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Chapter 1

Introduction and Historic
Remarks

1.1 Introduction

The field of radiochemistry started with the discovery of natural radioactivity about
one century ago. The field progressed at a fast pace producing profound results in
pure and applied science, together with many Noble Prizes in Physics and Chemistry.
Radiochemistry is the application of nuclear phaenomena like radioactive decays
to chemical problems.

1.2 A Brief History of Radiochemistry and Nu-

clear Science

In the following, we give a brief historical account of the scientists and discoveries
which were key in founding the new fields of radiochemistry and nuclear science.
This is not the main subject of these notes, so for the sake of brevity, we will only
touch other very important developments, like quantum mechanics. We will try
to highlight mostly the historic parts relevant to radiochemistry and refer to other
books for a more complete historical account.

The Discovery of Radioactivity

The history of radiochemistry (and also of nuclear science) begins in 1896. At the
beginning of that year, Henri Becquerel (Paris, 1852-1908) 1 made a revolution-
ary discovery: he has been the first scientist detecting radioactivity. What exactly
radioactivity is, will be explained in more details in the next chapters while here we
will stick to the historical context.
Around that year, other groundbreaking discoveries were made: Roentgen discov-
ered X-rays (1895) and Thompson (1897) the electron. All these observations paved

1Henri was the son of Edmond, nephew of Antonine and father of Jean: all famous scientists.

1
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the way to the quantum revolution at the beginning of the ’900s.
Becquerel was an expert in the study of fluorescence and infrared light. In particular
he studied extensively the fluorescence of minerals containing Uranium. One day
he wanted to expose Uranium minerals to sunlight in order to study the induced
fluorescence. He worked in Paris, which is a very rainy city during that period.
Without sunlight available, he put the minerals on a photographic plate and closed
everything in a drawer, wrapped in light-tight paper.
Since before exposing the minerals to light, he needed a control sample for com-
parison purposes he decided after a while to develop the photographic plate. To
his surprise, he found the photographic plate blackened. He understood that with
or without fluorescence, minerals containing Uranium were able to blacken photo-
graphic plates. He postulated that Uranium was emitting a new kind of radiation.
After that, he discovered also that this radiation, like the newly discovered X-rays
was able to ionize gases and induce currents in them. This observation opened an-
other field: radiation detection and measurement.
Becquerel was also convinced that the new radiation was a property of Uranium
itself and it was not connected to its chemical state (the way it was bound to other
substances in the mineral).
Becquerel continued to study radioactivity but the next fundamental advances were
due to other two scientists: Maria Sklodowska (Warsaw, 1867-1934), better
known as Madame Marie Curie, and her husband, Pierre Curie (Paris, 1859-
1906). Marie Curie started her experiments trying to reproduce Becquerel’s results
and then she started looking for other substances with the same properties.
She found out that some minerals containing Uranium were much more radioactive
than the amount of Uranium could explain (given previous results on different min-
erals and after chemical analysis). Her conclusion was that some minerals contained
new radioactive atomic species. Marie Curie started chemical analyses on the miner-
als for discovering from where the radioactivity was coming from, officially starting
the field of radiochemistry.
In 1898, after two years of work, she isolated the new substance. She gave the new
element the patriotic name of Polonium.
After the discovery of Polonium (belonging to the II analytic group), they found
another radioactive substance in the Ca/Ba group. It took a while to separate it
from Barium, but they finally succeeded (end of 1898) with fractional crystallization
techniques. The new element was called Radium. It was also soon noticed that ra-
dioactivity in minerals was decaying exponentially with time. At that time, the
Curies received help from the prominent geologist H. Suess from Vienna. He man-
aged to ship to Paris a ton of pitchblende2 minerals from the Joachimstal mine in
Czechoslovakia (at that time belonging to the Austrohungaric Empire). The Curies
managed to refine enough Radium for measuring its atomic weight and observed its
spectral lines. In 1903, Becquerel, Pierre and Marie Curie shared the Nobel Prize
in Physics for the discovery of radioactivity.
In 1911, after the death of Pierre, Marie Curie was awarded a second Nobel Prize

2The pitchblende is mainly composed by UO2 and U3O8. The ore contains also lead oxides

thorium, rare earth elements and traces of helium.



1.2. A BRIEF HISTORY OF RADIOCHEMISTRY AND NUCLEAR SCIENCE3

Figure 1.1: Left: Henri Becquerel, Center: Marie Curie, Right: Pierre Curie.

(this time in Chemistry) for the discovery of Polonium and Radium. Pierre and
Marie had a daughter: Irene (1997-1956). Irene married Frederic Joliot and to-
gether they will further contribute to nuclear science, winning a Nobel Prize for
Chemistry themselves in 1935 for the discovery of artificial radioactivity.

The Birth of Nuclear Science

One of the most prominent scientists at the time of the discovery of radioactivity
was Ernest Rutherford (1871-1937). He was born in New Zealand and went to
England to work with J.J. Thompson (at the Cavendish Laboratory, Cambridge),
starting with studies on the ionization of gases induced by X-rays. After that,
he quickly moved on ionization induced by the newly discovered radiation from
Uranium. Rutherford discovered two different kinds of radiations emitted from
Uranium and he called them α and β. After two years it was clear that the β
radiation was made of electrons and P. Villard in France discovered a third kind of
radiation, called, following the nomenclature of Rutherford, γ. In 1898, Rutherford
won a professorship at McGill University in Montreal (Canada) where he found very
favorable conditions for continuing his work. Together with the chemist Frederick
Soddy (1877-1956), he realized that chemical elements can transform into other
elements. At that time, this hypothesis was very hard to believe (nobody believed in
alchemy anymore!) and it required a lot of care from Rutherford in communicating
it to the scientific community.
Rutherford noticed that α particles were able to induce scintillation not only on a
fluorescence screen, but also in places far from it. His conclusion was that α particles
were interacting with air, which mainly contains nitrogen, following the reaction

4He+14 N −→17 O +1 H (1.1)

After the Canadian experience, Rutherford accepted a professorship in Manchester
and went back to England. In Manchester, he finally proved that the α radiation was
made of ionized helium and in 1908 he was awarded the Nobel Prize for Chemistry.
He was helped in his research by Hans Geiger (1882-1945), the inventor of the
well-known radiation detector called after his name. In 1909, Ernest Marsden
(1889-1970) came from New Zealand to England for working with Rutherford. He
studied the behavior of α radiation in materials, observing that sometimes they were
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Figure 1.2: Left: Ernest Rutherford, Center: Frederick Soddy, Right: Hans Geiger.

deflected at very high angles. In 1911, Rutherford understood what was happening
in the experiments of Marsden: the α particles were scattering against a dense object
inside the atoms while the electrons were orbiting around it. Rutherford called the
object nucleus. With this planetary model of the atom, nuclear science was born.
In 1913, Antonius van der Broek (1870-1926) demonstrated that the elements
in the periodic table should be ordered according to the atomic number (related to
the charge of the nucleus) and not according to the atomic weight, as Mendeleev
did in his ingenuous idea in 1869.
In 1912 J.J. Thompson found that the existence of isotopes (a word invented by
Soddy) was not limited to radioactive substances, but it was a general feature of
all the atomic elements. The fact that atomic number and atomic weight were in
general different lead Rutherford to postulate the existence of a new particle in side
the nucleus.
This elusive particle, finally discovered by James Chadwick (1891-1974), in
1932 was called neutron. The first rudimentary picture of the structure of matter
was finally complete: atoms were made by a nucleus and orbiting electrons. The
nucleus was made by two particles similar in weight: protons (positively charged)
and neutrons (electrically neutral).

