
Introduction to Radiochemistry


 

Lecture 9


!

Luca Doria 


SFU & TRIUMF

Fall 2014 



Luca Doria, Introduction to Radiochemistry (SFU, Fall 2014)  2

Kinetics of the 


Radioactive Decays



Luca Doria, Introduction to Radiochemistry (SFU, Fall 2014)  

Introduction

- Single Radioactive Decay


!
- Decay Chains


!
- General Problem
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Radioactive Decay of a Nuclide
-The radioactive decay is a random process


!
- The probability of decay in a certain time interval dt is history-independent.


!
- When observing a sample, it is not possible to predict which nucleus will decay 
but it is possible to predict global properties of the sample.


!
- The rate is the number of disintegrations in a given time and is commonly          
called activity A:


!
!
- The “-“ sign takes into account the decrease of radioactive nuclei.


!
- The unit of measure of A is the Becquerel (Bq). 1Bq = 1 disintegration/second.


!

A = �dN

dt
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Radioactive Decay of a Nuclide
- The activity is directly proportional to the number of nuclei we have:


!
!
!
!
Solving the above first order differential equation considering:


 - A positive proportionality constant   (the decay constant)


 - The boundary condition 


!
we obtain:


!
!
!
The constant must have the dimension of [1/time] and therefore we can


set              with    the average lifetime.  

A = �dN

dt
= �N

N(t) = N0e
��t

�
N(t = 0) = N0

� = 1/⌧ ⌧
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Half-Life

- It is useful to know after what time the number N0 of radioactive nuclides 
will have been reduced by half. 



  We can use the last equation and calculate:


!
!
!
obtaining:


!
!
!
!
or, introducing the average lifetime:


!

N0

2
= N0e

��t1/2

ln
1

2
= ��t1/2 ) t1/2 =

ln 2

�

t1/2 = ⌧ ln 2
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Branching Decays
- A nucleus can decay with two (or more) different modes with different


  probabilities (branching ratios).


!
- Let’s consider the case of two possible decay modes of a nucleus A


  which can decay either in B or C:


!
!
!
!
!
!
!
- Branching decays are frequently found in odd-odd nuclei or heavy nuclei.


   It is common to have alpha-beta branchings.


!

A

B C

�B �C
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Branching Decays

-  The two branches are completely independent. 


   In this case, the decay constants are called partial decay constants.


!
- From the independence, the total activity Atot is given by the sum of the 


  partial activities:


!
!
!
!
!
!
- The total decay constant is the sum of the partial ones.

A
tot

=
dN

A

dt
= �

B

N
A

+ �
C

N
A

= (�
B

+ �
C

)N
A

= N
A

�
tot



Luca Doria, Introduction to Radiochemistry (SFU, Fall 2014)  9

Decay Chains

- A parent radioactive nuclide can decay in another unstable daughter


!
- What can arise a are decay chains which stop only when a stable nuclide


   is reached.


!
- The situation is as follows:


!
!
!
!
!
- In a very general situation we should take into account also


   branching decays.

A �! B �! C �! ...
�A �B
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Two-Step Radioactive Chain
- Let’s start with the simplest case: a parent nuclide A with a single unstable 
daughter B and no branching decays:


!
!
!
with C a stable nucleus. We would like to find an expression for the activity of C.


!
- The parent A will decay with the known formula:


!
        (1)


!
!
- The daughter B will be FORMED with a rate proportional to the amount of A:


!
       (2)


!
(note the “+” sign now).

A �! B �! C
�B�A

dNB

dt
= �ANA

dNA

dt
= ��ANA
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Two-Step Radioactive Chain
- While B is formed from the A decay, it is still radioactive and therefore 
decays with:


!
!

           (3)


!
- The total change in the activity of B is the sum of its formation and decay:


!
!

