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Self-Balancing Trees

Refer to Chp. 192



Array Implementation
Binary search trees offer significant advantages in terms of searching 
speed. 
As we have seen, BSTs merge the advantages of link-based 
implementations with the advantages of binary search with random-
access arrays.  
!
A drawback, is the performance degradation a tree undergo if it is 
heavily unbalanced. 
!
Can you figure out what is the most extreme case of unbalance and 
what is the consequence from the point of view of time 
computational complexity?!
!
In order to deal with unbalance, balanced search trees were 
introduced.
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2-3 Trees
Definition:!
a 2-3 Tree is a tree where each node (which is not a leaf) can have either 2 or 3 children 
at most.  
Nodes with 2 (3) children are called 2-nodes (3-nodes). 
!
Observations: 
1) A 2-3 tree is not in general a binary tree. If a 2-3 tree contains only 2-nodes, it is 
equivalent to a binary tree. 
In this respect, a binary tree is a special case of 2-3-tree. 
!
2) A 2-3- tree of height h contains at least as many nodes as a complete binary tree of 
height h. 
!
Said in another way, a 2-3-tree with N nodes has an height which is never bigger than 
an N-node binary tree: H<log2(N+1) . 
!
3) We can distinguish generic 2-3 trees and 2-3 search trees.
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2-3 Trees Filling Rules

Example:

3-nodes contain 2 data items2-nodes contain 1 data items
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2-3 Tree Self-Balancing



2-3 Tree Node

\

template<class ItemType> 
class TriNode 
{ 
private: 
   ItemType smallItem, largeItem;    // Data portion                                                                                                                        
   TriNode<ItemType>* leftChildPtr;  // Left-child pointer                                                                                                                  
   TriNode<ItemType>* midChildPtr;   // Middle-child pointer                                                                                                                
   TriNode<ItemType>* rightChildPtr; // Right-child pointer                                                                                                                 
!
public: 
   TriNode(); 
   TriNode(const ItemType& anItem); 
   TriNode(const ItemType& anItem, TriNode<ItemType>* leftPtr, 
           TriNode<ItemType>* midPtr, TriNode<ItemType>* rightPtr); 
!
   bool isLeaf() const; 
   bool isTwoNode() const; 
   bool isThreeNode() const; 
!
   ItemType getSmallItem() const; 
   ItemType getLargeItem() const; 
!
   void setSmallItem(const ItemType& anItem); 
   void setLargeItem(const ItemType& anItem); 
!
   TriNode<ItemType>* getLeftChildPtr() const; 
   TriNode<ItemType>* getMidChildPtr() const; 
   TriNode<ItemType>* getRightChildPtr() const; 
!
   void setLeftChildPtr(TriNode<ItemType>* leftPtr); 
   void setMidChildPtr(TriNode<ItemType>* midPtr); 
   void setRightChildPtr(TriNode<ItemType>* rightPtr); 
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2-3 Tree Traversal
//PSEUDOCODE!
void InOrderTraversal(23Tree: TwoThreeTree){!
!
! if (23Tree node r is a leaf) visit data item;!
! else if (r has 2 items){ //r is a 3-node!
! ! InOrderTraversal(left subtree);!
! ! visit first data item;!
! ! InOrderTraversal(middle subtree);!
! ! visit second data item;!
! ! InOrderTraversal(right subtree);!
! }!
! else { //r has 1 item (it is a 2-node)!
! ! InOrderTraversal(left subtree);!
! ! visit data item;!
! ! InOrderTraversal(right subtree);!
! }!
}

8



2-3 Tree Search
//PSEUDOCODE!
T Search(TwoThreeTree, Item target){!
!
! if (target is in root r) return item //base case!
! else if (r is a leaf) return failure //not found!
! else if (r has 2 data items){ //it is a 3-node!
! ! if (target < smaller item in r) !
! ! ! return Search(r left subtree, target);!
! ! else if (target<largest item in r) !
! ! ! return Search(r middle subtree, target);!
! ! else !
! ! ! return Search(r right subtree, target);!!
! ! }!
! else { //r has 1 item (it is a 2-node)!
! ! if (target < data item in r)!
! ! ! return Search(r left subtree, target);!
! ! else!
! ! ! return Search(r right subtree, target);!!
! }!
}

