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General Concepts

Radioactivity and Radiation : 
With the term “Radiation” in physics it is intended a process in which energetic particles or waves travel in 
vacuum or in a medium. Radiation can be natural (cosmic rays, radioactive isotopes) or artificial (man-made 
isotopes, radiation produced by accelerators).
Radiation has a wide range of applications: medicine, materials science, biology, space engineering and 
many others. For a physicist, detecting radiation means looking at the smallest components of matter for 
trying to understand them.

Detectors: 
Radiation is mostly invisible and we need a technique to detect it. Radiation is evident from its effects on 
matter. For detecting it, we need radiation detectors. The general scheme of a detector is the following:

Radiation

Detector
Amplification Signal

Different radiation detectors are able to perform different measurements of physical quantities: energy, 
momentum, time, position, radiation identification. 
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Units

Common units used in radiation physics and radiation protection

Activity:                becquerel (Bq) = # of disintegrations /s
Absorbed dose:     gray (Gy) = 1 joule / kg = 6.24 x 1012 MeV / kg
Exposure:              roentgen (R) = C/kg of air (photon fluence in terms of created charge)
Equivalent Dose:  sievert (Sv): Gy*w (w = radiation weighting factor)

Radiation w
X and gamma rays 1
e,μ 1
Neutrons

  <10keV            5
          10-100keV           10
  >100keV-2MeV          20
             2-20MeV          10

                                                                   >20MeV             5
                                                      Protons >2MeV               5
                                                      Nuclear Fragments        20
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Radiation-Matter Interaction

Heavy Charged Particles : Most common case with wide range of applications.
                 Electromagnetic Interaction with atomic electrons.

Electrons :       Very light particles (not heavy wrt atomic electrons).

Photons :                              Massless. Connected with electrons.

Neutrons:       No EM interaction, heavy.

Neutrinos:       Interact only via weak interactions.
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Heavy Charged Particles (I)
Heavy Charged Particles : Protons, nuclei, charged hadrons, ..

The interaction of a heavy charge particle with a material consists mainly of its interaction with the atomic
electrons. “Heavy” means that that particle mass M is heavier than the atomic electrons mass me : M>me

We can make the following considerations about the interaction:

1) The energy loss per collision is small. 
     Let's consider an head-on collision for protons. The fractional energy loss will be:

2) The heavy particle is deflected very little, therefore it follows an almost straight path

3) The interaction is mostly electric and the Coulomb force has a long range. This means that the
     particle interacts with many electrons at the same time. The result is a nearly gradual and continuous 
     energy loss over time.

M

Mass = M
Kinetic Energy = T
Charge = Ze

T
T
=

4me M

Mme
2≈

4me

M
≈0.2%
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Heavy Charged Particles (II)

Range : The range is the distance over which the particle loses all its kinetic energy.
              Because the statistical nature of the collisions, there is a variation in the range, called
              range straggling.

For heavy particles, the straggling is small, typically few % of the total range.
In general, the higher the kinetic energy T, the longer the range.

After a single interaction with an atomic electron, the electron itself can be either knocked out of the
atom (δ-rays) and create electron-ion pairs, or just raise the electron into higher atomic orbitals (less likely).  
The δ-rays themselves can ionize other atoms, etc..

Range

# 
of

 p
ar

ti
cl

es

Straggling

Mean Range
Suppose to prepare N particles with the 
same initial kineti energy and measure 
the range for all of them



8

The Bethe-Bloch Formula

Problem : We are interested in calculating the energy loss of a heavy charged particle per length of material  
                  traversed: dE/dx . The energy loss per unit length is also called “stopping power” of a material.
                 It is a key quantity to know when dealing with radiation and radiation detectors.
                 Since it quantifies an energy loss, it is usually taken with the “-” sign: -dE/dx.
                 The stopping power depends from the incoming particle (charge, mass, kinetic energy) and
                 from the material (density, ionizing potential, ..).

History : The first derivation of dE/dx is due to N.Bohr with a purely classical calculation. 
               This result works for heavy nuclei, but e.g. for protons it is not adequate. 
               In 1930 H.Bethe proposed the first quantum derivation of the formula using first 
               order perturbation theory. 
               In 1932 H.Bethe derived the relativistic version of his quantum formula.
               The contribution of F.Bloch (in 1933) was not to the formula itself, but to a 
               specific expression of the ionization potential of materials as a function of Z. 
               The stopping power formula is commonly called “Bethe-Bloch” formula, but 
               the original derivations of it are due to Bethe and Bohr.
               Later on, smaller corrections of the Bethe formula were derived by different authors, with Bethe      
               himself among them.
         