More Nuclei and new (Anti)Particles

1932 was a memorable year for scientific discoveries. After the identification of the
neutron by Chadwick (1935 Nobel Prize for Physics), it was the turn of deuterium
(the first discovered hydrogen isotope) and the positron (the first discovered an-
tiparticle). Deuterium was first clearly isolated by fractional distillation of liquid
hydrogen by Harold Urey (1893-1981). He proved its existence by spectroscopy.
This discovery explained why the atomic weight of hydrogen was slightly different
from 1. Deuterium is present also in ordinary water in 1 part over 6000. Later,
Urey contributed to the development of nuclear energy and weapons inventing an
isotopic separation method for Uranium enrichment based on gaseous diffusion.
Another groundbreaking discovery came from the study of cosmic rays, which were
known since the beginning of the 900s. If was only after the work of Victor Hess
(1883-1964), who investigated them via balloon experiments, that their extrater-
restrial origin was demonstrated. Carl Anderson (1905-1991) at the California
Institute of Technology was the first investigating cosmic rays with detectors (“Wil-
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Figure 1.3: Left: James Chadwick, Center: Harold Urey, Right: Carl Anderson.

son Chambers”) immersed in a magnetic field. With this technique, he was able to
detect particles behaving like electrons, but with opposite charge.
Hess and Anderson shared the Nobel in Physics 1936 for the discovery of the first
antimatter particle: the positron. A remarkable fact is that such particle was al-
ready predicted on purely theoretical ground by Paul Dirac (1902-1984), one of
the founders of quantum mechanics.
Another important discovery happened in 1934, when the Joliot-Curies (Irene,
Maries’daughter and Frederick Joliot) announced the discovery of artificial ra-
dioactivity. Previously they observed both the positron and the neutron, without
recognizing them. Their disappointment was compensated with the Nobel Prize in
Chemistry for the discovery of artificial radioactivity. The Joliot-Curies observed
that when an Aluminum foil was irradiated by α particles from Polonium, it emit-
ted positrons. Even when the Polonium was removed, Aluminum kept emitting
positrons with an exponentially decreasing intensity. The reaction observed was

27
13Al +

4
2 He −→30

15 P + n (1.2)

where the top index is the mass number and the bottom one the atomic number.
With reaction 1.2, they created artificially the radioactive nucleus 30

15P which kept
decaying after the removal of Polonium:

30
15P −→30

14 Si+ e+ + ν (1.3)

with a half life of about 2.5 minutes.

Accelerators

After Rutherford’s experiments, it was clear the need of a controlled source of parti-
cles for nuclear experiments. At the beginning, only radioactive elements or cosmic
rays were available, but scientists started thinking about an artificial source which
has to be more intense, controlled and (most importantly) more energetic. Af-
ter many failed attempts, the first successful particle accelerator was designed and
constructed by John Cockcroft (1897-1967) and Ernest Walton (1903-1995)
(both awarded the Nobel Prize in Physics in 1951) at the Cavendish Laboratory in
England. They accelerated lithium ions at energies of 700keV and observed the first
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Figure 1.4: This picture comes from one of Anderson’s experiments (Phys.Rev. 43,
491, 1932) with a Wilson chamber immersed in a magnetic field. The positron is
coming from below and its trajectory is curved because of the magnetic field. In the
middle, there is a lead plate where the positron loses energy: indeed the positron
track is more curved after it.
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Figure 1.5: The smallest and the largest cyclotrons. Left: Lawrence holds in his
hands a tiny cyclotron prototype. Right: the TRIUMF cyclotron in Vancouver,
BC (Canada) during its construction in 1972. It is still the largest cyclotron of the
world.

induced nuclear disintegrations.
Further progress in rising the energy of ions was possible only after the introduction
of the idea of multiple (or staged) acceleration. The first pioneer in this field was
Ernest Lawrence (1901-1958), who introduced and realized the idea of the cy-
clotron. He realized bigger and bigger versions of this machine, tirelessly looking for
funding. He neglected nuclear research and devoted all his energies uniquely at the
development of the machine and used it mostly for medical applications which was
a better source of funding. The capabilities of the new machine were immense with
respect to the small-laboratory based enriching techniques of the time. With the
cyclotron, it was possible to induce radioactivities orders of magnitude higher than
obtained before. After the cyclotron, many other kinds of accelerators were devel-
oped and nowadays energies in the TeV range have been reached. The cyclotron,
after many decades after its invention, still remains one of the best tools available
to the nuclear scientist for research, medical and material science applications.

Enrico Fermi, Nuclear Energy and Elements beyond Uranium

Enrico Fermi (1901-1954) is one of the greatest physicists of history and he is
remembered for many contributions to both theoretical and experimental physics.
After the discovery of the Joliot-Curies, he decided to used neutrons instead of α
particles for inducing radioactivity. The idea was simple in principle: since the α
particle is positively charged as the target nuclei, they will repel each other. This was
the reason why the first experiments had poor efficiency: every 106 α particles, an
Aluminum nucleus was affected (see Eq. 1.2). Neutrons, being electrically neutral
should have a higher probability to induce nuclear reactions. Fermi and collabo-
rators started bombarding substances systematically with growing atomic number.
The first results came with Fluor. At the end of 1934, Fermi started irradiating
Uranium finding results difficult to interpret. At a certain point he believed to have
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Figure 1.6: From left: O. D’Agostino, E. Segre’, E. Amaldi, F. Rasetti and E. Fermi.
Together with B. Pontecorvo (not in this picture), they authored the work on slow
neutrons. They are known as “the boys from via Panisperna”, from Panisperna
Street in Rome, where the Physics Institute was at that time.

created new artificial elements. In the same year, he found out that neutrons were
significantly slowed down if filtered through paraffin. Paraffin contains a lot of hy-
drogen: neutrons were loosing energy hitting protons (hydrogen nuclei). The finding
was interesting by itself, but the application was more astonishing: slow neutrons
were much more effective in inducing artificial radioactivity. In 1938, Fermi won
the Nobel Prize for his research with neutrons and since the political situation in
Italy was deteriorating, from Stockholm he traveled directly to USA with his family,
where he remained. When Fermi arrived in New York, Niels Bohr (another fa-
ther of quantum mechanics) announced that while he was receiving his Nobel Prize,
Otto Hahn (1879-1968) and Friedrich Strassmann (1902-1980) in Berlin dis-
covered the fission of Uranium. Hahn hasbeen a student of Rutherford in Canada.
Important contributions were previously given also by Lise Meitner (1878-1968).
At that time she was already removed from her working place because of the nazist
racial laws, finding a safer place in Sweden.
The discoveries of nuclear fission and slow neutrons paved the way to nuclear energy
with its pacific and military applications.
In 1940, McMilland and P. Abelson discovered the first transuranic element (Z=93)
and called it Neptunium (239Np). In the same year, Glenn Seaborg (1912-1999),
Edwin McMillan (1907-1991) and collaborators discovered Plutonium (238Pu)
irradiating Uranium with deuterons delivered with the cyclotron at University of
California, Berkeley.
In 1942, Fermi and collaborators realized the first controlled chain reaction with
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Figure 1.7: Left: Otto Hahn, Center: Friedrich Strassmann, Right: Lise Meitner.