The search is still O(log2N) like for a BST: this is because although you visit less 
nodes on average, you do more comparisons due to the presence of 3-nodes!9



2-3 Tree Insertion
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2-3 Tree Insertion
insertItem(23Tree, T item){!
! Locate (e.g. using search) the leaf for item!
! Add item to the leaf!
!
! if (leaf has 3 items) split(leaf)!
}

split(23Node n){!
! if (n is root) create new node p;!
! else let p be the parent of n;!
!
! Replace n with n1 and n2 with p the parent;!
! smaller value in n1;!
! largest value in n2;!
!
! if (n is not a leaf){!
! ! n1 becomes the parent of n’s two leftmost children;!
! ! n2 becomes the parent of n’s two rightmost children;!
! }!
!
! Move item in n with middle value up to p;!
! if (p has 3 items) split(p);!
}!

What about removal?11



2-3-4 Trees
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A 2-3-4 Tree is like a 2-3 Tree, but 4-nodes are allowed. 
4-nodes contain 3 data items and have 4 children.

4-node

S  M  L

Items<S Items>S

S<Items<M M<Items<L
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2-3 Trees vs 2-3-4 Trees vs N-Trees
2-3-4 Trees have an advantage over 2-3 Trees in terms of insertion and removal 
algorithms. Both trees are self-balancing anyway. 
!
The advantage of 2-3-4 trees is that the algorithm searching for the leaf where to place 
a new item splits every 4-node it encounters. So the next procedure of backing up will 
not need any splitting.  
!
Something similar happens for the merging procedure of removal. While searching for 
the item to remove, you can always merge 2-nodes into 3- or 4-nodes. In this way, 
when you find the item to remove, you just remove it! 
!
The higher efficiency of insertion and removal makes the 2-3-4 tree a preferred choice 
over the 2-3 tree. 
!
What about 2-3-4-5 or higher order trees? 
Such trees can give you an advantage, since they have a reduced height at the 
expense of more and more comparisons. The efficiency of the tree traversal and 
comparisons must be carefully estimated for deciding the maximum number of 
children's of a node.



Red-Black Trees
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A potential disadvantage of 2-3-4 trees is the increased storage requirement over 
binary search trees. 
The problem is solved by red-black Trees which are binary trees with the advantages 
of 2-3-4 Trees. 
!
The idea is to distinguish between 2-nodes appearing in the original 2-3-4-tree and 2-
nodes generated from 3- and 4-nodes. 
!
The distinction is made “coloring” pointers with two different “colors”: red and black. 
Let’s say that all the child’s pointers in the original 2-3-4-tree were black. We will use 
red pointers to link 2-nodes which result from splitting 3- and 4-nodes.
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Red-Black Trees
Another (simpler) way to see RBTs is to consider all the nodes associated with a color 
(R or B) together with the following rules: 
!
- Every node is Red or Black 
- The root is always black 
- If a node is Red, the children must be black (the converse is not necessarily true). 
- Every path from the root to a leaf must contain the same number of black nodes  
  (the so-called “black height”). 
!
These basic rules enforce tree balancing while performing insertions. 
!



B-Trees and External Storage
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B-trees are generalizations of 2-3 and 2-3-4 trees. Actually, 2-3 trees are B-trees of 
order 3 and 2-3-4 trees are B-trees of order 4 …). 
!
B-trees are widely used in external storage applications. Given the way disks are read 
(block by block), it is convenient to organize the data according to a B-tree. 
It makes sense to allow a number of children per node which matches the size of a 
block (caveat: we have to take into account the storage of pointers..).

Insertion in a B-tree is done in a way similar to 
2-3-trees, since 2-3-4-trees leave too many 
non-full nodes and this is not optimal for a 
disk.: 
- When a node is split, half data goes into 

the new node and half stays. 
- Node splits happen bottom-up (like in 2-3-

trees.) 
- The item promoted up is not the middle 

one, but the middle in the sequence 
formed by the items in the node, plus the 
new one (like in 2-3- trees).



