
Canada’s national laboratory
for particle and nuclear physics
and accelerator-based science

Topics across Physics and Finance

Luca Doria
TRIUMF



Student’s Seminar Luca Doria, TRIUMF Date , 2017

Introduction
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The intersections between Physics and Finance/Economy are many! 
A very personal (and limited) selection of topics: 

  I)    Introduction and Short History 
  II)   Some Physics Problems and Probability Distributions 
    - Gaussian Distributions 
    - Non-Gaussian Distributions 
   - Examples from Physics 

  III)     Stochastic Processes 
  IV)    Stable Distributions  
  V)     Stocks 
  VI)    Derivates: Options 
  VII)   Summary & Conclusions 
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Is there any logic behind  Economics or the Stock Market? 
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Historical Overview
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    I)   R. Brown (1773-1858): Observation of random motion in pollen samples 
    II)  L. Bachelier (1870-1946): First attempt to model stocks movements 
   III)  A. Einstein (1905): First model of the brownian motion 
  IV)  Mandelbrot and Pareto Distributions 
   V)   K. Ito and R. Stratonovich (~1950-60): Calculus with random variables 
  VI)  Black, Merton, Scholes: Stochastic model for options (~1973) 
                                       1997 Nobel Prize in Economics 

Now: 
“Econophysics”: tries to apply physics methods to Finance and Economy: 

- Stochastic Processes 
- Statistical Physics 
- Agent-based Models 
- Statistical Analysis 
- Feynman's Path Integrals 

Louis Bachelier (1870-1946) 
The Theory of Speculation 

K. Ito (1915-2008) 

B. Mandelbrot (1924-2010) R. Black, M. Scholes 
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PART 1:  

PHYSICS MODELS 
and 

PROBABILITY DISTRIBUTIONS: 
EXPONENTIALS vs POWER LAWS
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Probability Distributions
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Probability Distributions
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g(r) = f(x, y) = h(x)k(y)

@g

@✓
= 0Hypothesis: Distribution independent from the angle (neglect e.g. gravity)

Distribution of the darts:
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The Gaussian Distribution
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Why Gaussians appear so often?

The Central Limit Theorem (Lindenberg, Levy ~1920)

Consider N independent random variables Xi (i=1..N) drawn from the same probability 
distribution f such that :

Then:

SN =
X1 +X2 + ..+XN

N
! µ N ! 1

V ar(f) = �2 0 < �2 < 1

p
N

 
1

N

NX

i=1

Xi � µ

!
! N (0,�2) N ! 1

“law of large numbers”
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The Gaussian as a limit distribution
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P (k,N) =
N !

(N � k)!k!
pk(1� p)N�k

P (k) =
�ke��

k!

!

! N (�,
p
�)

N ! 1

Np ! 1

N(1� p) ! 1

� ! 1

N (Np,Np(1� p))Binomial Distribution

Poisson Distribution
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Brownian Motion
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R. Brown (1773-1858): Observation of random motion  
                                      in pollen samples
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Brownian Motion
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R. Brown (1773-1858): Observation of random motion  
                                      in pollen samples

A. Einstein (1905): First quantitative explanation of 
               the brownian motion

@u

@t

�D

@

2
u

@x

2
= 0 D =

RT

N

1

6⇡kr

“… It is hoped that some enquirer may succeed shortly in solving the problem 
suggested here, which is so important in connection with the theory of heat.” 
Berne, May 1905 (Received, 11 May 1905).

p
< �x

2
> =

p
2Dt

Opportunity to estimate NA (check of the atomic hypothesis) ! 
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A Simple Model of the Brownian Motion
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The Propagation of Heat
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q = �kru

Q = cp⇢u
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If a change in internal energy in a material is given only by the heat flux across the boundaries in a space/time region:

c
p

⇢

Z
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By Energy Conservation: 

x� �x  ⇠  x+ �x t� �t  ⌧  t+ �t

Fourier’s Law:

Thermodynamics:
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Solutions of the Heat Equation
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G(x, t) =
1p
4⇡kt

e

� x

2

4kt

u(x, t) =

Z
G(x� y, t)f(y, t = 0)dy

@u

@t

� k

@

2
u

@x

2
= 0

Propagator

General Solution
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Are Gaussians really everywhere? 
Are we really living in a Gaussian World?
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WHY caring about non-gaussian distributions?
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  I)    Random processes often encountered in physics 
(Probability/Distributions). 