Hans A. Bethe
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Classical derivation for -dE/dx (I)
Hypotheses :
  1) Energy loss via inelastic collisions (only Coulomb force)
  2) M>me, electron at rest and tcoll<torbit

  3) Incoming particle: Mass M , v=β c , Charge=ze
                      Target: Charge = Ze , Density = ρ

        
         

x

b 
(impact parameter)r

M , ze

me , e

Momentum variation Δp: it can be decomposed in a parallel Δp∥ and transversal Δp⊥ 
component with respect to the initial direction. The parallel component Δp∥ averages to zero 
during the collision. The remaining net variation is due only to the transversal component.

Δp⊥ Δp⊥

Δp∥ Δp∥

FC r =−FC −r 

 p=∫−∞

∞

Fdt=∫−∞

∞

F
dt
dx

dx=∫−∞

∞

F
1
v
dx=∫−∞

∞ 1
40

ze2

x2
b2



b

 x2
b2


cos

dx
v
=

ϴ

=
1

40

ze2b
v
∫−∞

∞ 1

X 2
b2


3/2 dx=

ze2

2bv0

⊥ ⊥ ⊥ ⊥
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Classical derivation for -dE/dx (II)
Alternative derivation (via Gauss Theorem)
  
∫ dS= ze /0

∫E2b dx=Ze /0⇒∫E dx=
ze

2b0

F=eE p=∫Fdt=∫ F
1
v
dxRemembering: 

⇒ p=
ze2

2bv 0

dx

db

Ze
⊥ ⊥

⊥ ⊥ ⊥ ⊥⊥

⊥

Estimate the number of atomic electrons (= Collisions Nc)

  

N e=eV=e 2bdbdx

Total Energy Variation (in Nc collisions)

  
−dE b=

 p2

2me

N c=
 p2

2me

2e bdbdx=
z2 e4

4b2 v2me

2e bdb dx=
z2 e4e

40
2 v2me

db
b

dx⊥ ⊥

Integration on the impact parameter b:

  −
dE
dx
=−∫bmin

bmax

db
dE
dx

b=
z2 e4

e

40
2me v

2 ln 
bmax

bmin


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Classical derivation for -dE/dx (III)

Minimum impact parameter:
  

bmin=e=
h
p
=

2ℏ
me v

Maximum impact parameter:
  

(DeBroglie length of the electron)
  

bmax=
 v
e

Approximate interaction time:
Electron revolution time: frequency:
Adiabatic approximation: 

T i~b /v
T r~/e

Electron density:
  

e=N A
Z
A

Effective ionization potential: 
  

I~he

(Classical) Bethe Formula:
  

−
dE
dx
= e2

40


2
4 z2Z N A 

mec
2


2 A [ ln me c
2


2


2

I ]

Relativistic velocity: 
  

v= c

T i~T r
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The Bethe-Bloch Formula

me = electron mass
ze = charge of the projectile
Z = atomic number of the material
A= atomic mass of the material
I = ionization energy of the material
β = v/c
γ = 1/√(1-β2)
NA = Avogadro's Number
ρ = density of the material

−
dE
dx
= e2

40


2
4 z2Z N A 

mec
2


2 A [ ln 2mec
2


2


2

I −2
−


2 ]

Approximation:
If v<<c we can ignore the small logarithmic term and assuming Z/A~1/2 (valid for most materials):

−
dE
dx

∝
z2


v2
- High stopping power for highly charged particles and high-density materials
- High stopping power for slow particles
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Understanding Bethe-Bloch Formula

−
dE
dx

∝
1

v2

Relativistic Rise 

Flattening when v     c

“Minimum Ionizing Particle”:
E ~ 3Mc2
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The relativistic rise

The rise of the stopping power at high velocities is due to a relativistic effect. If a charged particle is 
boosted to a reference frame moving close to the speed of light, the electric field E will be modified.
E has a spherical symmetry in the rest frame, while in the moving frame the lengths will contract in 
the direction of motion.

The component of the E field transversal to the direction of motion increases
and therefore the same will happen to the stopping power.
The moving charged particle exerts a larger force on the atomic electrons and this results in a larger
energy loss.