Uranium.
After the second World War, many more transuranic elements were created. In
the spirit of cold War, USA and URSS scientists started a race to high-Z elements,
reaching up to Z=105. The heaviest element to date has Z=118. It is currently
named Ununoctium (Uuo) and has still to be approved by IUPAC (International
Union of Pure and Applied Chemistry). The highest-Z element approved by IUPAC
is currently the Livermorium (Lv) with Z=116. The name stems from the laboratory
where it was discovererd: the Lawrence Livermore National Laboratory (California,
USA).
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Chapter 2

General Concepts

2.1 Notation, Units, and Useful Formulas

Atomic nuclei are very small objects and a typical unit of measure used in the field
is the Fermi (fm). 1fm = 10−15m. The typical size of a nucleus is of the order
of 1fm. In the following, we will encounter the concept of cross section, which is
related to the concept of surface. Nuclear cross sections are commonly expressed in
barns (b). 1b = 10−28m2.
The mass of a proton is mp = 1.6 × 10−27Kg while the neutron is about 0.14% heav-
ier. A convenient mass unit is the atomic mass unit (u) and 1u=1.6605402×10−27Kg.
The atomic mass unit is defined using as reference the neutral 12C atom:

u =
m(12C)

12
=

1Kg

NA
= 1.6605402(10)× 10−27Kg = 931.49432(28)MeV/c2. (2.1)

NA=6.0221367(36)×1026 (kg mol)−1 is the Avogadro number. The numbers in
parentheses indicate the uncertainty in the last digits.
MeV means millions of eV (electronvolts): one eV is the energy acquired by a par-
ticle of with unit electric charge if accelerated with a potential of 1 Volt. A unit of
electric charge is equivalent to 1.6×10−19 Coulombs. Summarizing the energy unit
conversions:

1eV = 1.602 × 10−19J = 1.60219 × 10−12erg (2.2)

From the above definitions, the mass of 12C is exactly 12u, while for the proton and
the neutron:

Mp=1.007276470(12)u
Mn=1.008664898(12)u

2.2 Notation

Nuclides

A nucleus is uniquely identified by its atomic number Z (which corresponds to the
number of protons) and the mass number A (which corresponds to the total number

11



12 CHAPTER 2. GENERAL CONCEPTS

of nucleons). The number of neutrons N is easily obtained: N=A-Z.
Nuclei with same Z but different A (and therefore different N) are called isotopes.
Nuclei with same N but different A (and therefore different Z) are called isotones.
In nuclear science in general, and in radiochemistry in particular, a specific atomic
species with nuclear values (A,Z) is called a nuclide and if it is radioactive, it is
called a radionuclide. The notation identifying a specific nucleus is:

A
ZX (2.3)

where X is a generic chemical element. For example, for tritium, the hydrogen
isotope with A=3 we have: 3

1H.
Note that A and Z are always integer numbers since they count the number of
protons or nucleons in the nucleus. The atomic mass refers instead to the average
mass of all the isotopes of an element weighted with the proportions with which it is
found in nature. The atomic mass is expressed in g/mol. For example, the atomic
mass of hydrogen is 1.0079 and this informs us that the large majority of hydrogen
is nature has A=1 with tiny addition of heavier isotopes.

Nuclear Reactions

In the previous chapter, we gave some examples of nuclear reactions, like:

27
13Al +

4
2 He −→30

15 P + n (2.4)

A more compact notation for reactions was first proposed by Walther Bothe
(1891-1957).
The last equation can be conveniently written as:

27
13Al(α, n)30

15P (2.5)

The meaning of the last expression is:

• The leftmost element is the target

• The first particle in the parenthesis is the incident one

• The lighter emerging particle(s) is (are) in the second part of the parenthesis.

• The rightmost element is the heavier produced particle (or nucleus).

2.3 Binding Energy and Q-value

The binding energy EB of a nucleus is the amount of energy needed for removing
all the protons and neutrons from it. It is given by the mass difference between the
single nucleons and the nucleus:

EB(Z,N) = {Zmp +Nmn −M(Z,N)}c2 (2.6)

where M(Z,N) is the mass of the nucleus.
The Q-value of a reaction is the amount of energy released or absorbed by a nu-
clear reaction. If the Q-value is positive, the reaction produces energy while if it is
negative, it requires energy for happening.
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2.4 Electric Potential and Fine Structure Con-

stant

In many calculations involving nuclei, it is useful to quickly estimate the classical
electric potential between them. The electric potential between two particles with
a and b elementary charges e and distance R is (mks system):

V =
1

4πǫ0

(ae)(be)

R
(2.7)

It si convenient to intruduce an adimensional number, called fine structure con-
stant α:

α =
1

4πǫ0

e2

~c
≈ 1

137
(2.8)

with ~ = h/2π. We can now rewrite the potential with the help of α:

V = (α~c)
ab

R
≈ 1.44

ab

R
(2.9)

In the last expression, we have α~c ≈ 1.44 MeV·fm and R is now expressed in fm.
Another useful relation is ~c ≈ 197.3 MeV·fm.

2.5 General Properties of Nuclei

In the following, we list some general aspects of nuclei which emerged after a century
of theoretical and experimental efforts.

• Stable nuclei are found between Z=1 (hydrogen) and Z=82 (lead). These
nuclei belong to the so-called valley of stability and this name comes from
the binding energy chart as a function of Z and N (see figure).

• For every Z, there are different isotopes differing by the number of neutrons.
The chemistry of an element is determined by the number of electrons, which
is equal to Z, therefore all the isotopes have the same chemical properties.

• Unstable nuclei (outside the “valley”) decay after a certain time. Natural
unstable isotopes are only the ones with half-lives comparable (or longer) to
the lifetime of our solar system (≈ 5× 109 years). Unstable nuclei are created
continuously in stars or artificially in laboratory.

• Roughly, stable nucley have the Z=N property. This approximation becomes
worse as Z increases. After a certain point, the Coulomb repulsion among
protons is too high and only an increasing amount of neutrons is able to keep
the nucleus together. In any case, a too big N with respect to Z (or the other
way around) brings the nucleus farer away from the valley of stability.
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• The lighter nucleus is hydrogen with just one proton. The next hydrogen
isotope is called Deuterium and it has une proton and one neutron. Nuclei
with only two protons or two neutrons are not bound: this means that the n-p
force is in general attractive but it is not the case for p-p or n-n.

• The rich variety of nuclei and their properties have roots in the nuclear force.



Chapter 3

Radioactive Decays

3.1 Introduction

A radioactive decay is the spontaneous emission of one or more particles from an
atomic nucleus. The fundamental properties of the nucleus (Z,N) might or might not
change in the process. In general, the rate of decay is dictated by nuclear dynamics
and it has no relation to factors influencing chemical reactions, like temperature,
pressure, physical state or reaction speed. There are three possible radioactive
decays, named α, β and γ, following a notation introduced by Rutherford.

3.2 Alpha Decay

The α decay consists in the emission of an 4He nucleus (Z=2,A=4) from a parent
nucleus M1. The daughter nucleus M2 will be a lighter chemical element:

A
ZM1 −→A−4

Z−2 M2 +4 He (3.1)

The α decay might be accompanied by the additional emission of a γ ray. Examples
are

210
84 Po −→4

2 He+206
82 Pb+ γ (3.2)

with an half-life of 138 days. The α decay is energetically favorable almost only for
nuclei with A>150, with few exceptions (the rare earths 44Nd,147Sm,148Sm). The
lifetimes for this decay are relatively long and the energy of the emitted α tends
to be in the 5-9 MeV range. The fact that the energy range is quite small but the
lifetimes vary over several orders of magnitude was an important observation which
eventually lead to the discovery of the quantum tunneling effect.
In fact, it is observed empirically that the α decay probability W per unit time
(related to the decay time) is related to the energy of the α particle Eα as

log10W = a− b√
Eα

(3.3)

Then coefficients a and b are weakly dependent from Z but have a stronger depen-
dence from N=A-Z. The empirical law expressed by Eq. 3.3 is known as Geiger-
Nuttall law. At this stage, it is still unclear why a nucleus finds more energetically

15
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favorable to emit an He nucleus instead of single nucleons. For now, we just observe
that nucleons prefer to cluster in 2p-2n groups inside a nucleus. A better explana-
tion will be given when we will discuss nuclear structure models and the nuclear
force.