  III) Not all random processes have gaussian tails ! 

  IV)  “Fat” tails are not always easy to explain: associated with  
          “complex” systems, phase transitions, critical states, scale 
invariance, … 

            In general: something interesting for a physicist ! 

  V)     More formal methods needed to treat stochastic 
processes. 
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An example from Experimental Physics
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Used e.g. in: 
- Detector Physics and Simulation 
- Medical Physics 

Two physics mechanisms: 
  - EM Force 
  - Strong Force

Material

Charged Particle

θ
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Other Examples
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The analysis was performed for varying cell sizes L, and
varying cutoff magnitudes S, where only earthquakes with
magnitude greater than the cutoff magnitude S were used.

The analysis required the latitude, longitude, magnitude, and
occurrence time of each earthquake, with the earthquakes
ordered chronologically. This analysis was carried out by a
program that read in the data from the 17 catalogs spanning the
years 1984–2000. The program located the time, latitude, and
longitude of each earthquake, then converted them into decimal
values, taking care to account for leap years and defining 00:00
h on January 1, 1984 as t ! 0. The earthquakes were sorted to
ensure that they were in chronological order, and then the time,
local magnitude, latitude, and longitude were output to a file.
There were 24,469 events that had a null value for one or more
of their attributes, and as such were discarded at this stage.

To calculate the magnitude distribution of earthquakes, the
earthquake data were read through for incrementally increasing
values of magnitude m, and the number of earthquakes with
magnitude M greater than the cutoff magnitude m were counted.
The resulting distribution of the number of earthquakes N with
(M " m) divided by the number of years, is then a distribution
of the number of earthquakes with a magnitude greater than m
per year.

The analysis for the first-return time correlation function
required the area of Southern California to be divided up into
equally sized regions of area L # L. Fig. 1 shows the region of
Southern California divided into grids of two different cell sizes.

An array was then defined whose individual elements corre-
spond to a specific cell in the Southern California region and
contain the time of the previous earthquake in that cell. For
varying cell sizes and cutoff magnitudes, all of the earthquakes
were read through in chronological order, following these simple
rules.

Y The earthquake’s data were read in and used if its magnitude
was greater than the cutoff magnitude.

Y The earthquake’s coordinates were used to place it within a
particular grid cell.

Y The time of the last earthquake in that region was read from
the array (if it was the first earthquake to have occurred in that
region, the earthquake’s time was stored in the empty array
space, and the next earthquake was read in).

Y The time between the two earthquakes was calculated and put
into the appropriate bin.

Y The array was updated to the new earthquake’s time.

The analysis was repeated for the cell sizes L ! 0.25°, 0.5°, 1°,
2°, 4°, and for the cutoff magnitudes 2, 3, and 4. The degrees of
cell size is related to distance as 1° $ 111 Km. Using smaller cell
sizes and higher magnitude cutoffs would lead to a small number
of events in each cell, thus giving poor statistics.

The results were best observed in the form of a probability
distribution with the interoccurrence times placed into appro-
priate bins. However, the values ranged from a few milliseconds
to a few million seconds (17 years). Obviously, this range is a very
large one, so it would have been extremely impractical to put
these values in equal-sized bins; instead, bins with exponentially
increasing sizes were used. A value of 2.5 was used for the
exponential base of the bin boundaries, which gave 27 bins for
this range.

Results
Fig. 2 shows the magnitude distribution for the Southern Cali-
fornia region, which is the number of earthquakes per year with
magnitude (M " m). The dashed red line shows the Gutenberg–
Richter Law with a gradient b $ 1. There is a deficit for m ! 2
due to problems associated with detecting small earthquakes.
Therefore, only earthquakes with m " 2 are considered in the
following analysis.

