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R TRIUMF Introduction

The intersections between Physics and Finance/[Economy are many!
A very personal (and limited) selection of topics:

I) Introduction and Short History

Il) Some Physics Problems and Probability Distributions
- Gaussian Distributions
- Non-Gaussian Distributions
- Examples from Physics

lIl)  Stochastic Processes
I\VV)  Stable Distributions

V)  Stocks

VI) Derivates: Options

VII) Summary & Conclusions
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@,TRlUMF Is there any logic behind Economics or the Stock Market?

JUST A NORMAL DAY AT THE NATION'S MOST IMPORTANT FINANCIAL INSTITUTION...
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@,TRlUMF Historical Overview

I) R. Brown (1773-1858): Observation of random motion in pollen samples
IT) L. Bachelier (1870-1946): First attempt to model stocks movements

[IT) A. Einstein (1905): First model of the brownian motion

[V) Mandelbrot and Pareto Distributions

. . . The Theory of Speculation
V) K. Ito and R. Stratonovich (~1950-60): Calculus with random variables Louis Bachelier (1870-1946)

VI) Black, Merton, Scholes: Stochastic model for options (~1973)
1997 Nobel Prize in Economics

g
=2 55

i

Now: By
“Econophysics”: tries to apply physics methods to Finance and Economy:

- Stochastic Processes

- Statistical Physics

- Agent-based Models

- Statistical Analysis

- Feynman's Path Integrals

R. Black, M. Scholes

B. Mandelbrot (1924-2010)

Student’s Seminar Luca Doria, TRIUMF Date , 2017



PART 1:

PHYSICS MODELS
and
PROBABILITY DISTRIBUTIONS:
EXPONENTIALS vs POWER LAWS
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R TRIUMF

xr = rcosb

y =rsinb

dx/df = —rsin6
dy/df = rcos 6
dx/df Y

—_Zn
dy/do x ]

Probability Distributions
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R TRIUMF Probability Distributions

Distribution of the darts: g(?") — f(xv y) — h([l?)k(y)

0
Hypothesis: Distribution independent from the angle (neglect e.g. gravity) —g =0

00
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QTRIUMF Probability Distributions

Distribution of the darts: g(?") — f(xv y) — h([l?)k(y)
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R TRIUMF

Probability Distributions

Distribution of the darts: g(?") — f(xv y) — h([l?)k(y)

0
Hypothesis: Distribution independent from the angle (neglect e.g. gravity) —g =0

00

89_8f(9x+8f8y_

Oh Ox Ok Oy
90 0200 Tayon 0 = k) =

0

1 Ohl 1 0k1 5 5
o - 72 X(z"+y”)
M@)oz k@) oyy - @y oce T

Substituting [1] (see prev. slide)

— X — X
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R TRIUMF

Probability Distributions

Distribution of the darts: g(?") — f(xv y) — h([l?)k(y)

0
Hypothesis: Distribution independent from the angle (neglect e.g. gravity) —g =0

00

dg Ofoxr 0Ofdy

Oh Ox Ok Oy
00 " oro0 Tayon 0 T kg g )G 50 =0

1 Oh1l 1 Ok1 .
o - 72 X(z"+y”)
M@)oz k@) oyy - @y oce T

Substituting [1] (see prev. slide)

— X — X

QUESTION: Is X positive or negative?
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@Tmump The Gaussian Distribution

Why Gaussians appear so often?

The Central Limit Theorem (Lindenberg, Levy ~1920)

Consider N independent random variables Xi (i=1..N) drawn from the same probability
distribution f such that :

X1+ Xo+ .+ Xy

Sn N — N — oo “law of large numbers”
Var(f) = o* 0<0?< o0
| X
. 2
Then: W(N;Xi—u>—>/\f(0,0) N — 00
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@Tmump The Gaussian as a limit distribution

N

e e _ K Nk _
Binomial Distribution P(k,N) = N B (1=p)"7" — N(Np, Np(l p))
- e
Na-p) oo e
Ake—k
Poisson Distribution  P(k) = o N, V)
A= 00
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R TRIUMF Brownian Motion

R. Brown (1773-1858): Observation of random motion
in pollen samples N

0F

1of
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R TRIUMF Brownian Motion

R. Brown (1773-1858): Observation of random motion
in pollen samples N

0F

A. Einstein (1905): First quantitative explanation of
the brownian motion

2
Ou_pldu_oy  p_ BT 1

R — \/ 2 — +/
ot 0x? N 67mkr < Az®>=v2Dt

Opportunity to estimate Na (check of the atomic hypothesis) !