3.2.1 Quantum Tunneling

Classically, a massive particle cannot overcome a potential barrier if it is higher
than its kinetic energy. Quantum mechanically, this process is possible with a cer-
tain probability.
For understanding the tunneling process in α decay, we have to consider two com-
peting forces: the Coulomb repulsion the α particle feels from the other positive
charges in the nucleus and the nuclear force trying to keep the particle bound.
Let us consider an opposite process: an α particle coming close to a nucleus and ex-
periencing Coulomb repulsion (both are positively charged). Let’s call r the distance
between the approaching α and a nucleus with Z protons. Imagining the nucleus as
a uniformly charged sphere with radius R and volume proportional to the number
A of nucleons in it, we can write: R = r0A

1/3 (see next chapter).
Outside the nucleus (r>R) we have a repulsive Coulomb potential

V (r) =
1

4πǫ0

Ze · 2e
r

=
2.88 · Z

r
MeV (3.4)

Now we have a potential expressed in MeV with a distance r expressed in femtome-
ters (fm) (see the previous chapter). Let’s now model the attractive nuclear force
with a square well as wide as R fm. The α particle is bound in the nucleus when
r<R. The height of the potential barrier keeping the α in the nucleus can be esti-
mated calculating the work needed to overcome the Coulomb repulsion for bringing
the α at the surface of the nucleus. Using Eq. 3.4 with R=r, Z=92 and A=238 (238U
case):

E =
1

4πǫ0

Ze · 2e
R

≈ 35MeV (3.5)

The calculated energy should be about the energy of the emitted α particle which
is reality is one order of magnitude smaller, as we have seen before. Therefore, a
purely classical explanation of the process does not work and we have to use quantum
mechanics in order to understand the decay.
If we keep the one-dimensional square well model for the potential confining the α,
we can calculate, using quantum mechanics, the probability for tunneling through it.
This probability is commonly referred as transmission coefficient T and a standard
textbook calculation gives

T =

[

1 +
V 2

4Eα(V −Eα)
sinh2 b

~

√

2m(V −Eα)

]−1

(3.6)

where m is the mass of the particle, V is the height of the potential and b the width.
Since we are considering a tunneling, Eα < V . In the special limiting case where
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Element Eα (MeV) Half-life
206Po 5.22 8.8 days
208Po 5.11 2.9 years
210Po 5.31 138 days
212Po 8.78 0.3 µs
214Po 7.68 164 µs
216Po 6.78 0.15 s

Table 3.1: Half-lives of α-emitting Polonium isotopes. Note the similar α energies
while the half-life varies over several orders of magnitude: a feature explainable only
with quantum mechanical tunneling.

V ≫ Eα,

T ≈ e−
2b
~

√
2m(V −Eα) (3.7)

The transmission coefficient represents the probability of tunneling. It is already
clear from the previous equation how the Geiger-Nuttall (probability proportional
to 1/

√
Eα) law can emerge from a quantum calculation, thus proving the tunneling

origin of the α decay1.
The above calculation represents a very simplified model, since in reality we should
consider the true shape of the potential well in three dimensions which complicates
considerably the calculation of T which actually becomes not analytical although
the main result still holds.

3.2.2 Recoil Energy

The mass of an α particle with respect of an atomic nucleus is significant. Therefore,
after the decay, it is expected that the nucleus will acquire a recoil energy which we
will now estimate.
Using the expressions for momentum (p=mv) and kinetic energy (E=1

2
mv2) we can

derive p2 = 2mE. In the following the subscript α will indicate the α particle and
N the daughter nucleus after the decay.
Using momentum conservation, pN = pα and substituting p2 = 2mE after some
simplifications we obtain the nucleus’ recoil energy:

EN =
mα

mN
Eα (3.8)

As expected, the heavier the nucleus, the smaller its recoil.

1Note the the Geiger-Nuttall law was originally expressed in terms of W, the probability per

unit time while here we calculated a probability. The two quantities are proportional through the

frequency of the α reaching the nuclear surface and the probability of an α cluster formation inside

the nucleus. Both factors are not easy to calculate from first principles.
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Figure 3.1: Quantum tunneling for the α decay. The nuclear binding potential is
modeled as a unidimensional square well.

3.3 Beta Decay

The β decay does not change the mass number A, since there are no nucleons in the
decay products, but Z and N are changed. A generic β decay of a nucleus M1 into
a daughter nucleus M2 is represented by the following reaction:

A
ZM1 −→A

Z+1 M2 + e− + ν̄e (3.9)

What is happening is that one neutron decays into a proton:

n −→ p+ e− + ν̄e (3.10)

The ν̄e is an electronic antineutrino. The neutron decay is a process mediated by
the weak force 2. An example of β decay is

90
38Sr −→90

39 Y + e− + ν̄e (3.11)

90Sr is a typical β emitter used in laboratory applications and its half-life is 29.1
years. β decay happens more likely in neutron-rich nuclei, i.e. when the ratio N/Z
is large. There is no simple relationship between energy of the emitted electron and
the half-life (as for the α decay) since in this case there is a dependence from other
quantum properties of the nucleus (spin, parity, etc). The α decay was a two-body

2In the Standard Model of particle physics, it is assumed that a quantum number called lepton

number L is conserved. It is like charge conservation but it involves a family of particles called

leptons. The electron has, say, L=+1. Since at the beginning there were no leptons, L was zero.

In order to have L=0 also after the decay, the electron must be produced in association with a

particle with L=-1: the antineutrino. Antiparticles have always the opposite quantum numbers

with respect to particles.
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decay and therefore the energy of the α particle and of the recoil nucleus were fixed.
If we measure the energy of electrons emitted in a β decay, we will observe a wide
distribution, instead of a single peak. This fact is explained observing that in this
case we have a 3-body decay and the energy can be distributed in many different
combinations among the three final-state particles. The energy carried away by the
neutrino is usually not observed, since detecting it is a very hard task.
When the energy spectrum of the β decay was first observed, it looked like the
decay was violating energy and angular momentum conservation. Wolfgang Pauli
in 1930 postulated the existence of a new neutral and very light particle (therefore
“neutrino”) for reconciling the known conservation laws. The neutrino was detected
for the first time only in 1953.

The β+ Decay

In this type of decay, a positron (e+) is emitted instead of an electron. This means
that a proton turns into a neutron and Z diminishes by one unit while A stays
constant:

A
ZM1 −→A

Z−1 M2 + e+ + νe (3.12)

Note that in this case for conserving the lepton number we have a neutrino instead
of an antineutrino. This decay happens likely in proton-rich nuclei, ie when N/Z is
low. A β+ decaying nucleus often used in laboratory applications is

22
11Na −→22

10 Ne+ e+ + νe (3.13)

with an half-life of 2.6 years. An interesting use of this isotope is for producing back-
to-back gamma ray couples: the emitted positron annihilates with a surrounding
electron of and two gamma rays are produced (e− + e+ −→ γγ)3. By momentum-
energy conservation, since the mass of the electrons is me=0.511 MeV/c2 and the
annihilation happens at rest, the energy of the γ rays will be 0.511 MeV for each.