Fig. 3 shows PS,L(T), the distribution of the interoccurrence
times between consecutive earthquakes for a given cutoff mag-
nitude m [where m ! log10(S)] in a region size L # L.

Fig. 1. Southern California seismic region covered by a grid of cells of 4° # 4° (Left) and cells of 1° # 1° ($ 111 # 111 km2) (Right).

2510 ! www.pnas.org"cgi"doi"10.1073"pnas.012581099 Christensen et al.

For interoccurrence times below 40 s, earthquakes overlap,
and there is difficulty in resolving separate events. This fact
accounts for the deficit for small T; so, in the following, only the
interoccurrence times for T ! 38 s will be considered (38 s
corresponds to the crossover between two bins).

The graphs all show a power law regime that corresponds
to the Omori Law of the decay of the frequency of aftershocks
" T#!, where ! $ 1. It is important to note that the range of
the power-law region varies with cutoff magnitude and cell
size.

Examining the graph closely shows that for fixed region size L
but increasing cutoff S, the range of the power-law regime

increases, as shown in Fig. 4. In other words, the power-law
cutoff scales with S and can be expressed as

PS,L " 1%&T' " T # !g&TS # b' [4]

where b is a critical exponent characterizing the distribution of
earthquakes and g(x) is a scaling function. Such functions are
well known in the theory of critical phenomena (13), and
they typically consist of a constant part for small arguments
and a rapidly decaying (normally exponential) part for large
arguments.

Similar behavior is seen when varying L (see Fig. 5). As L is
increased, the length of the power-law region is reduced, which
can be expressed as

PS " 100,L&T' " T#!g((TLdf) [5]

where g( is a scaling function and df is a spatial dimension
exponent.

The Unified Earthquake Law
By physical arguments discussed later, we suggest that the two
scaling relations can be unified and reduced further. Eq. 6 gives
the distribution of temporal intervals T between earthquakes in
an area of size L ) L, exceeding magnitude m * log10 S.

PS,L&T' " T#!f&TLdfS # b' [6]

where !, b, and df are values to be fitted and f(x) is a scaling
function. It is seen to remain constant for values x + 1 and to
decay rapidly for x ! 1.

To verify this Law, the curves in Fig. 3 are replotted in terms
of rescaled coordinates where the x axis is chosen as x * TS#bLdf,
and the y axis represents y * T!PS,L(T). The resulting graph
shown in Fig. 6 clearly shows that all of the data collapse neatly
onto a single curve. Experimentally fitting the critical indices !,
b, and df to achieve the best data collapse yielded the values ! $
1, b $ 1, and df $ 1.2. Astonishingly enough, these values, which
are independently fitted for the best data collapse, directly relate
to the key values describing earthquake characteristics.

Y ! $ 1, relating to the interoccurrence time, is the ! value from
the Omori Law for aftershocks.

Fig. 2. Earthquake magnitude distribution showing a power-law behavior
over 6 decades. The graph follows log10 N(M ! m) " # bm, where b is the
Gutenberg–Richter exponent b * 1 (dashed red line). The roll-off for m + 2 is
due to difficulties with detecting very small earthquakes.

Fig. 3. The distribution PS,L(T) of interoccurrence times T with magnitude
greater than S. The solid circles, squares, and triangles correspond to cutoffs
m * 2, 3, and 4, respectively. The color coding represents the linear size L *
0.25° (black), 0.5° (red), 1° (green), 2° (blue), and 4° (orange) of the cells
covering Southern California. For T + 40 s, earthquakes overlap, and individ-
ual earthquakes cannot be resolved. This result causes the deficit for small T,
so only intervals T ! 38 s will be considered.

Fig. 4. First-return (interoccurrence) time distributions for L * 1° and m * 2,
3, and 4. PS,L * 1°(T) follows a power law PS,L * 1°(T) " T#! where ! $ 1. The Omori
Law region increases with increasing m.