“... It is hoped that some enquirer may succeed shortly in solving the problem
suggested here, which is so important in connection with the theory of heat.”
Berne, May 1905 (Received, 11 May 1905).
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R TRIUMF A Simple Model of the Brownian Motion

X < Azx >=0
) Var(Az) =< (Az)2 > —(< Az >)2 = %h? - %(-h)? 2
5  th?
t—= NAt = Np2 = 22
At

o’t = h = oV At

P((N +1)At,ih) = L P(NAL (i — 1)h) + S P(NAL, (i + 1)h)

— 2 52

t P(NAt,ih) + %P(NAt, ih)At  P((N + 1)At,ih) + %%P(NAL ih)
8P 0‘2 82P 1 . (z—zqg)?
— i P(,’L‘, t) — e 20’2(t—s)
ot 2 Ox2 2m(t — s)
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R TRIUMF The Propagation of Heat

|
Fourier’s Law: qg=—kVu A’T

Thermodynamics: () = CpPU 0

— Ax—

If a change in internal energy in a material is given only by the heat flux across the boundaries in a space/time region:

x—0x <E&<ax+dx t—0t <71 <t+ot

t+0t au au rz+ox t+0t 82
k/t [856( +0x,T) — ax(azéaﬁT] T—k/ /t ~5dEdT

—5t ot 85
o [Tt o0 —ugt—onlds = [ [ Staar
r—ox
2
By Energy Conservation: Z:J — c];p g;; =0
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@ TRIUMF Solutions of the Heat Equation

General Solution u(x,t)
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Are Gaussians really everywhere?
Are we really living in a Gaussian World?
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R TRIUMF WHY caring about non-gaussian distributions?

I) Random processes often encountered in physics
(Probability/Distributions).

ITT) Not all random processes have gaussian tails |
IV) “Fat” tails are not always easy to explain: associated with

"complex” systems, phase transitions, critical states, scale
invariance, ...

In general: something interesting for a physicist |

V)  More formal methods needed to treat stochastic
processes.
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QR TRIUMF An example from Experimental Physics

T

Used e.g. in: -
- Detector Physics and Simulation 10t
- Medical Physics -
Two physics mechanisms: 10° i

- EM Force
- Strong Force

T IIIIII|

102

T IIIIIII

10

Charged Particle

Material
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Q@ TRIUMF

Distribution of the magnitude of earthquakes

125 -120 115 110 105 -100

Other Examples

Connectivity in real networks

e . 10 o
/ . \ K.Christensen et al. (2002) Bell Curve Power Law Distribution
‘ | : 5 10 " ol
@ D e, - 0N\ - .
e %‘ 103 g ™\ ..E Ic Very many nodes
o~ Al b - . o Most nodes have -« [ with oaly a few links
I i g 10° = ,".': the same sumber of links £ || 4
s | / = g = s ‘ e
E 1 g 2 L} é . N
2 10 *.7 o i A few hubs with
- v = E\ . = "' . :"::f:‘::’ aodes E ‘. : large mamber of links
. ﬁ 10 'f 3 ‘ E o'. A
2 . 5 ® $ 5 2
10 = o\ Elte’{
3 \ 2 A 1 ..
20 20 1072 4 *x wn ., Z - v . ; . N
o 1 2 3 4 5 6 7 8 Number of links (k) Number of links (k)
Magnitude m = log, (S)
14 ;ipf‘s Iavy
T . e Gemn
Zipf’s Law in real = Pink Noi
languages 12} n oise
or Flicker Noise
=
g 8l o
@ o
3 &
& ° :
< 6 > Thermal and Shot Noise
H @
K]
4t =z
Corner
2r Frequency
0 [ 1 | L | |
0 2 4 6 8 10 12 14
log(rank) Frequency (Hz)
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@frmuwu: The Lorentzian Distribution

