
Trees

General Trees (1 Root, no restrictions on child nodes)
A “Tree” is a special case of another more general data structure called “Graph”.
A tree is made by connected nodes.
The first node is called “root” of the tree.

ROOT

NodeTree

SubtreeParent Node!
(Ancestor)

Child Node
(Descendant)

A subtree of a node N is a tree with N as its root.
NOTE: A tree is not a linear ADT, therefore it is complicated to address its content with a
position number. In a tree, data is organized in a hierarchical form.

Binary Tree (1 Root, 2 children per node)

Root

Left Sub-tree

Left Sub-tree

Right Sub-tree

Right Sub-tree
Right Sub-tree

Left Sub-tree

Recursive definition:!
1) An empty tree is a binary tree
2) A node with two child subtrees is a binary tree
3) Only what you get from 1) by a finite application of 2) is a binary tree

Node Counting in Binary Trees
Level Nlevel Ntot

1 1=20 1=21-1

2 2=21 3=22-1

3

4

4=22 7=23-1

8=23 15=24-1

L 1=2L-1 N=2L-1
…

…

…
…

…
…

A FULL binary tree is a binary tree where every
node has two children, except the last “leaf”
nodes.

Node Counting in Binary Trees
Question: Given a binary tree with N nodes, what is its minimum height?

- A tree with L-1 levels has at most 2L-1-1 nodes (see prev. slide).
 Therefore, it is true that 2L-1-1 < N .
- On the other side, N cannot exceed the maximum total number of nodes a

binary tree can have, so: N <= 2L-1.
- If L is the smallest integer such that N<=2L-1
 If a binary tree has height <= L-1 , then:

 2L-1-1 < N <= 2L-1
!
 which means:
!
 2L-1 < N+1 <= 2L

!
 and therefore:
!
! ! L-1 < log2(N+1) <= L

- Ceiling(log2(N+1)) is the minimum height for a binary tree with N nodes

Node Counting in Binary Trees

Another way to count the total number of nodes is to sum all the nodes in each level:

N =
LX

i=1

2i�1

Remembering the geometric sum formula:

you can prove that indeed

N =
NX

i=1

2i�1 = 2L�1

NX

k=0

rk =
1� rN+1

1� r

Balanced Trees
When L children are more than R ones (or vice-
versa), the trees are called “unbalanced”.
!
If every node has exactly 2 children (in the case
of binary trees), the tree is completely balanced.
!
There are different degrees of balance.
The extreme case of a totally unbalanced tree is
the one where there are only L (or R) children
and the tree looks basically like a linear data
structure:

Tree Traversal
Tree traversal refers to an algorithm for visiting (all) the tree nodes.
Recursion is particularly well suited for this task, as the very definition of binary tree
suggests.

//Pseudocode!
Traverse (Tree){!
! Print(Root.Data());!
! Traverse (Tree.Left());!
! Traverse (Tree.Right());!
}

Such recursive algorithm first accesses the root and then moves to the subtrees.
The is called pre-order traversal.
!
An alternative is first visit the L subtree, then the root and finally the R tree.
This is called in-order traversal.
!
The remaining case (root at last) is called post-order traversal.

Why Trees? Some motivations.
Now we know some properties of the tree ADS, but why should we
consider trees?
!
Trees combine the advantages of ordered arrays and linked lists
together!
!
Ordered Arrays:!
 - Quick search (binary)
 - Slow insertion
!
Linked lists:!
 - Slow search
 - Fast insertion

We will see that with a Binary Tree we can realize fast insertion
and fast search!

Binary Search Tree
A BST is a binary tree with a special insertion property:
Every time you insert a new element a new leaf is created.
The leaf is created either in the L or R position according to how the new element
relates with the parent node.

Computational Complexity:!
!
Operation: Avg Worst
!
Retrieval O(logN) O(N)
Insertion O(logN) O(N)
Removal O(logN) O(N)
Traversal O(N) O(N)

template<class T>!
class BinaryTreeInterface{!
!
! virtual bool isEmpty() = 0;!
! virtual int getHeight() const = 0;!
! virtual int getNumberOfNodes() = 0;!
!
! virtual T getRootData() = 0;!
! virtual void setRootData(const T& newData) = 0;!
!
! virtual bool add(const T& newData) const = 0;!
! virtual bool remove(const T& data) = 0;!
!
! virtual void clear() = 0 ;!
!
! virtual T getEntry(const T& anEntry) const !
! ! ! ! ! ! throw(NotFoundException) = 0;!
!
! virtual bool contains(const T& anEntry) const = 0;!
!
! virtual void preorder(void visit(T&)) const = 0;!
! virtual void inorder(void visit(T&)) const = 0;!
! virtual void postorder(void visit(T&)) const = 0;!!
};

The Tree ADT

Binary Tree Implementations: Link-Based

Node{!
! T Item;!
! Node<T> * left;!
! Node<T> * right;!
};

Binary Tree Implementations: Array-Based

We can construct an array of nodes.
The nodes contain the data and the array indices if the child
nodes.
!
A complication is the following: as you insert and remove
nodes, you have to store the information about which positions
in the array are still free (you need a “free list”).
Insertion and removal operations either consult and modify the
free list.

Node{!
! T Item;!
! int left;!
! int right;!
};

Binary Tree Implementation: keeping the balance.
template<class T>!
BinaryNode<T>* BinaryNodeTree<T>::balancedAdd!
(BinaryNode<T>* subTreePtr,BinaryNode<T>* newNodePtr)!
{!
 if (subTreePtr == nullptr)!
 return newNodePtr;!
 else!
 {!
 BinaryNode<T>* leftPtr = subTreePtr->getLeftChildPtr();!
 BinaryNode<T>* rightPtr = subTreePtr->getRightChildPtr();!
 !
 if (getHeightHelper(leftPtr) > getHeightHelper(rightPtr)){!
 rightPtr = balancedAdd(rightPtr , newNodePtr);!
 subTreePtr->setRightChildPtr(rightPtr);!
 } else {!
 leftPtr = balancedAdd(leftPtr, newNodePtr);!
 subTreePtr->setLeftChildPtr(leftPtr);!
 }!
 !
 return subTreePtr;!
 } !
}!

template<class ItemType>!
int BinaryNodeTree<ItemType>::!
getHeightHelper(BinaryNode<ItemType>* subTreePtr) const!
{!
 if (subTreePtr == nullptr)!
 return 0;!
 else!
 return 1 + max(getHeightHelper(subTreePtr->getLeftChildPtr()), !
 getHeightHelper(subTreePtr->getRightChildPtr()));!
}

How to calculate the tree hight (max level)

Summary
- A node of a tree references data and 2 (or more) “child” nodes.
!
- Array or link based implementations.
!

- The nature of the tree is recursive (a tree can be seen as a tree of trees..), therefore
if is natural to use recursive algorithms for operating on it.
!

- Binary search trees are particularly efficient for search and insertion operations.
!
- IDEA: use a search binary tree to sort a sequence: Tree Sort.
!
 —> How could it work?
 —> What about its computational complexity?

