

Sorting Algorithms

“Inefficient” Algorithms:
- Bubble Sort
- Insertion Sort
- Selection Sort

“Efficient Algorithms”™
- Merge Sort
- Quick Sort
- Radix Sort
- Tim Sort

Stability:
A sorting algorithm is stable if it maintains the relative position of equal
objects.

Refer to Chp. 11

Bubble Sort

Bubble sort is based on comparison among adjacent objects:

8 1 2 3 4 5 B T 8

‘23'17‘ 5‘90‘12‘44‘38‘84‘77' 17| B 23| 12| 44|90 | 38|84 | 77

1‘_1‘ exchange exchange T—T

‘17|23‘ 5‘90‘12‘44|38‘84‘77I 17| 5 | 23|12 |44 38|90 |84 | 77

T_T exchange exchange u

27]s [23)s0]az]aa] 5008] 77] [35]5 [aa]az] 4] s8] 4] 50] 7]

'l‘ 'l‘l | h
0 Sl exchange T_T

‘17‘5 123‘12‘90‘44‘38‘84‘74 175 | 23|12 |44 (38847790

T_T exchange

Selection Sort

Similar to sorting a hand of cards: find the smallest element and swap it with the first
element. Find the next smallest element and swap it with the second, ...

'20]12 1o|15| 2 | 2 |20 12|15*|10| 2 |1o*|2o 15]12' 2 “10]12 2o|*15
:12 201015 zl 2 (12201158 1o| |2 |10|15 20|12| |2 |10|12 15|20

t ! t $ o 3
'1o*|zo_‘12|_15| 2 | 2 |»12_|2o‘|15|1o| 2]10[12 20 15]
' ! 4 ’

uﬂzolxz 15 2] 2 lxolzo 15 12]
' '

2 |2o|12“1s 1o|

Step 1 Step 2 Step 3 Step 4

Insertion Sort

Partition the array in sorted and unsorted regions.
At each step, pick an element of the unsorted region and insert it at the right place in
the sorted region.

J J J
b 2% 4 5 6 1 2 -3 0.8 K B 1 2 7 A0 TH
sl21al6|1]3 254613 245613
ANLA A |
M/ k‘:f,’/ \/
J J
¥} 2 3 4 316 ¥ 23 4 3 D Z 3 4 D 0
2456113 2(4(5]6]3 1:3456]
LA 4 'IOI
A AU KA U

Merge Sort

Divide-and-conqguer algorithm:
Divide the array in two and recursively
sort and merge the results:

1) Divide in halves

2) Sort the halves (recursively!)

3) Merge the halves in a tmp vector
4) Copy the tmp in the original

Recursive implementation.

|3|8‘6|1‘7‘2|5|4|
/ divide \

Quick Sort

Divide-and-conquer algorithm:

Starting array

4

Resulting array

44 75 23 43 55 12 64 77 33
l Partition
12 23 33 43 55 44 64 77 75
Quicksort-left, Partition Quicksort-right, Partition
12 23 43 55 44 64 75 77
43 55 44 64 77
43 44 55
43 55
12 23 33 43 44 55 64 75 77

Radix Sort

Considers the elements as strings. First it orders according to the last digit, then the
second to last, etc..

4925
2623
2346
a67%
3657
4546
7566
L545
4524
234“!
2436

262

4524
4925
2436
4545
2345
22456
4546
357
{5bb
an/5

2345
7346

A5
A524
4545
4546
756b
2b23
3b57
b75
4925

J345
2345
2436
2623
3657
4524
4545
45456
4925
/obb
o675

Tim Sort

Tim-Sort (Tim Peters, 2002) is an hybrid (combines more methods) adaptive (chooses
the method dynamically) sorting algorithm which is used e.g. as standard sorting routine
In the Python language.

It is stable and combines merge sort with insertion sort.
It is designed for good performance on real-world data.

The idea behind it is to look for “natural runs”, which are short sub-sequences in the
data which are already ordered.

The algorithms then merges intelligently (making use also of binary searches) the
ordered runs.

A good simple reference is Wikipedia https://en.wikipedia.org/wiki/Timsort

https://en.wikipedia.org/wiki/Timsort

Computational Complexity

Sorting Algorithm

Average Time

Worst Time

Bubble Sort

O®2)

O®2)

Insertion Sort

O®2)

O®2)

Selection Sort

O®2)

O®2)

Quick Sort

O(n log n)

O®2)

Merge Sort

O(n log n)

O@ log n)

Heap Sort

O(n log n)

O(@ log n)

Radix Sort

O@m)

Om)

Counting Sort
Tim Sort

Om)
O(n log n) O(n)

O)
O(n log n) O(n) Stable

In the worst case

Measuring the fime of a routine

#include <time.h>

clock t start,diff;

start = clock(); //read the clock

//do something

diff = clock() - start; //re-read and calc. time difference

double elapsed time = diff / (double)CLOCKS PER SEC; //time in s

Generating Random Numbers

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

srand ((unsigned)time (NULL)) : sets the random sequence’s seed.
rand (): generates a random number between 0 and RAND_MAX
rand()/ (double)RAND MAX : generates a random number between 0 and 1

rand () %N : generates an integer random number between 0 and N.

Computational Complexity: Try to estimate if!

1) Choose a “slow” and a “fast” sorting algorithms.

2) Implement them in a single C++ program

3) Create an array filled with random numbers

4) Sort with the two algorithms the array increasing its length N up to a “big” number.
5) Measure the time taken by the sorting algorithms

6) Plot on a chart the time (y) as a function of N (x).

/) Do the obtained curves respect the expected theoretical scaling?