1.50 T T T T T T . S
1 _@-w? 3 u &
GaUSS]an: P(x) - 5 (& 202 é 0.40 L } 5
V £4TTO —.Cf ] !
;_;Z( .30 E
Lorentzian: P(z)= 1 v u oz0 | Gaussian
' m(z—p)?+a? . |
§ o1 Lorentzian ]
0.00

For the Lorentz distribution, in contrast to the Gaussian:
- The moments are not defined (infinite variance!).
- The Central Limit Theorem does not hold.
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@Tmump Power Laws are “Scale Free”
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@Tmump Power Laws are “Scale Free”

Scale free distribution: p(az) = f(a)p(x)

Power-law distributions: p(z) o< £~
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Power-law distributions: p(z) o< £~

Power-laws are scale-free: p(ax) = (ax)”"“ =a “z™% =a “p(x)

Interesting connections with:
fractals, phase transitions, criticality...
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@Tmump Power Laws are “Scale Free”

Scale free distribution: p(az) = f(a)p(x)

Power-law distributions: p(z) o< £~

Power-laws are scale-free: p(ax) = (ax)”"“ =a “z™% =a “p(x)

Interesting connections with:
fractals, phase transitions, criticality...

"‘ Ry = 2 \ " ‘!.!"

Black swans do exist .... !

Taleb, Nassim Nicholas (2010). The Black Swan: the impact of the highly improbable
Student’s Seminar Luca Doria, TRIUMF Date , 2017 19




R TRIUMF Beyond the CL Theorem: Stable Distributions

Definition: x is a stable random variable if for every positive A,B exist C,D so that:

(Azy +bxe) =~ Cx + D
where x1 and x2 are copies of x.

Theorem: The sum of independent, identically distributed random variables (iid) converge to a stable
distribution as the number of iid variables tends to infinity.

Stable (Levy) Distributions Sa(v, 5, 1)
. N Lk ]
ipk — k" |1 = @ﬁm tan(m/2a) a#1 0<a<2 Stability Index
Ing(k) = ) v>0 Scale Factor

k 1 .
ipk — v|k| [1 + iﬂm@/w) tan(|k|) a=1 peER Shift Factor
. g€ (—1,1)  Asymmetry Factor

a =2 Gaussian

o= 1; 5 =0 Lorentz
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QR TRIUMF

Levy Distributions

lim P(X > x) >~

T—r 00

s At=1

o At=10

o At=100
v At=1000

I'(1+ «)sin(ra/2 1
( +7T’:)C‘1+((f 2) ~ z[1+a Levy Distributions have “fat tails”

Date , 2017
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Stocks and the Stock Market:
-Statistical Properties
-Stochastic Calculus
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R TRIUMF The Stock Market

Many financial products are traded on the Stock Market.
We will take a look at:

- Stocks
- Derivates, in particular Options.

Questions:

- What are the statistical properties of the Stock Market?

- Are these properties universal?

- If yes, what is the cause?

- What are the best mathematical tools to tackle these problems?

We will briefly describe two methods:

1) Statistical Analysis / Signal Analysis
2) Stochastic Calculus
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@TRIUMF Stocks

Goldman-Sachs Group, Inc, NYSE

250
200
150

Jan,1 2005

100

2007

0 200 400 600 800 1000 1200 1400 1600 1800

How to analyze/model these data?
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QR TRIUMF The Distribution of Returns

10? - Goldman-Sachs Group, Inc, NYSE Entries 1293
- Mean -0.06286

= RMS 3.963

: Skewness 0.01797
Kurtosis 2.258

i %2 I ndf 6.006 / 7

10 — Constant 68+4.0
= Mean -0.2495 +0.3315

B sigma 2.895 +0.858

-10 -5 0 5 10 15 20
dS (Jan 1, 2006 - Jan 31, 2011) DAILY

Not Gaussian!

