
Trees: An Application

Compression Algorithms
Trees have an interesting application in compression algorithms.
Compression involves re-writing a string of symbols belonging to an “alphabet” into a
shorter string (which can belong to a different alphabet), without loss of information.
!
This means that a string can be “compressed” and then “un-compressed”
re-obtaining the starting one.
!
There are many compression techniques, but here we discuss one called “Huffman
coding”, which has a strong relationship with the tree data structure.
!
Huffman coding was discovered by David A. Huffman (1925-1999) in 1952. He was
a computer scientist professor at MIT and UCSC.

Huffman Coding: the idea

“SUSIE SAYS IT IS EASY”

Symbol Frequency
A 2
E 2
I 3
S 6
T 1
U 1
Y 2

Space 4
Linefeed 1

Let’s consider the string:

The idea is to represent the most frequent
characters with less bits and less
frequent characters with more bits.
So, effectively we transfer “complexity”
from frequent characters to non-frequent
ones.

For doing this, we need the frequency table of the characters in the string.
How do we choose the encoding?

Huffman Coding

“SUSIE SAYS IT IS EASY”
The most frequent characters are S and the space. We associate to them the
2-bit combinations 10 and 00 respectively.
We cannot use 01 and 11 because other characters will start with such combinations
and therefore in a decoding situation you will not be able to distinguish them.
So: No code can be the prefix of any other code.
The proposed compression strings according to the character frequency are:

Symbol Frequency ASCII Huffman
A 2 “01000000” “010”
E 2 “01000001” “1111”

!I 3 … “110”
"S 6 .. “10"

T 1 … “0110"
U 1 .. “01111"
Y 2 … “1110”

!Space 4 .. “00"
Linefeed 1 …. “01110"

Huffman Coding

“SUSIE SAYS IT IS EASY”

The (ASCII) message:

becomes:

“10 0111 10 110 1111 00 10 010 1110 10 00 110 0110
00 110 10 00 1111 010 10 1110 01110”

The spaces were added only for clarity. The compressed message is actually:

“1001111011011110010010111010001100110001101000111101010111001110”

We compressed a string of 22x8=176 bits into a string of 64 bits.
A compression ratio of about 63% !
The algorithm achieves better performances if the frequency table shows very
frequent characters. If the table is very well balanced, the result will be a very poor
compression performance.

Decoding with the help of a Tree

Surprisingly, the tree data structure represents the logic behind Huffman coding.

A

T

LF

SP

U

S

I

Y E

0 1

Try to follow: “T”=“0110”

1) Create nodes containing character and frequency.
2) Create trees with such nodes as roots.
3) Feed the trees into a priority queue.

How to create the Decoding Tree

1) Remove two trees from the priority queue. These 2 trees become
children of a new node. The new node has a frequency equal to
the sum of the children’s frequencies and a blank character/
frequency field.

2) Insert this new tree in the priority queue.
3) Repeat 1) and 2) until only one tree is left in the queue. Such tree

is the Huffman decoding tree!

Initial construction:

Tree Construction:

How to create the Decoding Tree

Coding

Once you have the coding tree, the coding step is simple.
You have just to create a table which associates a character with the
right Huffman code.
!
For doing this, you can realize a tree traversal algorithm which keeps
track of the path followed from the root to a leaf. The path will represent
the Huffman code for the character contained in the leaf.

