

General Trees (1 Root, no restrictions on child nodes)

A “Tree” is a special case of another more general data structure called “Graph”.
A tree is made by connected nodes.
The first node is called “root” of the tree.

Subtree

Parent Node
(Ancestor)

Tree

Child Node
(Descendant)

A subtree of a node N is a tree with N as its rooit.
NOTE: A tree is not a linear ADT, therefore it is complicated to address its content with a
position number. In a tree, data is organized in a hierarchical form.

Binary Tree (1 Root, 2 children per node) K cadki;

. Root

Left Sub-tree Right Sub-tree

Right Sub-tree
Left Sub-tree Left Sub-tree Right Sub-tree

@ ... QO O

Recursive definition:

1) An empty tree is a binary tree

2) A node with two child subtrees is a binary tree

3) Only what you get from 1) by a finite application of 2) is a binary tree

Node Counting in Binary Trees

OO0 OC Cé O C

A FULL binary tree is a binary tree where every
node has two children, except the last “leat”
nodes.

Level
1

Nievel Ntot
1=20 1=21-1

0=21 3=22-1
4=22 7=031
8=28 15=24-1

1=2L1 N=2L-1

Node Counting in Binary Trees

Question: Given a binary tree with N nodes, what is its minimum height”

A tree with L-1 levels has at most 24-1-1 nodes (see prev. slide).

Therefore, it is true that 2-1-1 < N .

On the other side, N cannot exceed the maximum total number of nodes a
pinary tree can have, so: N <= 2L-1.

f L is the smallest integer such that N<=2L-1

f a binary tree has height <= L-1, then:

2L-1-1 < N <= 2L-1
which means:

LT < N+1 <=2L
and therefore:

L-1 <logz(N+1) <=L

Ceiling(log2(N+1)) is the minimum height for a binary tree with N nodes

Node Counting in Binary Trees

Another way to count the total number of nodes is to sum all the nodes in each level:

L
N — Z 2i—1
1=1

Remembering the geometric sum formula:

1 — pNF1

N
E rk —

1l —7r
k=0

you can prove that indeed

N — i 2@'—1 _ 2L—1
1=1

Balanced Trees

When L children are more than R ones (or vice-
versa), the trees are called “unbalanced”.

It every node has exactly 2 children (in the case
of binary trees), the tree is completely balanced.

There are different degrees of balance.

The extreme case of a totally unbalanced tree is
the one where there are only L (or R) children
and the tree looks basically like a linear data
structure:

Tree Traversal

Tree traversal refers to an algorithm for visiting (all) the tree nodes.
Recursion is particularly well suited for this task, as the very definition of binary tree
suggests.

/ /Pseudocode

Traverse (Tree)/{
Print (Root.Data());
Traverse (Tree.Left());
Traverse (Tree.Right());

Such recursive algorithm first accesses the root and then moves to the subtrees.
The is called pre-order traversal.

An alternative is first visit the L subtree, then the root and finally the R tree.
This is called in-order traversal.

The remaining case (root at last) is called post-order traversal.

Why Trees? Some motivations.

Now we know some properties of the tree ADS, but why should we
consider trees?

Trees combine the advantages of ordered arrays and linked lists
together!

Ordered Arrays:
- Quick search (binary)
- Slow insertion

Linked lists:
- Slow search
- Fast insertion

We will see that with a Binary Tree we can realize fast insertion
and fast search!

Binary Search Tree

A BST is a binary tree with a special insertion property:
Every time you insert a new element a new leaf is created.

The leaf is created either in the L or R position according to how the new element
relates with the parent node.

Computational Complexity:
~— &
o e Operation: Avg Worst
| \ Retrieval O(logN) O(N)
nsertion O(logN) O(N)
Q e o e Removal O(logN) O(N)

Traversal O(N) O(N)

/

7 &

template<class T> The Tree ADT

class BinaryTreelnterface(

virtual bool isEmpty() = 0;
virtual int getHeight() const = 0;
virtual int getNumberOfNodes() = 0;

virtual T getRootData() = 0;
virtual void setRootData(const T& newData) = 0;

virtual bool add(const T& newData) const = 0;
virtual bool remove(const T& data) = 0;

virtual void clear() = 0 ;

virtual T getEntry(const T& anEntry) const
throw(NotFoundException) = 0;

virtual bool contains(const T& anEntry) const = 0;
virtual void preorder(void visit(T&)) const

virtual void inorder(void visit(T&)) const = 0
virtual void postorder(void visit(T&)) const

Il
e O
~e

Il
()
we

Binary Tree Implementations: Link-Based

root

!
l Node{
item T Item;

* .
leftChildPtr |rightChildpPtr Node<T> left;

x///// \\\\\\ Node<T> * right;
}i

Binary Tree Implementations: Array-Based

We can construct an array of nodes.
The nodes contain the data and the array indices if the child

nodes. Node{

T Item;
A complication is the following: as you insert and remove int left;
nodes, you have to store the information about which positions int right;
in the array are still free (you need a “free list”). };

Insertion and removal operations either consult and modity the
free list.

m 1 ~ \ﬁ\'ﬁm
&@‘ - JJJJJ

\“"———___;

Binary Tree Implementation: keeping the balance.

template<class T>

BinaryNode<T>* BinaryNodeTree<T>::balancedAdd
(BinaryNode<T>* subTreePtr,BinaryNode<T>* newNodePtr)

{

1f (subTreePtr == nullptr)
return newNodePtr;

else

{

BinaryNode<T>* leftPtr = subTreePtr->getLeftChildPtr();
BinaryNode<T>* rightPtr = subTreePtr->getRightChildPtr();

1f (getHeightHelper(leftPtr) > getHeightHelper (rightPtr)){
rightPtr = balancedAdd(rightPtr , newNodePtr);
subTreePtr->setRightChildPtr (rightPtr);

} else {
leftPtr = balancedAdd(leftPtr, newNodePtr);

subTreePtr->setLeftChildPtr(leftPtr);
}

return subTreePtr;

How to calculate the tree hight (max level)

template<class ItemType>
int BinaryNodeTree<ItemType>::
getHeightHelper (BinaryNode<ItemType>* subTreePtr) const
{
i1f (subTreePtr == nullptr)
return 0;
else
return 1 + max(getHeightHelper (subTreePtr->getLeftChildPtr()),
getHeightHelper (subTreePtr->getRightChildPtr()));

Summary

A node of a tree references data and 2 (or more) “child” nodes.
- Array or link based implementations.

The nature of the tree is recursive (a tree can be seen as a tree of trees..), therefore
If is natural to use recursive algorithms for operating on it.

Binary search trees are particularly efficient for search and insertion operations.
IDEA: use a search binary tree to sort a sequence: Tree Sort.

—> How could it work?
—> What about its computational complexity?