Student’s Seminar Luca Doria, TRIUMF Date , 2017 25



@TRIUMF Observables and Methods

Pi(t)
_ R —(Ry)

o)

T (ta At)

oilt, At) = \/(R?) — (Ry)?

Stochastic Calculus (Ito, Stratonovich)
t

t
05 = F(S.1)dt + G(S.6)dW —  S(t) =S, + / F(S.7)dr + | G(S.t)dW,

t t
2 . 0 0
dS = o“dW Brownian Process

dS = pSdt + oSdW Geometric Process

dS = AN — S)dt + 0 SdW “Return to the Mean” Process

dS = —ASdt + odW Ornstein-Uhlenbeck Process (fluctuation around zero)
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@TRIUMF Just for fun: lto Calculus

An example of Ito’s integration of a random variable W:

T
1
/Wtth (W —W2) = (T~ to)
to

The most important formula: Ito’s Formula for the differential:

If a random process is described by: dS = F(S,t)dt + G(S,t)dW

then a function Y of S and the time t has the following differential:

1
dY; = {0,Y + FOgY + §G28§Y}dt + GO, Y dW,

Student’s Seminar Luca Doria, TRIUMF Date, 2017 27



@TRIUMF Cumulative Distribution

0.1 |
' The distribution is not gaussian.

Close to a -3 power law.
0.01 | !

- Gaussian distribution
+ Empirical distribution

CDF

0.001}
f .
0.0001 0.001 0.01 0.1 1 10
Normalised returns
R; — (R
0;

At small timescales (~min) the returns’ distribution is not gaussian.
It has fat and asymmetric tails (2.8 and 3 for example).

The “inverse cubic law” is observed in many markets: what is its origin?
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@,TRlUMF Autocorrelation

Autocorrelation of the returns:
p(T) = (r-(t + T)r-(1))

—— Log-returns

0.8

0.6

0.4

Autocorrelation

O AP AV W v g

i 50 100 150 200
a Delay time / days
Very fast decay observed d Y
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R TRIUMF Volatility

Volatility: Standard deviation of the logarithmic returns:

N 2 2
Si 1 Si 1
V = Z (ln S-1> N (ln Sil) N1

1

Volatility Clustering: | | ‘
Contrary to the returns, volatility displays more Al EEEEEEEEEEE NN L
“memory”: small volatilities tend to be followed ] T | .

by small volatilities and large volatilities by large
volatilities.
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R TRIUMF The “Stylized Facts”

Extensive data analysis on the distributors of stock markets can be briefly summarized in the
following “stylized facts”:

1) The returns’ distribution exhibits fat and slightly asymmetric tails at short time scales (-min). It
becomes slowly a gaussian at large (>day, month) time scales. This signals a non trivial time structure
for the underlaying stochastic process.

2) No linear autocorrelation: the autocorrelation decays very quickly to zero on short (~min) time
scales. This supports the “efficient market” hypothesis.

3) Volatility clustering. The volatility has more “memory” (or correlation) that the returns and therefore

tends to cluster in time. Similar phenomena are observed in the velocity distributions of turbulent
flows.

Many other observables: Power spectral density, Fourier analysis, ...
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Derivatives:
-Options
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The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel
1997 was awarded jointly to Robert C. Merton and Myron S. Scholes "for a new
method to determine the value of derivatives "

Robert C. Merton Myron S. Scholes

Black, F. och M. Scholes, 1973, "The Pricing of Options and Corporate Liabilities", Journal of Political Economy, Vol. 81, pp. 637-654.
Black, F., 1989, "How We came Up with the Option Formula", The Journal of Portfolio Management, Vol. 15, pp. 4-8
Hull, J.C., 1997, Options, Futures and Other Derivates, 3rd edition, Prentice Hall

Merton, R.C., 1973, "Theory of Rational Option Pricing", Bell Journal of Economics and Management Science, Vol. 4, pp. 141-183.
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Definition:

In finance, an option is a derivate financial instrument that establishes a contract between two parties concerning the
buying or selling

of an asset at a reference price.

