
Trees



General Trees (1 Root, no restrictions on child nodes)
A “Tree” is a special case of another more general data structure called “Graph”. 
A tree is made by connected nodes.  
The first node is called “root” of the tree.
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A subtree of a node N is a tree with N as its root. 
NOTE: A tree is not a linear ADT, therefore it is complicated to address its content with a 
position number. In a tree, data is organized in a hierarchical form.



Binary Tree (1 Root, 2 children per node)
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Recursive definition:!
1) An empty tree is a binary tree 
2) A node with two child subtrees is a binary tree 
3) Only what you get from 1) by a finite application of 2) is a binary tree



Node Counting in Binary Trees
Level      Nlevel    Ntot

1 1=20 1=21-1

2 2=21 3=22-1

3

4

4=22 7=23-1

8=23 15=24-1

L 1=2L-1 N=2L-1
…

…

…
…

…
…

A FULL binary tree is a binary tree where every 
node has two children, except the last “leaf” 
nodes.



Node Counting in Binary Trees
Question: Given a binary tree with N nodes, what is its minimum height? 

- A tree with L-1 levels has at most 2L-1-1 nodes (see prev. slide). 
    Therefore, it is true that 2L-1-1 < N . 
- On the other side, N cannot exceed the maximum total number of nodes a 

binary tree can have, so: N <= 2L-1. 
- If L is the smallest integer such that N<=2L-1 
    If a binary tree has height <= L-1 , then: 
     
  2L-1-1 < N <= 2L-1 
!
   which means: 
!
        2L-1 < N+1 <= 2L 

!
   and therefore: 
!
! ! L-1 < log2(N+1) <= L

- Ceiling(log2(N+1)) is the minimum height for a binary tree with N nodes



Node Counting in Binary Trees

Another way to count the total number of nodes is to sum all the nodes in each level:

N =
LX

i=1

2i�1

Remembering the geometric sum formula:

you can prove that indeed
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Balanced Trees
When L children are more than R ones (or vice-
versa), the trees are called “unbalanced”. 
!
If every node has exactly 2 children (in the case 
of binary trees), the tree is completely balanced. 
!
There are different degrees of balance. 
The extreme case of a totally unbalanced tree is 
the one where there are only L (or R) children 
and the tree looks basically like a linear data 
structure:



Tree Traversal
Tree traversal refers to an algorithm for visiting (all) the tree nodes. 
Recursion is particularly well suited for this task, as the very definition of binary tree 
suggests.

//Pseudocode!
Traverse (Tree){!
! Print(Root.Data());!
! Traverse (Tree.Left());!
! Traverse (Tree.Right());!
}

Such recursive algorithm first accesses the root and then moves to the subtrees. 
The is called pre-order traversal. 
!
An alternative is first visit the L subtree, then the root and finally the R tree. 
This is called in-order traversal. 
!
The remaining case (root at last) is called post-order traversal.



Why Trees? Some motivations.
Now we know some properties of the tree ADS, but why should we 
consider trees? 
!
Trees combine the advantages of ordered arrays and linked lists 
together! 
!
Ordered Arrays:!
 - Quick search (binary) 
 - Slow insertion 
!
Linked lists:!
 - Slow search 
 - Fast insertion

We will see that with a Binary Tree we can realize fast insertion 
and fast search!



Binary Search Tree
A BST is a binary tree with a special insertion property: 
Every time you insert a new element a new leaf is created. 
The leaf is created either in the L or R position according to how the new element 
relates with the parent node.

Computational Complexity:!
!
Operation: Avg  Worst 
!
Retrieval O(logN)   O(N) 
Insertion      O(logN)  O(N) 
Removal      O(logN)  O(N) 
Traversal      O(N)       O(N)



template<class T>!
class BinaryTreeInterface{!
!
! virtual bool isEmpty() = 0;!
! virtual int getHeight() const = 0;!
! virtual int getNumberOfNodes() = 0;!
!
! virtual T getRootData() = 0;!
! virtual void setRootData(const T& newData) = 0;!
!
! virtual bool add(const T& newData) const = 0;!
! virtual bool remove(const T& data) = 0;!
!
! virtual void clear() = 0 ;!
!
! virtual T getEntry(const T& anEntry) const !
! ! ! ! ! ! throw(NotFoundException) = 0;!
!
! virtual bool contains(const T& anEntry) const = 0;!
!
! virtual void preorder(void visit(T&)) const = 0;!
! virtual void inorder(void visit(T&)) const = 0;!
! virtual void postorder(void visit(T&)) const = 0;!!
};

The Tree ADT



Binary Tree Implementations: Link-Based

Node{!
! T Item;!
! Node<T> * left;!
! Node<T> * right;!
};



Binary Tree Implementations: Array-Based

We can construct an array of nodes. 
The nodes contain the data and the array indices if the child 
nodes. 
!
A complication is the following: as you insert and remove 
nodes, you have to store the information about which positions 
in the array are still free (you need a “free list”). 
Insertion and removal operations either consult and modify the 
free list. 

Node{!
! T Item;!
! int left;!
! int right;!
};



Binary Tree Implementation: keeping the balance.
template<class T>!
BinaryNode<T>* BinaryNodeTree<T>::balancedAdd!
(BinaryNode<T>* subTreePtr,BinaryNode<T>* newNodePtr)!
{!
   if (subTreePtr == nullptr)!
      return newNodePtr;!
   else!
   {!
      BinaryNode<T>* leftPtr = subTreePtr->getLeftChildPtr();!
      BinaryNode<T>* rightPtr = subTreePtr->getRightChildPtr();!
      !
      if (getHeightHelper(leftPtr) > getHeightHelper(rightPtr)){!
         rightPtr = balancedAdd(rightPtr , newNodePtr);!
         subTreePtr->setRightChildPtr(rightPtr );!
      } else {!
         leftPtr = balancedAdd(leftPtr, newNodePtr);!
         subTreePtr->setLeftChildPtr(leftPtr);!
      }!
      !
      return subTreePtr;!
   }  !
}!



template<class ItemType>!
int BinaryNodeTree<ItemType>::!
getHeightHelper(BinaryNode<ItemType>* subTreePtr) const!
{!
   if (subTreePtr == nullptr)!
      return 0;!
   else!
      return 1 + max(getHeightHelper(subTreePtr->getLeftChildPtr()), !
                     getHeightHelper(subTreePtr->getRightChildPtr()));!
} 

How to calculate the tree hight (max level)



Summary
- A node of a tree references data and 2 (or more) “child” nodes. 
!
-   Array or link based implementations. 
!

- The nature of the tree is recursive (a tree can be seen as a tree of trees..), therefore 
if is natural to use recursive algorithms for operating on it. 
!

- Binary search trees are particularly efficient for search and insertion operations. 
!
- IDEA: use a search binary tree to sort a sequence: Tree Sort. 
!
  —> How could it work? 
  —> What about its computational complexity?