15

The Bragg Peak

A charged particle entering a material starts to loose energy according to the Bethe-Bloch formula.
Since -dE/dx ~ 1/v2, as the particle slows down it looses more and more energy, eventually coming to a 
stop. From the latter consideration, it is clear that the majority of the energy is lost in the last part of the 
particle path just before stopping, while the energy loss at the beginning of its path in the material is 
smaller.
The maximum in dE/dx as a function of the path length in the material is called the Bragg Peak.

In the figure, the Bragg peaks of protons in 
human tissue are plotted. As the energy of the 
proton beam is varied, the Bragg peak moves 
deeper into the tissue. 
This property of dE/dx of heavy charged 
particles suggests an important application in 
medical physics: beams of protons or heavy 
nuclei can be used for cancer therapy. The 
technique is known as hadrontherapy.
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Application: Hadrontherapy

Hadrontherapy consists in irradiating a tumor mass with a beam of protons or heavy nuclei. The existence of 
the Bragg peak gives substantial advantages with respect to the standard radiation therapy based on X/gamma 
rays (photons). Photons deposit energy in the tissue in a totally different way, as it can be seen in the figure.

It is clear that in the case of radiation therapy the 
major part of the dose is delivered on the surface of 
the tissue that can be eventually be damaged. In this 
way, the tumor mass will receive energy deposit 
inefficiently.
A treatment with protons or nuclei deposits most of 
the energy exactly on the tumor mass and thus 
damaging less the surrounding tissues.
Varying the beam energy, the position (depth) of the 
Bragg peak can be varied: this allows a full-3D scan 
of the mass by the beam.
Hadrontherapy works because the radiation damages the DNA of the irradiated cells making them incapable 
of reproducing themselves. Since cancer cells divide very rapidly, they are more susceptible to radiation than 
normal cells.
Medical physicists refer to dE/dx as “Linear Energy Transfer” (LET). The LET of protons or nuclei is more 
densely localized, ending in more DNA damage than conventional radiation therapy.
Only advantages? Unfortunately no: 
- Up to now, only non-moving body parts can be irradiated with hadrontherapy treatments 
   (no chest/abdomen)
- The hospital needs an expensive infrastructure: accelerator, beamlines, treatment stations.
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Application: Hadrontherapy

TRIUMF Eye Cancer Treatment Facility

Heidelberg Hadrontherapy Center

Rotating gantry at the Paul Scherrer Institute
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Charged Particles: Summary

Heavy charged particles interaction:

1) Particles experience small deflections

2) The range straggling is small

3) There is an energy loss peak at the end of the range: the Bragg peak

4) For slow (v<<c) particles: −dE
dx

∝
z2


v2
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Electrons and Positrons

Electrons and positrons  also interact with the atomic electrons of materials. Now we are dealing with 
collisions among particles with the same mass and therefore large deflections are expected. This turns out 
into large energy losses, in comparison to the previous case (heavy charged particles). Also the range 
straggling (statistical variation of the range) is larger.

Being the electrons relatively light, it is easy to accelerate them to relativistic velocities (v~c). For example, 
electrons and positrons from nuclear beta decay are relativistic.

When a relativistic charge is accelerated (for example in a collision), it can radiate photons. This process is 
called Bremsstrahlung (“braking radiation” in German). 
The total energy loss can be divided into two components, one due to the Coulomb scattering and one due to 
the Bremsstrahlung.

 dEdx Tot=
dE
dx Coulomb

dE
dx Radiation
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Radiative Energy Loss

The radiative energy loss dominates the stopping power for electrons and positrons already above few MeV 
energy for some dense materials. It can be expressed as:

 dEdx Radiation=
E
X0

Where:
- X0 : radiation lenght (cm)
- ρ: density of the material (g/cm3)
- x: distance travelled in the material (cm)

From formula [1] it is possible to calculate the average energy loss of an electron with initial energy E0 after 
travelling a distance x in a material:

[1] 

E=E0 e
−
 x
X 0

From [2], it is clear that X0  is the thickness of the material over which the average energy decreases by a 
factor e.
X0 is given by the approximate formula:

[2] 

X 0≈
716.4 A

Z Z1 ln 287 /Z 
g/cm

3

Where A is the atomic mass and Z the atomic number of the material.
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Critical Energy

The critical energy Ec  is the electron energy at which the energy losses from radiation and ionization are 
equal. If the electron energy is bigger than the critical energy, radiation energy loss dominates.
The critical energy is approximately given by the following formula: 

EC≈660 /Z MeV

The relative sizes of the Coulomb and radiation energy losses for relativistic electrons is given by:

 dEdx Radiation
 dEdx Coulomb

≈
Tme c

2

me c
2

Z
1600

From the last formula, it can be observed that energy loss by radiation is enhanced for high kinetic energies 
and high-Z materials.
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Bremsstrahlung Application (I)

An important application of Bremsstrahlung is Synchrotron Radiation. 
A synchrotron is a circular particle accelerator where particles are guided by magnetic fields into a circular 
path. Steering particles involves an (centripetal in this case) acceleration which turns into the emission of 
(synchrotron) radiation.