3.4 Energetics of the β decay

In a nuclear reaction, labeling with “i” the initial reactants and with “f” the final
state products, the energy conservation can be written as

mic
2 + Ti = mfc

2 + Tf (3.14)

where T is the kinetic energy. Given the last equation the Q value can be written
as

Q = mic
2 −mfc

2 = Tf − Ti (3.15)

In the β− decay case

Q = Tf − Ti = Te + Tν + TD − TP ≈ Te + Tν (3.16)

3Positron annihilation can also produce 3 γs instead of two. The latter process has lower

probability with respect to 2γ production in proportion of 1 to 372. Which of the two decays

happens depends on the relative spin orientation of the electrons.
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Figure 3.2: Electron spectrum from β decay. The endpoint of the spectrum is the
highest energy the electron can have given momentum-energy conservation. The
spectrum is a continuum of energies since the electron and the neutrino share all the
possible combinations of momentum-energy allowed by the conservation principles.

TD is the daughter kinetic energy while TP is the parent one and since

mP ≈ mD ≫ me ≫ mν , (3.17)

we can set them to zero with very good approximation. From the energy balance in
Eq. 3.14 we have:

m(Z,A)c2 −m(Z + 1, A)c2 −mec
2 −mνc

2 = Te + Tν (3.18)

and therefore:

Te + Tν = m(Z,A)c2 −m(Z + 1, A)c2 −mec
2 (3.19)

where me is the electron mass and e have neglected the extremely small neutrino
mass mν . Since experimentally we deal with atoms and not with bare nuclei, we
have to introduce the atomic mass:

matom(A,Z)c2 = Zmec
2 +m(A,Z)c2 − BEel(Z) (3.20)

where BEel(Z) is the binding energy of Z electrons. Inserting this definition in
Eq. 3.19 we obtain:

Q = Te + Tν =
matom(A,Z)c2 − Zmec

2 +BEel(Z) −matom(A,Z + 1)c2

+(Z + 1)mec
2 −BEel(Z + 1) −mec

2 =
matom(A,Z)c2 −matom(A,Z + 1)c2

(3.21)

What we obtained for the β− Q value is:

Q = [matom(A,Z) −matom(A,Z + 1)]c2 (3.22)

Since the decay can happen spontaneously only if Q > 0, this implies that the
atomic mass of the parent must be larger than the one of the daughter.
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3.5 Gamma Decay

We still have to introduce concepts about the nuclear structure, but a nucleus is a
quantum many-body system like an atom. This means that nucleons occupy orbitals
like electrons orbiting around the nucleus. In complete analogy with atoms, when a
transition inside a nucleus happens, radiation can be emitted. In atoms, transitions
result in visible light, IR, UV or X-ray emission. In nuclei the energies are higher
(MeV range instead of the eV in atoms) and we can expect the emission of more
energetic photons, the so called γ rays. The emission of a γ ray does not change the
number of nucleons in the nucleus, so A and Z stay constant:

A
ZM

∗ −→A
Z M + γ (3.23)

The symbol “*” indicates that the nucleus M is in an excited (higher) energy state:
the de-excitation happens via emission of a γ ray. An example of γ decay is:

110m
47 Ag −→110

47 Ag + γ (3.24)

with a half-life of 250 days. The symbol “m” after the mass number indicates that
Silver is in a metastable state. This means that the state is stable but it is not
the one with minimum energy and there is a probability for the nucleus to decay.
Metastable states are also called isomers of the stable nucleus. Metastable states
have in general a longer lifetime (orders of magnitude) than excited states which
have a “prompt” γ decay.
γ decays are classified in three categories:

• Pure γ emission. This is the case when a metastable isomer decays in a lower
energy state emitting a γ ray. The γ energies are in the range between few
keV and about 7MeV. The energy of the γ corresponds almost to the energy
difference between the two levels since the recoil energy is small.

• Internal Conversion. The conversion happens when a γ ray is emitted and
absorbed by an atomic electron. The electron is expelled from the atom after
the absorption. A detector would measure an electron and no γ rays. The
energy of the internal conversion electron will be the difference between the
energy of the nuclear transition and the binding energy of the electron. In gen-
eral, more electrons (called Auger electrons) or X-rays can be emitted after
the expulsion of the first electron. This happens because after the conversion,
the shell structure of the atom has a vacancy and the subsequent rearrange-
ment for “filling the gap” generates more soft radiation or additional electrons.
The name “Auger electrons” comes from Pierre Auger (1899-1993) which
first observed this effect (see Fig. 3.3). Typically, Auger electrons are coming
from the deepest orbitals (closer to the nucleus).

• Pair Production. This decay mode is quite uncommon: the nucleus de-
excitation happens via the emission of an electron-positron pair. This can
happen only if the transition energy is bigger than 1.02 MeV, which corre-
sponds to twice the electron mass. The positron can undergo annihilation as
discussed previously in the case of 22Na.
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Figure 3.3: Internal conversion process: the example of 113In. The energy spectrum
below shows a sharp peak corresponding to the electron knocked out by the γ ray
while the smaller peak correspond to Auger electrons following the rearrangement
of the atomic shells.

3.6 Electron Capture

In this decay mode, discovered in 1938, an atomic electron is captured by the nucleus
and an inverse β decay happens:

A
ZM1 + e− −→A

Z−1 M2 + νe + (γ/e−) (3.25)

Electron capture decreases Z by one unit keeping A constant, like the β+ decay.
The expression (γ/e+) symbolizes a variety of phenomena involving the emission of
electrons (like Auger electrons) and/or radiation (X-rays and γ). An example of
electron capture is the rare earth process:

172
71 Lu −→172

70 Y b+ (X-rays) + (Auger − e−) + ν (3.26)

Electron capture happens more often in high-Z nuclei and the electrons of the inner-
most shells are affected. Shells with principal quantum number n=1 are also called
K-shells. When one of the electrons with n=1 is captured, the term K-capture is
used. The next L-shells (with n=2) are also affected but this happens with a higher
probability in heavy nuclei. Neutrinos emitted in this process have a precise energy
equal to the difference between transition energy and electron binding energy. The
binding energy is much smaller (eV range) and can be neglected with respect to the
transition energy (MeV range).
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3.7 Other Decays

The most common decays were discussed in the previous sections, while here we list
some less common decays which can happen.

• Spontaneous Fission. Some nuclei, especially the very heavy ones, might
undergo spontaneous fission. This means the the parent nucleus splits in two
daughter nuclei of similar weight. An example is 252

98 Cf −→98
38 Cf+152

60 Ne+2n.
Spontaneous fission is different from induced fission which will be treated later.

• Delayed Neutron Emission. Some nuclei, after β decay can form daughter
nuclei in excited states. Usually these states decay γ but in some cases, a
neutron is emitted right after the β decay. The lifetime of the neutron emission
is about the same of the previous β decay. This happens usually to neutron-
rich fission products.

• Delayed Proton Emission. This decay is the analogous of the previous one
and is even more rare. It is likely to happen in proton-rich nuclei.

• Double-β Decay Some nuclei are stable against β decay but not against
double β decays. This decay is more rare than the normal β decay and it
consists of the simultaneous (not sequential) emission of two electrons. An
example is the decay 82

34Se −→82
36 Kr + 2e− + 2ν̄e with a half-life of about 1020

years. The long half-life underlines the rarity of this process4.

• Double Proton Decay This is the proton version of the previous decay.
Predicted in the 70s, it was first observed in 1983 in the proton-rich nuclei
22Al and 26P .

• Cluster Emission Decay. In this decay, an unstable nucleus decays expelling
a cluster of protons and neutrons. The cluster is a tightly bound nucleus. The
α decay is in some sense an example. The expulsion of an 14C is the case of
222Ra and 224Ra. Emission of 24Ne from 232U was also observed. What distin-
guishes cluster emission from fission is the fact that the cluster is significantly
lighter than the parent nucleus.

