limit of the FIB(N)/FIB(N-1) succession
) Would be an iterative solution better? If yes, why?

Another Example: Fermats Infinite Descent

This recursion enters in Fermat’s proof for the number
of subsets of a set of N elements.
Question: how many subsets the set A={1,2,3} has”

c. 1601-1665

Exercise:
1) Can you find a non recursive form of the ID function”? ID(N) = ...
2) Write a program implementing ID.

Just for fun: Fermats Proof:

Let S(n) be the number of subsets of a set of n elements.
Consider the element x and consider the subsets containing it or not.

There are S(n-1) subsets not containing x.
There are also S(n-1) subsets containing x (since you can just take the

sets without x and add it to them!). Therefore:

Sn)=Sn—-1)+Sn—-1)=2-5n—-1)
For a set with n-1 elements:

Sn—1)=2-5n—2)

Substituting the second formula in the first up to the base case, it is
easy to infer that:

S(n) =2"

A more complicated case: The Towers of Hanoi

The game consists to move all the disks from the first peg to the last.
You can move only one disk at a time and smaller disks can only stay on
top of larger disks.

The Towers of Hanoi: Analysis A B

Initial State: all disks on peg A
Simple case: 1 disk -> simply move itfrom Ato C. (D
For N disks:

- Solve the problem for N-1 disks (move from A to C, B is the spare).

- After this, only the largest disk remains on A

- Move the large disk from A to B

- Move the N-1 disks from C to B

this means to solve the problem with A as a spare this time.

void solve(int count, char source, char dest, char spare)/{
if (count == 1) cout << "Move from " << source << " to " << dest << endl;

else {

solve(count-1,source,spare,dest); //move n-1 disks from A to C
solve(l,source,dest, spare); //move the remaining disk from A to B
solve(count-1,spare,dest,source); //move n-1 disks from C to B ...

}
}

int main()

{
solve(5,'A','B','C");
}

Binary Search

Search through an unordered structure is usually an O(N) process.
A way to speed up a search is to operate on ORDERED (sorted) structures.

EXAMPLE: Binary search on sorted arrays.
Search the number 2:

Binary Search: Recursion Solution

int binary search(int array[], int left, int right ,int item)
{

int middle;

//middle element of the array
middle = (left + right) / 2;

//element is in the left half of the array
1f (array[middle] > item) return binary search(array, left, middle - 1,item);

//element is in the right half of the array

else 1f (array[middle] < item) return binary search(array, middle + 1, right,item);
//the element has been found

else return middle;

Binary Search: Iterative Solution

int binary_search(int arrayl[], int numItems, int item)

{
int left = 0;
int right = numItems - 1;
int middle;
int found = FALSE;
int location = -1;

while(left <= right && !found)
{

//middle element of the array
middle = (left + right) / 2;

// element is in the left half of the array
if(item < array[middle])
{
right = middle - 1;

// element is in right half of thr array
else if(item > array[middle])

{
left = middle + 1;

// the element has been found
else

{
found = TRUE; : : : .
location = middle: Sometimes the recursive solution code is
} much clearer (and shorter!) than the

¥ . .
return location: Correspondlng lterative one.

Recursion vs Iteration

|s one technique better than the other?
Depends...

Use a recursive solution if:
- There Is a clear advantage
- The problem/code is way clearer/shorter

Do not use recursion if:
- The iterative solution is much simpler
- Memory requirements favor iteration

And Iin general:
- It depends very much on the structure of the problem.

Recursion vs Iteration

Example: The factorial function

The factorial is a typical example where the iterative solution is

in principle better, since for calculating F(N) you need F(N-1) which

IS already available as result of the previous iteration, without the need of
memorizing all the intermediate steps.

Another Example: The Fibonacci sequence
For calculating F(N) you need F(N-1) and F(N-2): with an iterative solution you
just memorize two previous results and not the full sequence.

Binary Search:

This is one example where the recursive solution is clearer than the iterative. We
will see in the near future that recursive searches are very convenient in more
complex data structures.