Christensen et al. PNAS ! February 19, 2002 ! vol. 99 ! suppl. 1 ! 2511

K.Christensen et al. (2002) 

Distribution of the magnitude of earthquakes Connectivity in real networks

Zipf’s Law in real 
languages Pink Noise
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The Lorentzian Distribution
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P (x) =
1p
2⇡�

e

� (x�µ)2

2�2

P (x) =
1

⇡

�

(x� µ)2 + �

2

Gaussian:

Lorentzian:

For the Lorentz distribution, in contrast to the Gaussian: 
- The moments are not defined (infinite variance!). 
- The Central Limit Theorem does not hold.
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Power Laws are “Scale Free”
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⇢(ax) = f(a)⇢(x)Scale free distribution:
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�↵Power-law distributions:
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⇢(ax) = f(a)⇢(x)Scale free distribution:

⇢(x) / x

�↵Power-law distributions:

⇢(ax) = (ax)�↵ = a
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x
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Power Laws are “Scale Free”
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⇢(ax) = f(a)⇢(x)Scale free distribution:

⇢(x) / x

�↵Power-law distributions:

⇢(ax) = (ax)�↵ = a

�↵
x

�↵ = a

�↵
⇢(x)Power-laws are scale-free:

Interesting connections with: 
fractals, phase transitions, criticality…
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Power Laws are “Scale Free”
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⇢(ax) = f(a)⇢(x)Scale free distribution:

⇢(x) / x

�↵Power-law distributions:

⇢(ax) = (ax)�↵ = a

�↵
x

�↵ = a

�↵
⇢(x)Power-laws are scale-free:

Interesting connections with: 
fractals, phase transitions, criticality…

Taleb, Nassim Nicholas (2010). The Black Swan: the impact of the highly improbable

Black swans do exist …. !
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Beyond the CL Theorem: Stable Distributions
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Definition: x is a stable random variable if for every positive A,B exist C,D so that:

where x1 and x2 are copies of x.

(Ax1 + bx2) ⇡ Cx+D

Theorem: The sum of independent, identically distributed random variables (iid) converge to a stable 
distribution as the number of iid variables tends to infinity.

Stable (Levy) Distributions S↵(�,�, µ)

ln�(k) =

iµk � �|k|↵

1� i�

k

|k| tan(⇡/2↵)
�

iµk � �|k|

1 + i�

k

|k| (2/⇡) tan(|k|)
�

↵ 6= 1

↵ = 1

0 < ↵ < 2

� > 0

µ 2 R
� 2 (�1, 1)

Stability Index

Scale Factor

Shift Factor

Asymmetry Factor

↵ = 2

↵ = 1;� = 0

Gaussian

Lorentz
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Levy Distributions
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lim
x!1

P (X > x) ⇡ �(1 + ↵) sin(⇡↵/2)

⇡|x|1+↵

⇡ 1

|x|1+↵

Levy Distributions have “fat tails”
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Stocks and the Stock Market: 
-Statistical Properties  
-Stochastic Calculus
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The Stock Market
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Many financial products are traded on the Stock Market. 
We will take a look at: 

- Stocks 
- Derivates, in particular Options. 

Questions: 

- What are the statistical properties of the Stock Market? 
- Are these properties universal? 
- If yes, what is the cause? 
- What are the best mathematical tools to tackle these problems? 

