Introduction to Radiochemistry

Lecture 3

Luca Doria SFU & TRIUMF

Fall 2014

Notation, Constants and Useful Relations

The Nucleus

Element's chemistry decided by Z (= # of electrons for neutral atoms)

Example:

- Oxygen: ¹⁶O ; Z=8; N=8 ; A=16
- Net nuclear charge is +8
- 8 extranuclear electrons in the neutral atom of oxygen

Nomenclature (I)

Isotopes :

Same Z, but different N Example: ⁴⁰Ca, ⁴²Ca, ⁴⁴Ca "Isotope" is often used instead of "nuclide" Same Z implies same chemistry Different N implies different stability properties: - Some of them might be radioactive

- Key to radiochemical analysis

Isobares:

Same A Example : ⁴²Ca, ⁴²Ti, ⁴²Cr

Isotones:

```
Same N
Example: <sup>40</sup>Ca, <sup>42</sup>Ti, <sup>44</sup>Cr
```

Nomenclature (II)

Isomers

Nuclei can be found in excited states. This can happen after a collision with another particle or after a radioactive decay. Z and A remain the same.

•
$234m$
Pa* \rightarrow 234g Pa + γ

Isodiaphors: Same neutron excess: Z-N

Classification of Nuclides

- Stable nuclei: 264; Example : ¹⁶O
- Primary natural radionuclides: 26; very long halflives; Example: ²³⁸U with $t_{1/2} = 4.47 \times 10^9$ y
- Secondary natural radionuclides: 38; Example: ²²⁶Ra $t_{1/2}$ = 1600 y decay of ²³⁸U
- Induced natural radionuclides: 10; cosmic rays; ³H t_{1/2} = 12.3 y; ¹⁴N(n,t)¹²C
- Artificial radionuclides: 2-4000, ⁶⁰Co, ¹³⁷Cs...

Basic "block" of a Nuclear Chart

Ζ

isodiaphors: same neutron excess, N - Z

LUCA DORIA, INTRODUCTION TO RADIOCHEMISTRY (SFU, FALL 2014)

Ν

The Nuclear Chart

Mass units

- Universal mass unit: $1 \text{ u} = 1.6605 \times 10^{-27} \text{ kg}$; defined as 1/12 of the mass of the ¹²C atom, which is also defined to be exactly 12 u.
- The absolute mass of a ¹²C atom is obtained 12/N_A = 12/6.022 137 x 10²³ = 1.992 648 x 10⁻²³ kg <u>This is the nucleus + 6 extranuclear electrons</u>
- Atomic masses are expressed in units of u relative to the ¹²C standard.
- 1u = 931.5 MeV

Mass of a nucleus

m_e = 0.000594u = 9.1094x10⁻³¹kg Mass of a nucleus = atomic mass - sum of electron masses

Example: Mass of ${}^{12}C = 1.992\ 648\ x\ 10^{-26}\ Kg\ -\ 6x\ 9.1094x10^{-31}\ kg = 1.992101x10-26\ kg$

In the last calculation, the binding energy of the electrons is not included since it is insignificant wrt the other numbers.

Atomic Mass (Weight) I

Consider an element with multiple isotopes: Isotope #1: n1 atoms Isotope #2: n2 atoms ...etc.

The **atomic fraction** is defined as:

$$x_1 = \frac{n_1}{\sum n_i}; x_2 = \frac{n_2}{\sum n_i}; \dots$$

The isotopic ratio is: $\frac{x_1}{x_2} = \frac{n_1}{n_2}$

The **atomic mass** (weight) of an element is:

$$M = x_1 M_1 + x_2 M_2 + \dots = \sum x_i M_i$$

Atomic Mass (Weight) II

- $m_n = 1.6749 \times 10^{-27} \text{ kg} = 1.008665 \text{ u}$
- Mass of the hydrogen atom 1.007 825 u
- The atomic mass of a nuclide should be close to the number of nucleons, i.e the mass number A.
- Cl 35.453 u; Cu 63.54 u

Example: Atomic mass of ^{nat}Cl

- ^{nat}Cl: 2 isotopes
- ³⁵Cl 75.77% 34.9689 u
- ³⁷Cl 24.23% 35.453 u

Average atomic mass of Cl is:
 0.7577 x 34.9689 u + 0.2423 x 35.453 u = 36.9659 u

Units of Energy

• Mass and energy are interchangeable:

$$E = mc^2$$

where energy usually expressed in MeV (*)

- 1 eV = $1.602 \times 10^{-19} \text{ J} = 1.60219 \times 10^{-12} \text{ erg}$
- 1 MeV = $1.602 \times 10^{-13} \text{ J} = 1.60219 \times 10^{-6} \text{ erg}$
- 1 u = 931.5 MeV/ c^2

(*) 1eV is the energy of a (unit-charge) electron accelerated by a 1V potential.

Reaction's Notation

Short notation for describing a reaction (due to Walther Bothe).

Example: the reaction:

²⁷Al + ⁴He ---> ³⁰P + n

is rewritten as:

²⁷Al(⁴He,n)³⁰P

<u>First element</u>: the target <u>Parenthesis</u>: (incident particle,lightest product(s)) <u>Last element</u>: heavier product

Binding Energy

The **binding energy** E_b of a nucleus is the amount of energy needed for removing all the nucleons from it. It is calculated as the difference between the sum of the masses of the constituent nucleons and the mass of the nucleus:

$$E_b(Z,N) = {Zm_p + Nm_n - M(Z,N)}c^2$$

Q-value

The **Q-value** of a nuclear reaction is the amount of energy released or absorbed by the reaction. Q is positive if the reaction produces energy and negative if requires energy to happen.

Example:
$${}^{14}N + {}^{4}He \longrightarrow {}^{17}O + p + Q$$
 (Q=-1.19)

DeBroglie Wavelenght and birth of Quantum Mechanics

L.DeBroglie (1924): Wave-particle duality.

Every particle (not only waves!) with momentum p has a wavelength:

$$\lambda = \frac{h}{p}$$

E. Schroedinger (1925): First equation describing the new "matter waves"

$$i\hbar\frac{\partial}{\partial t}\Psi = H\Psi$$

h is the **Planck constant** (h=6.62606957 \times 10⁻³⁴ m²kg/s)

What is the wavelength associated to a level transition?

$$\lambda = \frac{h}{p} = \frac{2\pi\hbar c}{pc} \longrightarrow \frac{2\pi\hbar c}{E}$$

- The limit is ultra-relativistic (v^c c) or (equivalently) we assumed m=0.
- $\hbar=h/2\pi$ (read: h "bar")

 E_2

hv

Electromagnetic Spectrum

Electric Potential

Electrostatic Potential between two particles with a and b elementary charges separated by a distance R:

$$V = \frac{1}{4\pi\epsilon_0} \frac{(ae)(be)}{R}$$

Introducing the fine structure constant: (

$$\alpha = \frac{1}{4\pi\epsilon_0} \frac{e^2}{\hbar c} \approx \frac{1}{137}$$

2

We can rewrite the potential (in MeV) as:

$$V = (\alpha \hbar c) \frac{ab}{R} = 1.44 [\text{MeV} \cdot \text{fm}] \frac{ab}{R[\text{fm}]}$$

- Building Blocks of Matter
- Definitions:

Isotopes, Isotones, Isobars Mass, Energy, Units

- Organization of Nuclides in the nuclear chart
- Binding Energy and Q-values.
- DeBroglie wavelenght and other relations useful in nuclear science calculations.