3.8 Decay Combinations and Branching Ratios

In this chapter, we discussed the possible decay modes of a radioactive nucleus. The
decay can significantly alter the nuclear structure, changing an element into another
but sometimes there are also consequences at the atomic (and therefore chemical)
level. Some nuclei can have more than one decay mode: all the allowed decays might
happen with different probabilities which are called branching ratios. An example

4Another version is the so-called neutrinoless double β decay where there are two electrons

in the final state but no neutrinos. This process has not yet been observed and it is subject to

active research at the interface between nuclear and particle physics. If found, it would be a major

discovery since it is linked to still unknown neutrino properties.
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Figure 3.4: Possible α decays to different daughter states and possible following γ
decays.

is the transuranic element 252Cf which can either α-decay or undergo spontaneous
fission. The branching ratios for the two decays are 97% and 3% respectively.
Another frequent case is the combination of different decays. For example, a nucleus
can undergo α decay from a nucleus (A,Z) to a daughter (A-4,Z-2) or to an excited
state of the same daughter. The excited state will decay to the ground state with γ
emission, see Fig. 3.4;

3.9 Rates of Decay

The radioactive decay is a random process: the time when an unstable nucleus will
decay is a random variable. If we observe a sample containing a radioactive sub-
stance and therefore many radioactive nuclei, we can draw some statistical results
although the behavior of the single nucleus is not deterministically predictable.
The rate of decay (the number of decays per unit time) is called activity A (mea-
sured in Becquerels (Bq) or disintegrations per second).

3.9.1 Single Decay

In differential notation, considering an infinitesimal time interval, the activity is
A = −dN(t)/dt where N is the number of nuclides at the time t. The minus sign
comes from the fact that the amount of nuclei must decrease in time. The amount
of disintegrations per unit time must be proportional to the amount of radioactive
nuclei present at a certain time (more nuclei implies more decays) and therefore we
can write:

−dN
dt

= λN (3.27)
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Given the boundary condition N(0) = N0 it is easy to solve the last differential
equation by variable separation. The solution is

N = N0e
−λt (3.28)

The inverse of λ has the dimension of time: τ = 1/λ and it is called average
lifetime of the radioactive nucleus. For calculating the time after which the initial
amount of radioactive material N0 is reduced by one half (N0/2), we ask:

N0

2
= N0e

−λt1/2 (3.29)

and solve for t1/2:
t1/2 = τ ln 2 ≈ 0.693τ (3.30)

The lifetime t1/2 is called half-life of the radioactive nucleus.

3.9.2 Branching Decay

A parent nucleus can have multiple decay channels. Let’s consider a nucleus that
can decay via two different decays each of them having different probabilities and
therefore different average decay times τ1 and τ2. The total activity A of the nucleus
will be composed by the sum of the activities of both decay channels (since they are
independent):

A =
1

τ1
N +

1

τ2
N = N(

1

τ1
+

1

τ2
) =

N

τ
(3.31)

where N1 and N2 are the amounts of the two possible daughters resulting from the
two possible decays. The average time τ is the total average time of the parent
nucleus.

3.9.3 Double Decay Chain

A parent nucleus A can decay in another radioactive nucleus B which decays into
C. Both decays will have an inverse average time λA and λB respectively:

A
λA−→ B

λB−→ C (3.32)

The parent A decays according to the already known formula −dNA

dt
= λNA. B is

also decaying (into C) and therefore −dNB

dt
= λNB is also true. The amount of B

nuclei depend from the decay of A and actually the decay rate of A is equal to the
formation rate of B:

dNB

dt
= λANA (3.33)

Note that the minus sign is not present in the last equation, since we are considering
formation, not decay. Combining the equations we have so far, the overall change
in the activity of B is:

dNB

dt
= λANA − λBNB (3.34)
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If we suppose to know the initial amount of A (N0
A) we can solve the fist activity

differential equation obtaining NA = N0
Ae

−λAt. Inserting this result in Eq. 3.34 gives
the following differential equation:

dNB

dt
+ λBNB − λAN

0
Ae

−λAt = 0 (3.35)

The solution of the last equation gives an expression for calculating the amount of
B at any time, given the knowledge of the initial amount of A and of the two decay
times:

NB =
λA

λB − λA
N0

A(e−λAt − e−λBt) +N0
Be

−λBt (3.36)

The last equation can be simplified in some limiting cases:

• Transient Equilibrium: Suppose the half-life of the parent A is longer than
the one of the daughter B but still short enough that we can measure decays
of A during an experiment. In this situation, after some time the term e−λB

can be ignored and Eq. 3.36 reduces to

NB =
λA

λB − λA
N0

Ae
−λAt =

λA

λB − λA
NA (3.37)

or, rearranging the terms:
NB

NA

=
λA

λB − λA

(3.38)

The last formula tells us that after some half-lives of the daughter nucleus B,
the ratio of the two species reaches a phase where it is constant. Since the
activity is proportional to the number of nuclei present, also the ratio of the
activities becomes constant.

• Secular Equilibrium: In this case, if the half-life of the parent is much longer
than that of the daughter (so long that we will not detect decays of A during
an experiment), then e−λB ≈ 0 and λB − λA ≈ λB. Eq. 3.38 becomes:

NB

NA
=
λA

λB
⇒ NBλB = NAλA ⇒ AA = AB (3.39)

After a sufficiently long time, the activity of the parent and of the daughter become
equal.
If the lifetimes of A and B are comparable, no approximation is valid and no equi-
librium situation exists.

3.9.4 Multiple Decay Chain

We can consider an arbitrarily long decay chain:

A
λA−→ B

λB−→ C
λC−→ D

λD−→ ... (3.40)
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The first two steps were treated in the previous section. The third step will depend
on the previous one in the same way:

dNC

dt
= λBNB − λCNC (3.41)

The final equation for the activity of C will be a more complicated version of Eq. 3.36:

NC = −λCNC + λB

[

λA

λB − λA
N0

A(e−λAt − e−λBt) +N0
Be

−λBt

]

(3.42)

and so on.
A way to simplify the problem in the case of N nuclei in the chain is due to
H.Bateman (the Bateman equation). Suppose we have a chain of N radioac-
tive nuclei with inverse average decay times λi with i=1..N. Let’s assume also that
only the parent is present at the beginning: N1(0) = N0

1 and Ni(0) = 0 for i¿1.
Under the above hypotheses, the abundance of the final nucleus NN is

NN = C1e
−λ1t + C2e

−λ2t + ... =

N
∑

i=1

Cie
λit (3.43)

and the constants Ci are:

C1 =

∏N−1
i=1 λi

(λ2 − λ1)(λ3 − λ1)...(λN − λ1)
N0

A (3.44)

C2 =

∏N−1
i=1 λi

(λ1 − λ2)(λ3 − λ2)...(λN − λ2)
N0

A (3.45)

and so on for C3..CN . The numerator of the coefficients C is the product of all
the decay constants except the last one. The denominator is the product of all the
decay constants with the one of interest subtracted. Each coefficient contains also
the initial amount of the parent N0

A.