Graphs

Refer to Chp. 2017

Leonhard Euler 1707 – 1783
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The Bridges of Koenigsberg

The problem is to find a walk that would cross each bridge once and only once, with the 
constraint that the islands could only be reached by the bridges and every bridge once 
accessed must be crossed to its other end. !
The starting and ending points of the walk need not be the same.!
!
Euler proved that the problem has no solution.!
He proved that with a graph-based analysis and this is probably the beginning of graph 
theory!
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Graphs: Basic Definitions

A graph G consists on two sets: 
- V: the set of vertices 
- E: the set of edges 
!

!
A subgraph is a subset of vertices and edges. 
!
Two vertices are adjacent if joined by an edge. 
!
A path between two vertices is a sequence of edges joining them 
!
A graph is connected if every pair of vertices has a path joining them. 
!
A graph is complete if every pair of vertices has an edge joining them.  
!

If the edges allow the transitions among nodes only 
in a particular direction, the graph is called 
directed. If there is also a quantity associated to 
the edges, the graph is weighted. 

What is the relationship between Graphs and Trees?
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A Graph Interface
template<class LabelType> 
class GraphInterface 
{ 
public: 
     virtual int getNumVertices() const = 0; 
!
     virtual int getNumEdges() const = 0; 
!
     virtual bool add(LabelType start, LabelType end, int edgeWeight) = 0; 
!
     virtual bool remove(LabelType start, LabelType end) = 0; 
!
     virtual int getEdgeWeight(LabelType start, LabelType end) const = 0; 
                                                                                                 
     virtual void depthFirstTraversal(LabelType start, void visit(LabelType&)) = 0; 
!
     virtual void breadthFirstTraversal(LabelType start, void visit(LabelType&)) = 0; 
};                                                                    
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Graph Description

There are two main ways to represent a graph: 
!
1) Adjacency Matrix 
2)  Adjacency List 
!
Every methods has advantages and disadvantages.
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Adjacency Matrix
The adjacency matrix is a matrix which describes the relationship among vertices in a 
graph. 
!
Example:!
Let A[i][j] be the adjacency matrix.  
We can set A[i][j] = 1 if the node i is connected with the node j. A[i][j] = 0 otherwise.

If the graph is weighted, we can substitute 1 with the appropriate weight.
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Adjacency List

This graph description is based on linked chains. The i-th chain contains all the 
vertices connected to the vertex i.

Adjacency List Adjacency Matrix
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Matrix or List?
Depends from: !
- The operations you  most frequently would like to perform on the graph 
- The type of graph. 
!
Two common operations are: 
1) Determine if vertices i and j are connected. 
2) Find all vertices connected to the vertex i. 
!
Clearly, operation 1) is faster with a matrix, while 2) is faster with a list. 
!
Moreover, the matrix has always V2 entries, while the list has entries equal to the 
number of edges. So, if the graph is highly connected, a matrix can be convenient. If 
the graph is “sparse”, a list is a better choice from the memory allocation point of 
view. 
!

Question:!
Remember the “connecting flights” problem? How is it connected with graphs? Which 
graph implementation would you use in that problem?
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Graph Traversal: Depth-First Search
This kind of search in a graph tries to go as deep as possible into the graph, following a 
path through adjacent vertices. When a vertex is visited, it should be marked, in order to 
avoid infinite loops!

The (recursive or stack-based) algorithm is the 
following:
DFS(vertex v){!
!
! Mark v as visited;!
! for (each unvisited u adjacent to v){!
! ! DFS(vertex u);! !
! }!
!
}

If you remember, the search strategy was similar in the “connecting flights” problem. 
There are some differences though: which ones? 
DFS is also a common strategy in many computer-based games (e.g. chess,..).
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Graph Traversal: Breadth-First Search

BFS starts from one vertex and visits first all 
the adjacent vertices. 
This algorithm is based on a queue:

BFS(vertex v){!
! Define a queue Q;!
! Q.enqueue(v);!
! Mark v as visited;!
! !
! while (!q.isEmpty()){!
! ! q.dequeue(w);!
! ! for! (each unvisited vertex u adjacent to w){!
! ! ! Mark u as visited;!
! ! ! q.enqueue(u);!
! ! }!
! }!
}
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Spanning Trees

From an industrial point of view, it would be useful to construct the minimum amount of 
connections needed for realizing the goal of connecting all the pins. 
To this purpose, it is useful to transform the graph to an associated minimum 
spanning tree.