             (4)


!
-  From Eq. (1) we can derive: 


!
- Substituting in Eq.(4) and rearranging the terms:

dNB

dt
= ��BNB

dNB

dt
= �ANA � �BNB

NA = N0
Ae

��At

dNB

dt
+ �BNB � �AN

0
Ae

��At = 0
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Two-Step Radioactive Chain
- The solution of the last equation is:


!
!
!
!
!
where we used also the boundary condition                    .


!
- The last equation has two relevant limiting cases:


!
 1) Transient Equilibrium


!
 2) Secular Equilibrium

NB(t) =
�A

�B � �A
N0

A(e
��At � e��Bt) +N0

Be
��Bt

NB(0) = N0
B
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Transient Equilibrium
- This situation arises when the lifetime of the parent is quite longer


  than the lifetime of the daughter but still not long enough so that we


  can see its decays during the experiment.


 


  The corresponding exponentials           in the previous equations can be     


  neglected after t~some B lifetimes with respect to          .


  The equation reduces to:


!
!
!
!
!
!
- Given the proportionality between N and activity A, the same equation


  holds for the activities. 

NB

NA
=

�A

�B � �A

e��Bt

e��At
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Secular Equilibrium
- If the lifetime of the parent is so long that we basically do not detect


  its activity during an experiment, we are in the situation of secular equilibrium.


!
- Again, we can neglect the           terms.


!
- Moreover,                         and therefore the transient equilibrium equation


   derived before becomes:


!
!
!
!
- Since the last equation is an equality between activities, we have also:


!
!
!
- Conclusion: after some time, the activities of the parent and the daughter


   become equal (secular equilibrium).

e��Bt

�B � �A ⇡ �B

NB�B = NA�A

AA = AB



Luca Doria, Introduction to Radiochemistry (SFU, Fall 2014)  15

Transient/Secular Equilibria
Transient equilibrium: for long times,


the activities decay exponentially with


ratio of activities = A1/(A2-A1)

Secular equilibrium: for long times the


activity of the daughter is equal to the


activity of the parent.
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Multiple Radioactive Daughters
A �! B �! C �! ...�A �B

The case of multiple decays is more complicated but conceptually similar


to the 2-decay case. 


For example, the 3-decay case A—>B—>C gives for the activity of C:


!
!
!
!
and having already calculated the activity for B, we can substitute it obtaining:


!
!
!
!
!
The solution of the general case is given by the Bateman equation (see Notes).

dNC

dt
= �BNB � �CNC

dNC

dt
= ��CNC + �B


�A

�B � �A
N0

A(e
��At � e��Bt) +N0

Be
��Bt

�
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Measurement of Decay Times

- The range of decay times is very large: from ~10-18 to ~1022 years.


!
- This means that different techniques have to be adopted depending on the


   decay time.


!
- We will omit specific details of the detectors since we will treat them


   in a specific lecture later.


!
- We divide (roughly) the decay times in 4 categories:


!
 1) Long decay times (several years)


 2) Medium (from seconds to few years)


 3) Short (seconds to milliseconds)


 4) Very short (below the millisecond range)
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Long Decay Times
- In this case the activity stays about the same during the measurement period


   and therefore measuring the exponential decrease of A is not possible.


!
- Solution: measure the specific activity (SA) instead: 


!
   SA = disintegrations /sec /unit mass 


!
The number of radioactive atoms in the sample is: 


!
!
!
!
if we suppose an isotopically pure sample (otherwise we have to multiply also for 
the IS: the isotopic abundance). Recalling the definition of activity:

N =

m(g)

atomic mass

·NA

A = �dN

dt
=

ln 2

t1/2
N ) t1/2 =

ln 2 ·NA · IS
SA · atomic mass

Need to measure SA 
and sample’s mass.
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Long Decay Times

Measurement of the absolute activity (true number of disintegrations per second):


 


!
 1) Use of a calibrated standard for measuring detector’s efficiency.


 2) Measure the sample and divide the activity by the efficiency.


