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The Deuteron
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Introduction

- The Deuteron is the “Hydrogen Atom” of nuclear physics.


!
- As the study of the spectroscopic series permitted advancements in


  atomic physics, the study of the Deuteron permitted the understanding


  of many nuclear force properties.


!
- It is the simplest nucleon-nucleon bound state (pn).


!
- pp and nn are NOT bound.


!
- Deuterium does not have bound excited states.
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1

2
~r

Its binding energy can be measured by mass spectroscopy, as we have


explained in Lecture 2. But you can also measure its binding energy


by bringing a p and a n together to form a d, then measure


the energy of the emitted photon 

n+ p ! d+ �, E� = E
binding

� E
recoil

The binding energy can be measured also by the opposite reaction, by doing photodissociation 

� + d ! n+ p

The smallest photon energy required to break the deuteron is 2.22 MeV and this 
corresponds to the BE.


For most nuclei, the typical case is that BE/A ~ 8 MeV.


The deuteron is a very weakly bound nucleus since for it we have BE/A=1.1 MeV.  
The deuteron also has a magnetic moment, and a nonzero quadruple moment: 



µ = 0.8574 µN

Q = 0.28570 fm2

 This means the deuteron is not a pure S-wave state 

Basic Properties
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Now we want to theoretically solve the deuteron as a two-body problem of particles 
interacting with a potential in a non relativistic formalism.


In this course, we will completely neglect spin degrees of freedom, which are however 
important for a full treatment of nuclei.


The hamiltonian (in this case equivalent to the total energy) reads:

H =
p21
2m1

+
p22
2m2

+ V (~r1 � ~r2)

Transforming from particle coordinates to relative and centre of mass coordinates one 
can simplify the problem to a one-body problem


(we now take the masses                       )m1 = m2 = m

(
~r = ~r1 � ~r2
~RCM = ~r1+~r2

2

and

(
~p = ~p1 � ~p2
~PCM = ~p1 + ~p2

One obtains: H =
P

2

CM

2M
+

p
2

2µ
+ V (~r) = TCM +Hrel

where M = 2m, µ =
m

2
Hamiltonian depending only 
on the relative coordinates

Solution of the Bound State

(            )/2
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Solution of the Bound State
Since we are interested only in the intrinsic dynamics and we neglect the motion of the 
deuteron as a whole with kinetic energy


The Schrödinger equation we want to solve is then:

TCM


p2

2µ
+ V (~r)

�
 (~r) = E  (~r)

Which is clearly a one-body problem in a three-dimensional space.


Since the problem has spherical symmetry, it is convenient to go to spherical coordinates 
and write the momentum squared operator p2 in these coordinates:


� ~2
2µ

✓
1

r2
d

dr
r2

d

dr
� L2

r2

◆
+ V (~r)

�
 (r, ✓') = E  (r, ✓')

This is the Schrödinger equation we have to solve.
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At this point, we need to choose the potential operator V. We know already that the 


nuclear force is very complex, therefore we start with a simplified square well 
potential.

Solution of the Bound State

In this way the potential depends only on             so it is purely central, orbital angular 
momentum is a good q.n. and we will have a zero quadrupole moment.  

r = |~r |

V (r) =

(
�V0 for r  R

0 for r > R

-V0

R

E(MeV)

r

Deuteron binding energy
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Write the wave function on a radial x spherical harmonics basis:

Now if you introduce the modified wave function


then the laplacian in the Schrödinger equation becomes simpler:

� ~2
2µ

d2u(r)

dr2
+ V (r)u(r) = Eu(r)

Remember that E is negative for bound states.

For r < R 

u(r) = A sin(k1r) +B cos(k1r)

k1 =
p
(2µ(E + V0)/~2)with

V = �V0

The solution is:

� ~2
2µ

du2

dr2
� V0u = Eu

du2

dr2
= �2µ(E + V0)

~2 u = �k21u

 and therefore:

 (r, ✓,') =
X

`

c` R`(r) Y`,m(✓,')

The ground states has l=0 :  (r, ✓,') / R`=0(r) = R(r)

R(r) = u(r)/r

Solution of the Bound State

Since we want r(0)=0, then B=0 
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Solution of the Bound State
For r > R V = 0

du2

dr2
= �2µE

~2 u = k22u

This is the free Schroedinger equation with general solution:

 with k2 =

r
�2µE

~2

u(r) = Ce�k2r +De+k2r

 To keep this finite at infinite distance we have to require that D=0

 Now applying the continuity condition for u and its derivative in r=R we get 

k1A cos(k1R) = �k2Ce�k2R

k1 cot(k1R) = �k2

this gives a relation between V0 , E and R

A sin(k1R) = �Ce�k2R
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From electron scattering we know R~2.1 fm.


Experimentally we also know that E=-2.2 MeV


So we solve for V0 :


!
It turns out that     V0 = 35 MeV

Solution of the Bound State

-V0

R

E(MeV)
k1 cot(k1R) = �k2

If the NN force were slightly less attractive there would be no bound state, so no deuteron.


The NN force is attractive enough, because the formation of the deuteron is the first step in 
the proton-proton fusion cycle in our Sun and the first step in the formation of stable 
matter in the Universe.

2.2MeV
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Deuteron Wavefunction
The weak binding of the deuteron translates into the wave function just barely able to 
turn over to match the exponential free solution outside the well.


(If the potential were more attractive, the w.f. would turn over earlier).

The deuteron ground state is so close to the top of the well that its wave function leaks 


way out (extended nucleus). 

Barely bends over
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A more realistic description

V (r) = VC(r) + VT (r)S12

Let’s consider a more realistic potential like:

with central and tensorial parts. It turns out that the Schroedinger equation


can be reduced to two second order coupled differential equations:  

d2

dr2
!(r) = �2µ

~2

✓
E � VC � 2VT � 6~2

2µr2

◆
!(r) +

2µ

~2 VT

p
8u(r)

d2

dr2
u(r) = �2µ

~2 (E � VC)u(r) +�2µ

~2 VT

p
8!(r)

The two functions u(r) and w(r) are connected to s- and d-states probabilities:
S-state probability D-state probability

|a|2 =

Z 1

0
|u(r)|2dr |b|2 =

Z 1

0
|!(r)|2dr
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A more realistic description
The previous equations are of the Rarita-
Schwinger type and can be solved only


numerically. The commonly used algorithm 
is due to B.V.Numerov (1891-1941).


!
From the numerical solution with the CD-
Bonn-potential (includes spin-orbit) one 
obtains:
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Summary

•How to reduce a 2-body to a 1-body problem.


!
•An analytical solution of the deuteron:


    spherical square-well potential : one-body problem in 1-dimension


!

•Realistic description of the deuteron:


    - one-body problem in 3-dimensions  
    - angular part done analytically 
    - radial part is found numerically as the solution of a set  of two coupled second     


      order differential equations.