The Tower of Hanoi:
In this case, it is pretty clear that the recursive solution is superior from the
point of view of :

Clarity

Implementation (short code)

From Recursion to Iteration, and back.

Question:
Are recursion and iteration equivalent? |.e.: is it always possible to turn a

recursive routine into an iterative one?

Answer: YES!

Simplest Case: Tail-Recursion.
A tail-recursive function is a function which ends by ONLY calling itself.

The factorial is not a tail-recursive function, since it calls itself TIMES n.
In the case of tail-recursive functions, the translation to iterative code is

straightforward:

More efficient!

£(x){

£ (x){ while (condition)

1f (<condition>) return f(x);

X = k(X);
else return g(x);

return g(x);

In-class exercise

Implement a recursive version of the toVector function for the
LinkedList ADT:

void LinkedBag<T>::toVector2(vector<T>& content, Node<T>* curPtr) const

See Pg.148 in the book.
The idea is to create a recursive “fillVector” function:

void LinkedBag<T>::fillVector(vector<T>& bagContents, Node<T>* curPtr)
which calls itself but referencing to the next pointer at each iteration:

bagContents.push back(curPtr->getItem());
fillVector(bagContents,curPtr->getNext());

In-class exercise

Write a recursive algorithm which, given a vector, returns it in reverse order.

An important strategy: BackTracking

Backtracking is useful an useful recursive algorithms for solving constrained

satisfaction problems.

The algorithm:
- Builds incrementally on candidate solutions.

- “Backtracks” when it is clear that the final solution cannot be reached.

Example problems:

- The “8 Queens Problem”

- Finding the way out from a maze

- Solving crossword or sudoku puzzels

- In general, constrained optimization problems

A variant of the “maze” problem is proposed in the book:
- Find a possible tlight route between two cities.

- The constraints are:

The start-end cities
The allowed paths are the only ones where there is a flight available.

Liechtenstein il P— IT LY
eno ustria A
Switzerland oviP

TRENTINO-

B.c‘)rm ‘0 ALTO ADI ~ pTolmezzo Hungary
Vestii > Trento . FRIULI-
VALLE _ posta © O ; VENEZIA 5)|0venia
D'AOSTAO G uqu
France W s:e Croatia
‘cdéstination
c , ' ara ‘
e LIGURIA oRavenna Bosnia and
~/ \ - Herzegovina
Ab La Spéziao o) San Marino zegovi
Imperia Pisalp o ofano
Monogs Ligurian [« 4’ ncona
Sea ' - [
‘Mont ano \o_. - Agkoli Piceno Serbia
w o \Crugid SRR Adriatic -l (-
Elba Grosseto \MBRIA g
o A 4 ila Sea
. ‘Viterboy O
France ' Romd bti AE ~Vasto Viest
este
Vatican Ci °
Témpio opalall POV _ \ , Bafl
Pausania ellino pucti: Fasano
Sassari © Olbia orteil o oBrindisi
Alghero Nuoro i Lecce
BASILICATA (o}
Macomer © Saflinia Rof S Taranto
SARDEGNA) Gl 8
Sanluri g Tyrrhenian Scalea . Taranto gento
Carboniag AL Sea
Cagliari , ~
Ori i ﬁole Eolie Valgti Catanzaro
Pg : | lonian
i ermo Messing .
Mediterranean Scea Trapani O o Siderno Sea
Marsala® OSalemi CaNga Giagfe Reggio di Calabria

SICILIA WCatania

Straitpgrigento
0 ore 3 o Siracusa
Sicily Caltagirone (o) Sicil
ici
Pantelleria Ragusa y
Algeria Tunisia Mediterranean Sea
Notto Scale Isole Pelagie
Malta

0 Lampedusa

Sephotopik:con

Find a Flight Path with Backtracking

bool isPath(City origin , City destination){
bool result, done;
markVisited(origin);

1f (origin == destination) result = true;
else {

done = false;

City next = getNext(origin);

while (!done && next != NO CITY){
done = isPath(next,destination);
1f (!done) next = getNext(origin);

}

return result;

} Where is the backtracking code?