Example: Chip Design. 
Imagine you would like to design an integrated circuit where it 
must be possible in principle to reach each pin from any other 
one. You can picture the circuit with a graph where every 
vertex is a pin and every connection is an edge. 

Another example could be the 
telephone connection among N cities. 
It is sufficient that you can reach with a 
cable (the edges) every city from every 
starting city: so you do not need to 
connect every city with every other city 
(or build a complete graph!).

Given a graph: how to construct a minimum spanning tree?
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Minimum Spanning Trees
A way to find spanning trees is simply to remember the path taken by the BFS and DFS 
algorithms while they visit a graph. There is of course more than one spanning tree. 
Considering weighted graphs, we can consider the spanning tree which has the smallest 
possible cost (or sum of weights). Such a tree is called minimum spanning tree. 
The classical “greedy” algorithm for finding a MST is Prim’s Algorithm. 

Prim(vertex root){!
! Mark root as visited and include it in the MST;!
! while (there are unvisited vertices){!
! !
! ! Find the least-cost edge (v,u) from a visited vertex v!
! ! to an unvisited vertex u;!
! !
! ! Mark u as visited;!
!
! ! Add u and the edge (v,u) to the MST;!
!
! }!
}
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Topological Sorting
Topological Sorting of a directed graph is a linear ordering of its vertices such that for 
every directed edge (u,v) from vertex u to vertex v, u comes before v in the ordering. 
!
EXAMPLE: 
For completing your degree, you have to take a certain amount of courses. The order 
of the courses is not random though: there are requirements. Your path to the degree 
can be encoded into a graph:

Topological sorting makes sense for directed graphs without cycles. 
There are in general more possible topological sortings.
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Topological Sorting Algorithms: DFS
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Shortest Path: Dijkstra’s Algorithm
In a weighted graph, a natural (and useful!) question is: what is the path between two 
vertices for which the sum of the weights is minimal?  This is the shortest path problem 
and is solved by the famous Dijkstra’s Algorithm. Google Maps uses something 
similar to this!

shortestPath(Graph G, double *weight){!
! Create a set of vertices SV with only vertex 0;!
! N = number of vertices in G;!
!
! for (v=0 ; v<N-1 ; i++)!
! ! weight[v] = G[0][v];//G is the adjacency matrix!
! ! !
! for (step = 2 ; step<=N ; step++){!
! ! Find the smallest weight[v] such that v is not in SV;!
! ! Add v to SV;!
!
! ! for (all vertices u not in SV){!
! ! ! if (weight[u]>weight[v]+G[v][u])!
! ! ! ! weight[u] = weight[v] + G[v][u];!
! ! }!
! }!
}

weights are >0 in this implementation.
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Circuits
A circuit is a path in a graph that begins and ends at the same vertex. 
A circuit that visit all the edges of a graph going through each edge only once is called 
Euler circuit.  
!
Euler proved that such a circuit exists if and only if each vertex touches an even 
number of edges. 
!

Remember for example the Koenigsberg bridges problem:
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Circuits
A circuit that visit all the vertices of a graph going through each vertex only once is 
called Hamilton circuit.  
A famous problem connected to Hamilton circuits is the Traveling salesperson 
problem (TSP). A variation of the problem involves a weighted graph and wTSP 
involves the less expensive Hamilton circuit.

TSP is considered a “difficult” 
problem. This means that there 
is no fast solution (O(poly)) to it. 
!
In fact, TSP is an example of 
NP-complete problem and as 
such it is one of the most 
difficult decision problems.
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Can we classify the difficulty of problems?

Classical view

Quantum Extension
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Complexity Theory
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…and much, much more!