!
!
Warning: with this method, the thickness of sample and calibrated standard


must be comparable for avoiding self-absorption effects.


!
!
A way to avoid the use of calibrated standards is to use ~100% efficient


detectors with    coverage.4⇡
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Long Decay Times
In some cases a coincidence technique might be used. For many nuclides,


the beta decay is followed almost immediately by a gamma decay (—>why?).


There is no angular correlation between the electron/positron and the gamma.


!
If we place the sample between a gamma and a beta detectors we will 


measure the following counting rates R:


!
!
!
where        are the efficiencies of the detectors and R0 the true rate.


Using an appropriate electronics, we can measure the rate at which the


gamma and beta decays happen in coincidence. This rate is given by:


!
!
!
The true rate R0 is therefore given by:

R� = ✏�R0 R� = ✏�R0

✏�/�

R�� = ✏�✏�R0

R0 =
R�R�

R��
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Medium Decay Times
This is the case where we can record sufficient events and where the activity 
changes significantly during the experiment.


!
A direct fit to the activity as a function of time can be done. Actually it is 
easier to do a linear fit to the log(A) vs time data with the formula (just take 
the logarithm of the decay function):


!
!
The method can be also sensitive to two 


decaying species in the sample if their


decay times differ sufficiently.

lnA = lnA0 � �t
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Short Decay Times

Also in this case the direct fit method might work but the experimental


complications are bigger.


!
If we induce the reaction in a target, if the decay time is too short


the nuclide might decay within it.


!
There are methods devised for transporting the produced species


outside the target and then count the decays.


!
One method is to rely on the recoil the produced nuclei have: the recoil


can expel some of them from the target and eg. a stream of inert gas


will transport them to a counting station.
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Very Short Decay Times

There are various methods and variants. Here we discuss:


!
1) Delayed coincidences Method


!
2) Doppler Shift Method


!
3) Energy Width Method
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Delayed Coincidence Method

Detector 1

Detector 2

Var. Delay

Co
in

ci
de

nc
e 

U
ni

t

Scaler

The idea is to detect the formation event (ex. a 
beta decay) and the decay event (ex. a gamma 
decay). Starting with delay time =0, the delay is 
increased until a maximum is reached. After the 
maximum, the coincidences will decrease. From the 


slope of the  decrease, the lifetime can be 


derived.


Example:

24Ne !24m Na + ��

24mNa !24 Na + �
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Doppler Shift Method
The Doppler Shift effect (change in frequency due to the velocity of the


emitter) can be used to measure very short lifetimes.


!
If the unstable nucleus is produced with a certain velocity at a known


time.


!
One can detect gammas produced from the moving nuclei and from nuclei


stopped in a material, therefore obtaining the Doppler shift in energy.


!
From the Doppler shift we can infer the velocity. The relationship


between velocity and time in a medium is known experimentally 


therefore the time between formation and decay can be extracted.


!
The latter time is the average decay time from which the half-life


can be calculated.


!
!
!
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Energy Width Method
Recalling the Heisenberg uncertainty principle:


!
we see that energy and time cannot be measured with arbitrary accuracy


at the same time. The uncertainty on the energy E is called decay width    .


!
The decay width is related to the average lifetime of the state by:


!
!
!
!
Therefore measuring the energy spread of a state we can calculate


the average lifetime of it. The broader the energy peak, the shorter


the lifetime.

�E�t � ~

�

� =
~
⌧



Luca Doria, Introduction to Radiochemistry (SFU, Fall 2014)  27

Summary
1. Basic Decay Law


!
2. Branching Decays


!
3. Chain Decays:



 Two-step decay


  - Transient Equilibrium


  - Secular Equilibrium



 N-step decay 


4. Experimental Measurement of lifetimes



 - Long Lifetimes


 - Medium Lifetimes


 - Short Lifetimes


 - Very Short Lifetimes