We will briefly describe two methods: 

1) Statistical Analysis / Signal Analysis 
2) Stochastic Calculus
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Stocks
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0 200 400 600 800 1000 1200 1400 1600 1800
0
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300

Jan,1 2005

2007

Goldman-Sachs Group, Inc, NYSE

How to analyze/model these data?
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The Distribution of Returns

25

Goldman-Sachs Group, Inc, NYSE

Not Gaussian!
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Observables and Methods
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Ri(t,�t) = lnPi(t+�t)� lnPi(t)
Pi(t)

�i(t,�t) =
q

hR2
i i � hRii2

ri(t,�t) =
Ri � hRii

�i
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Stochastic Calculus (Ito, Stratonovich)

dS = F (S, t)dt+G(S, t)dW

dS = �2dW

dS = µSdt+ �SdW

dS = �(µ� S)dt+ �SdW

dS = ��Sdt+ �dW

Brownian Process 

Geometric Process 

“Return to the Mean” Process 

Ornstein-Uhlenbeck Process (fluctuation around zero)

) S(t) = St0 +

Z t

t0

F (S, ⌧)d⌧ +

Z t

t0

G(S, t)dW⌧
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Just for fun: Ito Calculus
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An example of Ito’s integration of a random variable W:

Z T

t0

WtdWt =
1

2
(W 2

T �W 2
t0)�

1

2
(T � t0)

The most important formula: Ito’s Formula for the differential:

dS = F (S, t)dt+G(S, t)dWIf a random process is described by:

then a function Y of S and the time t has the following differential:

dY
t

= {@
t

Y + F@
S

Y +
1

2
G2@2

x

Y }dt+G@
x

Y dW
t
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Cumulative Distribution
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ri(t,�t) =
Ri � hRii

�i

The distribution is not gaussian. 
Close to a -3 power law. 

At small timescales (~min) the returns’ distribution is not gaussian. 
It has fat and asymmetric tails (2.8 and 3 for example).

The “inverse cubic law” is observed in many markets: what is its origin?
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Autocorrelation
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⇢(T ) = hr⌧ (t+ T )r⌧ (t)i
Autocorrelation of the returns: 

Very fast decay observed
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Volatility

30

Volatility Clustering: 
Contrary to the returns, volatility displays more  
“memory”: small volatilities tend to be followed 
by small volatilities and large volatilities by large 
volatilities.

Volatility: Standard deviation of the logarithmic returns:

V =

vuut
"

NX

i

✓
ln

Si

Si�1

◆2

� 1

N

✓
ln

Si

Si�1

◆2
#

1

N � 1
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The “Stylized Facts”

31

Extensive data analysis on the distributors of stock markets can be briefly summarized in the 
following “stylized facts”: 

1) The returns’ distribution exhibits fat and slightly asymmetric tails at short time scales (~min). It 
becomes slowly a gaussian at large (>day, month) time scales. This signals a non trivial time structure 
for the underlaying stochastic process. 

2) No linear autocorrelation: the autocorrelation decays very quickly to zero on short (~min) time 
scales. This supports the “efficient market” hypothesis. 

3) Volatility clustering. The volatility has more “memory” (or correlation) that the returns and therefore 
tends to cluster in time. Similar phenomena are observed in the velocity distributions of turbulent 
flows. 

Many other observables: Power spectral density, Fourier analysis, …
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Derivatives: 
-Options 
-….
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Options

33

Robert C. Merton Myron S. Scholes

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 
1997 was awarded jointly to Robert C. Merton and Myron S. Scholes "for a new 
method to determine the value of derivatives " 

Black, F. och M. Scholes, 1973, "The Pricing of Options and Corporate Liabilities", Journal of Political Economy, Vol. 81, pp. 637-654. 

Black, F., 1989, "How We came Up with the Option Formula", The Journal of Portfolio Management, Vol. 15, pp. 4-8 

Hull, J.C., 1997, Options, Futures and Other Derivates, 3rd edition, Prentice Hall  

Merton, R.C., 1973, "Theory of Rational Option Pricing", Bell Journal of Economics and Management Science, Vol. 4, pp. 141-183. 



Student’s Seminar Luca Doria, TRIUMF Date , 2017

Options
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Definition: 

In finance, an option is a derivate financial instrument that establishes a contract between two parties concerning the 
buying or selling  

of an asset at a reference price. 

“Put” (“Call”) European Options: 

The owner of the option has the right (but no obligation) to sell (buy) a certain good at a certain time for a certain price. 