3.10 Creation of Nuclides by Neutron Flux Irra-

diation

Neutrons can activate a nucleus A transforming it into a radioactive one B. Nuclear
reactors are an example of environment where a high neutron flux φ (number of
neutrons per area per time) is present. If the cross section for neutron capture is σ,
and the number of target nuclei is n, then the formation rate R of the new nucleus
B is

R = nφσ (3.46)

Usually, n, φ and σ are constants, so R is also constant. If the decay constant of B
is λB, its activity is:

dNB

dt
= nφσ − λBNB (3.47)
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The solution of the above equation, giving the total activity after neutron irradiation
is:

AB = λbNB = nφσ(1 − e−λBt) (3.48)



Chapter 4

Nuclear Force and Nuclear
Structure

4.1 Introduction

The nucleus is a many-body quantum system and as such it is extremely difficult to
describe. There are some analogies with the difficulties in modeling atoms but also
differences complicating more the physics of nuclei. The electrons around an atom
experience with very good approximation a predominant central Coulomb force from
the nucleus plus a weaker force coming from the repulsion among the electrons them-
selves. The force is purely electromagnetic and completely known.
In a nucleus, there is no clear center from where the confining force comes from: all
the nucleons are exerting a force to all the others. The force keeping nucleons bound
is called nuclear force and it will be discussed more in details later. This force is
still not fully known. For complicating things more, there are two different particles
to take into account: protons and neutrons. All the latter features give the nucleus
a very rich phenomenology.
Roughly, nuclear models can be divided in two main categories: collective models
and microscopic models. Collective models disregard the particle structure and
try to treat the nucleus as a whole. This means that collective coordinates (mass,
volume, etc.) are used. Microscopic models are more fundamental and try to de-
scribe the nucleus starting from its proton-neutron structure with different degrees
of approximation. In this case, the coordinates are positions, momenta, spin etc. of
the single particles. We will discuss collective models first since a detailed knowledge
of the nuclear force is not needed.

4.2 Weizsäcker Semiempirical Mass Formula

The model takes its name from from the name of its proposer Carl von Weizsäcker
(1912-2007). Experimentally, the binding energy EB(Z,N) of a nucleus is approx-
imately proportional to the number of nucleons A. This means that the binding
energy is also proportional to the volume of the nucleus: this is why such a model is
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also referred as liquid drop model. The nucleus is thought as an incompressible liq-
uid drop with a certain volume (proportional to the particles contained) and surface.
In first approximation we can write

EB(Z,N) = α1A (4.1)

The coefficient α1 is called volume energy parameter. The last equation is very
approximate and needs corrections since it tends to overestimate the binding energy
as A grows. The first correction comes from surface effects: nucleons at the surface
of the nucleus are less bound so the total binding energy should decrease with the
number of them:

EB(Z,N) = α1A− α2A
2/3 (4.2)

and α2 is the surface energy parameter.
Another corrections comes from the electric repulsion among protons which should
diminish the total binding energy:

EB(Z,N) = α1A− α2A
2/3 − α3

Z2

A1/3
(4.3)

with α3 the Coulomb energy parameter. In the third term, the formula of the
Coulomb energy can be recognized. The 1/A1/3 factor comes from the fact that we
are considering the nucleus a spherical object with constant density and therefore
the radius is R = r0A

1/3. All the constants are factorized in the Coulomb energy
parameter. According to this term, isobaric (same A) nuclei with less protons are
more bound.
Another correction comes from the following observed fact: nuclei with Z ≈ N
are more bound. An imbalance among neutrons and protons corresponds to a less
bound nucleus. This observation leads to the symmetry energy correction:

EB(Z,N) = α1A− α2A
2/3 − α3

Z2

A1/3
− α4

(Z −N)2

A
(4.4)

with α4 the symmetry energy parameter. The presence of a factor A in the de-
nominator compensates the growing number of neutrons present in heavy nuclei. In
heavy nuclei, the electric charge is so high that only more neutrons can compensate
for it and keep the nucleus bound, therefore a larger asymmetry among nucleons is
tolerated.
The existence of the symmetry term already points to certain properties of the nu-
clear force. Another property is that even-Z/even-N nuclei (even-even for short) are
more bound. This property is called pairing. For dealing with pairing force, we
introduce another correction:

EB(Z,N) = α1A− α2A
2/3 − α3

Z2

A1/3
− α4

(Z −N)2

A
+ ∆ (4.5)

where

∆ =







δ for even-even nuclei
0 for odd-mass nuclei
−δ for odd-odd nuclei

(4.6)
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Figure 4.1: Binding energy per nucleon as a function of the number of nucleons A.

The last final form obtained is the Weizsäcker mass formula. Typical values for the
constants are (depending on the fitted dataset):

α1 = 16MeV α2 = 17MeV
α3 = 0.6MeV α4 = 25MeV
δ = 25

A
MeV .

(4.7)

The parameter δ is the less determined one since it varies significantly more than
the others given the dataset considered.
In Fig. 4.1 is shown the binding energy per nucleon as a function of the number
of nucleons and a fit using the Weizsäcker mass formula. Note that EB/A grows
towards a maximum around the Fe nucleus (A≈56) and then slowly decreases (be-
cause of Coulomb repulsion). This behavior explains why we can obtain energy by
nuclear fusion with light elements or nuclear fission with heavy elements. If two light
elements fuse together, the EB/A will be higher for the resulting nucleus and the
excess energy will be released. The opposite happens with heavy nuclei: for them it
is more energetically convenient to fissionate and produce two daughter nuclei with
higher EB/A.

4.3 Vibrational Model

Following the analogy with a liquid drop, in first approximation we can consider a
nucleus as a sphere. In this way, for the moment, we can neglect rotations. If the
nucleus is excited (for example with radiation of by another particle), it might start
vibrating around the ground-state spherical shape. If the vibration is not too big,
the density of the nucleus will stay the same but the shape of the surface will vary.
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We can describe the departure from the spherical shape with

R(θ, φ, t) = R0{1 +
∑

λµ

αλµ(t)Yλµ(θ,φ)} (4.8)

where R is the distance from the center to the surface at a given point (in spherical
coordinates) at a give time t. R0 is the equilibrium radius (radius of the ground-
state sphere). The parameters αλµ are called shape parameters.
Each oscillation mode λ has 2λ + 1 values for µ. Symmetry requirements and the
fact that R should be a real number reduce the number of combinations allowed.
The λ = 1 mode corresponds to an oscillation around a fixed point or to an oscillation
of the protons against the nucleons (the “giant resonance”, see next). The λ = 2
mode is called quadrupole mode and the λ = 3octupole mode and so on.
The rate of change of the nucleus can be thought as a velocity, therefore we can
write the “kinetic energy” as

T =
1

2

∑

λµ

Aλ|
dαλµ

dt
|2 (4.9)

where Bλ might be interpreted as a mass of the liquid drop. Continuing the non-
relativistic analogy to a vibrational problem, we might introduce also a potential
energy:

V =
1

2

∑

λµ

Bλ|αλµ|2 (4.10)

The parameters Bλ can be related to the surface and Coulomb energies of the liquid
drop (see also the previous model). The equations of motion are therefore:

Aλ
d2αλµ

dt2
+Bλαλµ = 0 (4.11)

The frequency of the oscillation is:

ωλ =

√

Bλ

Aλ

(4.12)

The minimum quantum of oscillation energy will be E = ~ωλ. A nucleus can
transition from one vibrational state to another emitting radiation. The radiation
energy will be equal to the energy difference among the levels.