This radiation is a problem if you would like to accelerate particles because part of the energy provided is lost 
by radiation. Especially light particles experience a sizable energy loss by radiation.
In particular, for electrons the energy loss per turn in an accelerator of radius R is approximately:

 EMeV ≈0.0885
E4MeV 
Rm

Synchrotron radiation can be also a very useful property if a high-power source of radiation is needed. This is 
indeed the case in many fields of physics (solid-state, biophysics, chemical physics, ...) and there are 
synchrotrons dedicated to this task (“Light Sources”).
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Bremsstrahlung Application (II)

Synchrotron Radiation: Wigglers 

Thanks to the Lorentz boost of the accelerated electrons, 
the synchrotron radiation is emitted mainly forward, in a 
narrow cone with the same direction as the particle's 
velocity.

NOTE: Other application: Free Electron Laser (FEL)
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Cerenkov Radiation (I)

Cerenkov radiation  is emitted by a particle when its speed is greater than the speed of light in the 
traversed material.

Speed of light in a material with refractive index n : cm = c/n

Cerenkov radiation is emitted in a cone opening in the direction of the particle's velocity. The cone apex 
half angle has a relation with particle's velocity and the material's refractive index:

cos=
1
n = v

c 
At the minimum velocity β=1/n the cone has θ=0. As the velocity increases, also the cone aperture 
increases up to the maximum of arccos(1/n).

Particle velocity

Cerenkov light at 
the maximum angle
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Cerenkov Radiation (II)

Cerenkov radiation from relativistic electrons 
produced in beta decays of fission by-products 
in the core of a nuclear reactor. The Super-Kamiokande Neutrino Detector is the world-largest Cerenkov 

detector. It is based on a 50000-tons ultra-pure water tank with dimensions 
of 40x40m. 11000 18inch PMTs are used for detecting the Cerenkov 
radiation from electrons and muons.

Muon (left) and electron (right)  Cerenkov 
rings detected at Super-Kamiokande. Note 
that the electron ring is “fuzzier” than the 
muon one. This happens because the 
electron has multiple interactions in the 
medium and many overlapping Cerenkov 
cones are produced. This is an efficient 
method for discriminating between electrons 
and muons.
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Electron Summary

1) Electrons experience large deflections when traversing materials

2) The range is poorly defined (large range straggling)

3) The energy loss mechanisms are (mainly):
a) Ionization
b) Bremsstrahlung
c) Cerenkov Radiation
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Photons / Photoelectric Effect

Photons (X- and γ-rays) interact with matter via 3 processes: 
1) Photoelectric effect, 2) Compton scattering and 3) pair production. 

1) Photoelectric Effect: This process consists of the absorption of the photon and the emission of an 
atomic electron. This effect can happen only if the electron is bound to an atom, otherwise energy-
momentum conservation will prohibit it.
The emitted electron energy Ee is:

Ee=E−B e

where Eγ is the photon energy and Be the electron binding energy. The photoelectric effect is significant 
for low energy photons (<100keV) and the probability is approximately proportional to Z4/E3

γ

The photoelectric effect probability shows jumps at 
particular photon energies when E becomes large 
enough to liberate electrons from the next deepest 
atomic shell.
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Compton Scattering (I)

2) Compton Scattering: This process is the scattering of a photon on a nearly free electron: 

P
i =E ,

E

c
,0

Pe
i=mec

2 ,0 ,0 

Pf
i=mec

2 , pe
f cos , pe

f sin

P
f
=E ,

E

c
cos ,

E

c
sin 

x

y

Φ
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Compton Scattering (II)

P

i
Pe

i
=P

f
Pe

f

⇒ E

f
=

E

i

1 E

i

me c
2  1−cos 

P

i
Pe

i
−P

f
=Pe

f
⇒ P

i
P e

i
−P

f


2
=Pe

f P e
f

4-Momentum conservation (valid in all the reference frames):

P

i P

i


=0

2P

i Pe
i
−2P

i P

f
Pe

i Pe
i


=me c

2

−2Pe
i P

f
P

f P

f
=Pe

f P e
f


me c

2

P

i Pe
i
−P

i P

f
−Pe

i P

f
=0

We want to calculate the final energy of the photon after the scattering. We perform the 
calculation with a fully covariant approach, so we can take advantage from the fact that we can 
choose the most convenient reference frame. We choose the frame where the electron is initially 
at rest.