"Put” ("Call”) European Options:

The owner of the option has the right (but no obligation) o sell (buy) a certain good at a certain time for a certain price.
Other jargon terms:

Underlying (Asset): A stock for a simple option (can be any good).

Strike Price: Price for buying or selling the underlying.

Expiration Date: When the option might be used.

American Options: The option can be used at any time before expiration.

Exotic Options: All other kind of options (e.g. asian options, ...).
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@,TRlUMF The Black-Scholes Model

Hypoteses:

I) The short-term interest rate r is known and constant and it is possible to ask for money at that
rate.

IT) The strike price X is known and constant
ITI) The stock price S follows a geometric stochastic process:
dS = puSdt + o SdW
Where W is a Wiener process, g is the expected return, o the volatility.
IV) The stock does not pay dividends
V) No transaction costs and no limits to the short-selling

VI) There is no arbitrage
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QTRIUMF Derivation of the BS Equation

]_ variation
Build a portfolio made by stocks and options: V' = S — ZC = dV =dS — ch
Oc 1 0%c Oc
Apply Ito’s Lemma to c(t,S): dc = [a o 592 ] dt + %wa
1 [0c 1 0%c
Substituting: dV = —— s _02 S2-_ | dt
A lat 052
1 [0c 1 d?c 1
Equivalence to a risk-free portfolio: ~ dV = N [ c + —0252 2] dt = <S — ZC) rdt
(no arbitrage!). ot oS
oc 1 , ,0% dc
After some algebra: — + —0o S —=1rc—rS—
ot 2 028 0S5

Student’s Seminar Luca Doria, TRIUMF Date , 2017 36



A Physics Analogy

Q@ TRIUMF

Example: dispersion of a pollutant in a river:

8(: 1 0°c oc

25 2 =rc—1rS—

815 928 oS
Diffusion Convection Reaction

Dispersion: diffusion Term
Water Flow: Convection Term
Absorption (e.g. by sand): Reaction Term

But at the end....the BS Equation IS the heat equation!
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R TRIUMF Solutions

Solution: ¢(S,t) = SN(dy) — Xe "IN (dy)

In = 1/262W(T —t
with: d; = nX—I—(r—l— /20°)( )
oV —t

dgzdl—g\/T—t

d.
| 1,2
N (d;) :/ me_iw dx
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R TRIUMF Another technique: Montecarlo Simulations

The BS equation has an analytic solution.
Analytic solutions are possible in other “simple” cases, e.g.:

What about more complicated cases, like e.g:
Changing volatility
Stochastic processes different from the geometric one

A possibility is to use Montecarlo simulations.

|ldea: Simulate N “paths” for the stock price and average at the end
the reached price.
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QR TRIUMF A MonteCarlo Solution: “The Greeks”

T
b
9)

. uE Oc

T oT
B B NS I e am LEEE e mm A RN Emm

a 5 b2 &
I
&
e
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QR TRIUMF A MonteCarlo Solution: “The Greeks”

N=100
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QR TRIUMF A MonteCarlo Solution: “The Greeks”

N=1000

hbdd bbb febbdd hbhdd hibhdd fbhdd b

"'l'Y"]""I’"f'l""""‘"-‘l
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QTRIUMF Summary and Outlook

» Non-gaussianity (or “fat tails”) are relevant in the description of many
e natural phenomena.

» Stock markets display highly non trivial statistical properties.

» Analysis possible today: large data and computing power.

» Not only stocks: there are many financial instruments which can be analyzed with
mathematical techniques common in physics. Derivatives, Term structure of the

interest rates, bonds, exotic options, swaps, ......

 Tools: statistics, signal analysis, path (Wiener) integrals, Montecarlo simulations,
 PDEs, ...
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TRIUMF

Canada’s national laboratory
for particle and nuclear physics
and accelerator-based science

Thank you!
Merci!

TRIUMF: Alberta | British Columbia | Calgary |
Carleton | Guelph | Manitoba | McGill | McMaster |
Montréal | Northern British Columbia | Queen’s |

Regina | Saint Mary’s | Simon Fraser | Toronto | FOIIOW v at TR' UM FLab

Victoria | Western | Winnipeg | York
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