Other jargon terms: 

Underlying (Asset): A stock for a simple option (can be any good). 

Strike Price: Price for buying or selling the underlying. 

Expiration Date: When the option might be used. 

American Options: The option can be used at any time before expiration. 

Exotic Options: All other kind of options (e.g. asian options, ...). 
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The Black-Scholes Model
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Hypoteses: 
  
I) The short-term interest rate r is known and constant and it is possible to ask for money at that 
rate. 

II) The strike price X is known and constant 

III) The stock price S follows a geometric stochastic process: 

Where W is a Wiener process, µ is the expected return, σ the volatility. 

IV) The stock does not pay dividends 

V) No transaction costs and no limits to the short-selling 

VI) There is no arbitrage 

dS = µSdt+ �SdW
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Derivation of the BS Equation
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V = S � 1

�
c dV = dS � 1

�
dc

dc =


@c

@t
+

1

2
�2S2 @

2c

@S2

�
dt+

@c

@S
�dW

dV = � 1

�


@c

@t
+

1

2
�2S2 @

2c

@S2

�
dt

dV = � 1

�


@c

@t
+

1

2
�2S2 @

2c

@S2

�
dt =

✓
S � 1

�
c

◆
rdt

Build a portfolio made by stocks and options: )variation

Apply Ito’s Lemma to c(t,S): 

Substituting:

Equivalence to a risk-free portfolio: 
(no arbitrage!).

After some algebra:
@c

@t
+

1

2
�2S2 @

2c

@2S
= rc� rS

@c

@S
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A Physics Analogy
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Diffusion

@c

@t
+

1

2
�2S2 @

2c

@2S
= rc� rS

@c

@S
Convection Reaction

Example: dispersion of a pollutant in a river:

Dispersion: diffusion Term 
Water Flow: Convection Term 
Absorption (e.g. by sand): Reaction Term

But at the end….the BS Equation IS the heat equation!
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Solutions
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c(S, t) = SN(d1)�Xe�r(T�t)N(d2)

d1 =
ln S

X + (r + 1/2�2)(T � t)

�
p
T � t

d2 = d1 � �
p
T � t

N(d
i

) =

Z
di

�1

1p
2⇡

e

� 1
2x

2

dx

Solution: 

with:
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Another technique: Montecarlo Simulations
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The BS equation has an analytic solution. 
Analytic solutions are possible in other “simple” cases, e.g.: 

What about more complicated cases, like e.g: 
Changing volatility 
Stochastic processes different from the geometric one 

A possibility is to use Montecarlo simulations.

Idea: Simulate N “paths” for the stock price and average at the end  
the reached price.
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A MonteCarlo Solution: “The Greeks”
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N=10 c = c(S)
� =

@c

@S

V =
@c

@�

⇥ =
@c

@T
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A MonteCarlo Solution: “The Greeks”

N=100 c = c(S)
� =

@c

@S

V =
@c

@�

⇥ =
@c

@T
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A MonteCarlo Solution: “The Greeks”

N=1000 c = c(S)
� =

@c

@S

V =
@c

@�

⇥ =
@c

@T
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Summary and Outlook
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• Non-gaussianity (or “fat tails”) are relevant in the description of many 
• natural phenomena. 

• Stock markets display highly non trivial statistical properties. 

• Analysis possible today: large data and computing power. 

• Not only stocks: there are many financial instruments which can be analyzed with 
mathematical techniques common in physics. Derivatives, Term structure of the 
interest rates, bonds, exotic options, swaps, …… 

• Tools: statistics, signal analysis, path (Wiener) integrals, Montecarlo simulations, 
• PDEs, …



Canada’s national laboratory
for particle and nuclear physics 
and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | 
Carleton | Guelph | Manitoba | McGill | McMaster | 
Montréal | Northern British Columbia | Queen’s | 
Regina | Saint Mary’s | Simon Fraser | Toronto | 
Victoria | Western | Winnipeg | York

Thank you!
Merci!

Follow us at TRIUMFLab 