P

i Pe
i
=E

i mec
2

P

i P

f
=E

i E

f
1−cos

Pe
i P

f
=E

f mec
2

Note that for ϑ=0, Ef=Ei and for the “backscattering” case (ϑ=180o), 
The probability (crosssection) for this process is given by the Klein-Nishina formula as a function of the 
photon scattering angle. 

E
f=E

i / 12E
i /me c

2 

 [Z. Phys. 52 (11-12): 853, 869 (1929)].
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Pair Production

E≥2mec
2
=1.022 MeV

A photon with enough energy can create an electron-positron pair. In this process, the photon 
disappears and the pair is created. According to energy-momentum conservation, this process 
cannot happen in vacuum. If a Coulomb field of e.g. a nucleus in a material is present, then the 
conservation law can be satisfied and the process can happen.

The minimum energy for a photon being able to convert in a 
pair is

Above a photon energy of ~5MeV, pair production becomes the 
dominant process in photon-matter interaction.
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Photon Attenuation

dI
I
=− dx ⇒ I=I 0 e

− x

Charged massive particles deposit all their energy if they stop in a material. On the contrary, 
photons experience attenuation. If a beam of photons impinges on a material, they can be 
absorbed by photoelectric effect or pair production or scattered by Compton effect.
This means that some photons will never reach the detector and are effectively lost.
Considering a photon beam with intensity I traversing a material of thickness x:

I0 I

dx
The fractional loss of beam intensity dI/I is proportional 
to the thickness x and this leads to an exponential 
attenuation through matter. 
The total attenuation coefficient is the sum of three 
contributions coming from photoelectric effect (τ), 
Compton scattering (σ) and pair production (κ):

= cm-1

NOTE: Remembering cancer treatment, now you can compare the 
exponential attenuation of a photon beam in a tissue versus the 
peak-like energy deposit of charged particles, appreciating its 
higher efficiency in delivering the deposit (dose) in a small region.
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Particle Showers (I)

Particle showers develop when a very high-energy particle interacts with matter. When the energy is high, 
more particles can be produced. These secondary particles can still have enough energy to produce again 
other particles. This process, called shower continues until particles do not have enough energy to produce 
new ones and eventually loose all the energy by ionization or collisions.

Electromagnetic Showers:
If a high-energy electron, positron or photon enters a 
material, it generates a shower through pair creation and 
brehmsstrahlung, giving rise to an exponential increase of 
particles with lower and lower energies. The energy of 
the secondary particles decreases until no energy is left 
for further conversion.

Hadronic Showers:
Hadronic particles (e.g. protons and in general particles 
interacting with the strong force) at high-energy can 
create showers of other hadronic particles. Cross sections 
for such processes are small, since interactions with 
atomic nuclei are needed and they are rarer than atomic 
interactions.
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Particle Showers (II)

Longitudinal Development:  The depth of the shower in a 
material is mainly defined by the high-energy part of the 
cascade. The description of showers is more convenient 
introducing scaled variables:

In this way the length is in units of radiation lengths and the 
energy is in units of critical energy.
The longitudinal profile of the energy deposition in an 
electromagnetic cascade is well approximated by:

Since the cascade is a strongly fluctuating process, the last 
formula works well only when the average depth is needed.

Transverse Development:  For electromagnetic showers, the radius of the shower scales in good 
approximation with the following formula:

RM is called “Moliere Radius”, where Es~21MeV and Er is the energy at which the energy loss by ionization  
divided by the radiation length is equal to the initial electron (or photon) energy. The Moliere radius defines a 
cylinder containing approximately 90% of the deposited energy.

t=x /X0 y=E /Ec

dE /dt=E0b
bt a−1 e−bt

a Simulation of a cascade induced by a 
30GeV electron on Iron.

RM=X 0E s/Er
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Particle Showers (III)

In the case of high-energy cosmic rays, showers can extend 
even on several kilometers.
The Pierre Auger Observatory was designed to measure 
direction and energy of such very large showers.

