
Sorting

Sorting Algorithms

“Inefficient” Algorithms:!
 - Bubble Sort
 - Insertion Sort
 - Selection Sort
!
“Efficient Algorithms”!
 - Merge Sort
 - Quick Sort
 - Radix Sort
 - Tim Sort
 - …
!
Stability: !
A sorting algorithm is stable if it maintains the relative position of equal
objects.

Refer to Chp. 11

Bubble Sort
Bubble sort is based on comparison among adjacent objects:

Selection Sort
Similar to sorting a hand of cards: find the smallest element and swap it with the first
element. Find the next smallest element and swap it with the second, …

Insertion Sort
Partition the array in sorted and unsorted regions.
At each step, pick an element of the unsorted region and insert it at the right place in
the sorted region.

Merge Sort

Divide-and-conquer algorithm:
Divide the array in two and recursively
sort and merge the results:
!
1) Divide in halves
2) Sort the halves (recursively!)
3) Merge the halves in a tmp vector
4) Copy the tmp in the original
!
Recursive implementation.

Quick Sort
Divide-and-conquer algorithm:

Radix Sort

Considers the elements as strings. First it orders according to the last digit, then the
second to last, etc..

Tim Sort

Tim-Sort (Tim Peters, 2002) is an hybrid (combines more methods) adaptive (chooses
the method dynamically) sorting algorithm which is used e.g. as standard sorting routine
in the Python language.
!
It is stable and combines merge sort with insertion sort.
It is designed for good performance on real-world data.
!
The idea behind it is to look for “natural runs”, which are short sub-sequences in the
data which are already ordered.
!
The algorithms then merges intelligently (making use also of binary searches) the
ordered runs.
!
A good simple reference is Wikipedia https://en.wikipedia.org/wiki/Timsort

https://en.wikipedia.org/wiki/Timsort

Computational Complexity

Tim Sort O(n log n) O(n log n)O(n) O(n)
In the worst case

Stable

Measuring the time of a routine

#include <time.h> !
!
clock_t start,diff;!
!
start = clock(); //read the clock!
!
//do something!
!
diff = clock() - start; //re-read and calc. time difference!
!
double elapsed_time = diff / (double)CLOCKS_PER_SEC; //time in s

Generating Random Numbers
!
!

#include <stdio.h> !
#include <stdlib.h> !
#include <time.h> !
!

!
srand ((unsigned)time(NULL)) : sets the random sequence’s seed.
!
rand(): generates a random number between 0 and RAND_MAX
!
rand()/(double)RAND_MAX : generates a random number between 0 and 1
!
rand()%N : generates an integer random number between 0 and N.

Computational Complexity: Try to estimate it!

1) Choose a “slow” and a “fast” sorting algorithms.
!
2) Implement them in a single C++ program
!
3) Create an array filled with random numbers
!
4) Sort with the two algorithms the array increasing its length N up to a “big” number.
!
5) Measure the time taken by the sorting algorithms
!
6) Plot on a chart the time (y) as a function of N (x).
!
7) Do the obtained curves respect the expected theoretical scaling?