The observatory is located in Argentina and is 
composed of many detectors spaced 1.5 Km 
from each other and covering a surface of 
about 6000 km2.
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Neutrons (I)

Neutrons  are heavy particles, but charge-neutral, therefore they do not interact electromagnetically and the 
Bethe-Bloch formula cannot be applied. They can still interact with atomic nuclei, but the cross sections are 
small: neutron radiation is very penetrating.

Common sources of neutrons are:
  - Nuclear Reactors (Fission and Fusion)
  -  Spallation Sources (Accelerator based)
  - Radioactive decays of heavy nuclei
  - Secondary interactions (within showers)

In applications, neutrons are classified according to their energy range:

  - High Energy:      >10MeV (e.g. from nuclear fission, spallation or showers)
  - Medium Energy: ~1MeV
  - Fast:                    ~50keV
  - Epithermal:         0.5eV - 50keV
  - Thermal:             <0.5eV
  - Cold:                   ~meV
  - Ultra-Cold:         <<meV



36

Neutrons (II)

Neutron nuclear interactions can be elastic, inelastic or capture reactions.

Elastic Interaction
The neutron can scatter off a nucleus leaving its state unchanged. The average energy loss of a neutron after 
elastic scattering is approximately:

From the formula, it is clear that light nuclei are the most effective targets for slowing neutrons. Hydrogen in 
particular is the best neutron moderator : E = E0/2.

As an example, consider the number of collision needed for moderating a 2MeV neutron to 0.025eV (thermal):

Nucleus         A           Collisions
H                    1           27
D                    2           31
He                  4           48
Be                  9           92
C                  12           119
U                238           2175

  

E=
2 E0 A

 A12

NOTE: In nuclear reactors heavy water is often 
used as moderator. This means that the 
moderator is effectively deuterium. Hydrogen 
would be a better moderator: why deuterium is 
used instead?
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Neutrons (III)

Inelastic Interactions
These interactions are more complex because the nuclear structure is 
involved. Generally, after an inelastic nN reaction, the nucleus is found 
in an excited state. De-excitation follows with emission of additional 
photons. In the figure, the neutron crosssection for H and C are 
displayed. Note the complicated features of the C crosssection due to 
its nuclear structure.

Nuclear Capture
Neutrons can be captured by nuclei and the consequence of this 
strongly depends from the specific nucleus. Cases can be classified 
from the kind of particles in the final state:
- Charged: emission of p,d,alpha,...
- Neutral: emission of more (>1) neutrons
- Fission: the nucleus divides in two or more fragments
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Neutrons (IV)

Applications (Example)
Thermal Neutrons have wavelengths similar to interatomic distances in many materials. This means that low 
energy neutrons can be used for diffraction experiments in condensed matter physics. Moreover:
 - Neutrons are very penetrating (no EM interactions): a material can be studied well beyond its surface.
 - Neutrons have a magnetic moment: neutron scattering can also be used to investigate magnetic properties of        
   materials. 
The combination of neutron scattering with other techniques (e.g. X-ray diffraction) is a powerful analysis tool.

ILL Neutron Reactor Source (Grenoble, France) SNS Spallation Neutron Source (ORNL, USA)
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Neutrinos

Neutrinos
Neutrinos are (almost) massless and electrically neutral. They interact only through the weak force and 
therefore the interaction cross sections with other particles are extremely small. A neutrino can easily go 
through the planet Earth without experiencing any interaction.
In materials, neutrinos can interact with atomic nuclei: 

Charged Current Interaction Neutral Current Interaction

Neutrino interactions with leptons and quarks are exactly 
described and calculable within the Standard Model of particle 
physics. In materials, quarks are bound in nucleons and 
nucleons are bound in nuclei: this makes the theoretical 
calculation of neutrino interactions an extremely hard 
problem. Such calculations are needed in modern neutrino 
oscillation experiments for a detailed understanding of the 
data.
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Radiation-Matter Interactions: Summary

1) Charged massive particles 
  - Energy loss by Bethe formula
  - Small range straggling
  - Bragg peak

2) Electrons and Positrons
  - Bremsstrahlung
  - Cerenkov radiation

3) Photons
  - Photoelectric effect
  - Compton Scattering
  - Pair Production

4) Showers
  - Electromagnetic
  - Hadronic

5) Neutrons and Neutrinos
  - Nuclear interactions

A modern all-purpose particle physics detector (like CMS at LHC, in the above 
figure), measures a large number of particles including protons, photons, electrons, 
photons, etc... A detailed knowledge of the interaction properties of all these 
particles is crucial for designing detectors able to reconstruct complex events 
generated in the high-energy collisions realized at LHC.
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