4.4 Rotational Model

Previously, we assumed a basic spherical shape for a nucleus. There is no funda-
mental reason why a nucleus cannot have a different shape in its ground state and in
fact this is what is realized in Nature: nuclei can have different shapes which differ
from a sphere. Such nuclei are called deformed. In considering different shapes,
we are forced also to consider the possibility of rotational degrees of freedom. We
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Figure 4.2: Graphic representation of an oblate (left) and prolate (right) nuclei.

are not going to discuss rotational models in detail but try to highlight the main
observations.
In general, closed-shell1 nuclei are spherical. The reason is that for closed-shell nu-
clei, the M quantum number (the projection of spin along the quantization axis) is
zero. When M=0, the object is invariant under rotations and therefore the shape
must be spherical. For nuclei with more or less nucleons than the closest closed-shell
nucleus, it is energetically more convenient to assume a deformed shape. The de-
formations are mainly classified in two kinds, taking an axis (usually z) as reference
(see Fig 4.2):
- Prolate nuclei: elongated along the z axis
- Oblate nuclei: flattened at the poles.
Stable nuclei are generally close to the spherical shape, while heavy nuclei (A¿150)

show (large) deformations. Quantum mechanically rotational states of deformed
nuclei can be described starting from the hamiltonian of a quantum rotator:

H =
3

∑

i

= 1
~

2

2Ii
J2

i (4.13)

where the sum is over the three inertia axes, Ii are the moments of inertia and
Ji the angular momentum operators. Starting from this point, eigenfunctions and
eigenvalues can be calculated and confronted with experimental results.

4.5 Giant Resonance

The phenomenon of giant resonance is found in almost every nucleus which is excited
with another particle (electron, photon, proton, another nucleus,..). TO fix the ideas,
let’s imagine a beam of protons hitting a 208Pb nucleus and exciting it. using the
reaction notation: 208Pb(p,p’)208Pb∗. If we measure the energy difference between
the incoming and the emerging protons (p and p’ respectively) and report the counts

1In analogy with atoms, a closed-shell nucleus is a nucleus where all the orbitals are filled by

nucleons without any “hole”. For example, Helium, the lightest noble gas has the 1s and 2s orbitals

filled. Helium is also “noble” in the sense of nuclear physics, since the first nuclear energy level is

completely filled with two protons and two neutrons. The nuclear shell structure will be treated

more in details later in this chapter.
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Figure 4.3: The first peak in the histogram is a giant dipole resonance.

as a function of this energy difference, we are looking at an excitation energy plot.
The most striking feature of the plot is the appearance of a big resonance in the
10MeV region. Other resonances are all smaller and this happens for almost all
nuclei. This prominent resonance is called giant resonance and it is a collective
excitation of the whole nucleus. The energy E at which this resonance seats is well
approximated by the empirical formula

E ≈ 78 ×A−1/3 (4.14)

The most common giant resonance (studied since 1940s) is called giant dipole
resonance and its collective model interpretation is a movement of the protons
against the neutrons (see Fig. 4.3). Since all the positive charges are moving as a
whole, the nucleus is in first approximation like an electric dipole (and therefore the
name).

4.6 Fermi Gas Model

The liquid drop model was assuming a nucleus composed by particles interacting
strongly and it was somewhat a classical picture, although able to reproduce the
general behavior of the binding energies. Now we would like to do a small step
towards a quantum description of the nucleus. Actually, many properties of the
nucleus can be derived thinking not at strongly interacting particles, but at non-
interacting particles confined in a potential. The simplest of such models is the
Fermi Gas Model. In this model, the nucleons move freely inside a sphere but they
are subject to the Pauli exclusion principle (here is where quantum mechanics comes
in). The sphere has radius R = R0A

1/3 with R0 ≈ 1.2fm. The confined nucleons,
according to quantum mechanics can have only discrete energy levels. Protons and
nucleons can be thought as confined in two separate potential wells. The wells are
different is shape because the proton’s one has the Coulomb barrier. In particular,
the proton’s well is higher than the one of the neutrons because of this. Each level of
each well can be occupied at most by two nucleons (which differ from spin) because
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of the Pauli exclusion principle. It is assumed that the temperature of the system is
so low that the nucleons try to occupy the lowest levels possible up to a maximum
kinetic energy EF , called Fermi energy. The uncertainty principle ∆x∆p ≤ ~ tells
us that the phase space must be thought as partitioned in cells of h = 2π~ volume
and therefore, the number of particles fitting in a phase space with volume

∫

d3xd3p
is

N =

∫

d3xd3p

(2π~)3
=
V

∫

d3p

(2π~)3
(4.15)

where in the second equation we considered the total volume of physical space equal
to V. For the second integral, we can consider spherical coordinates in the momentum
space where the radius is the modulus of the momentum. Integrating over all the
angles and up to a maximum radius p:

N =
V p3

6π2~3
(4.16)

Having assumed a spherical nucleus, V = 4πR3/3 = 4πR3
0A/3. Combining the

above formulas, for a neutron the maximum momentum will be

pF (N) =
~

R0

(

9πN

4A

)1/3

(4.17)

and for a proton:

pF (Z) =
~

R0

(

9πZ

4A

)1/3

(4.18)

From the momentum, it is possible to calculate the Fermi energy:

EF =
p2

2m
≈ 40MeV (4.19)

The mean energy of a nucleon can be obtained with:

〈E〉 =

∫ pF

0
Ed3p

∫ pF

0
d3p

=
3

5
EF ≈ 24MeV (4.20)

The last result shows that the average energy per nucleon is quite smaller with
respect to its rest mass and this justifies a non-relativistic treatment of the nucleus,
at least with good approximation.
Using the last expressions, the total average kinetic energy considering both protons
and neutrons is

〈E(Z,N)〉 = Z〈EZ〉 +N〈EN 〉 =
3

10m
(Zp2

F (Z) +Np2
F (N)) (4.21)

and therefore:

〈E(Z,N)〉 =
3

10m

~
2

R2
0

(

9π

4

)2/3
N5/3 + Z5/3

A2/3
(4.22)
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The latter energy expression has a minimum for an equal number of protons and
neutrons N=Z=A/2 for a given A.
Let’s try to understand how the energy varies in the neighborhood of the minimum
assuming Z+N=A and Z-N=ǫ where ǫ is a small number. Inverting the latter
relations, Z = 1

2
A(1 + ǫ/A) and N = 1

2
A(1 − ǫ/A). Now x = ǫ/A is a small

parameter and we can use the Taylor expansion (1 + x)n ≈ 1 + nx+ n(n−1)
2

x2 + .. in
Eq. 4.22 obtaining

〈E(Z,N)〉 =
3

10m

~
2

R2
0

(

9π

4

)2/3 (

A+
5

9

(Z −N)2

A
+ ..

)

(4.23)

We notice the close similarity with the liquid drop model: the leading term is pro-
portional to A (as the volume energy) while the next term has the same form as the
symmetry energy.
It is also possible to derive a surface energy correction by subtracting to the full
energy a term obtained integrating only the momenta on Fermi surface. Such a
term is negligible in the large volume limit.

4.7 Magic Numbers and the Shell Model

We have seen already in the over-simplified Fermi gas model, that nucleons can be
treated as independent particles inside a potential well. The Pauli exclusion princi-
ple permits to avoid “collisions” among nucleons inside the nucleus and this is why
an independent particle model approximately works. In the following, we are going
to discuss the so-called Shell Model of the nucleus, which is the first step towards
a microscopic description of nuclei.
Already in the 1930s it was recognized that nuclei with Z and N (or both) having
values like 2, 8, 20, 28, 50, 82, 126 were particularly stable. Those numbers were
called magic numbers.
Magic nuclei are 4He, 16O, 40Ca, 90Zr, 208Pb with Z=2,8,20,40,82 and N=2,8,20,50,82,126.
The the beginning, J.Bartlett and W.Elsasser in 1932 tried to explain the pattern of
the magic numbers with a shell model analogous to the atomic one, but they were
not able to explain all of them. It was only in the early 1950s that M.Goeppert-
Mayer and J.Jensen were able to explain all the magic numbers: the key missing
element was a spin-orbit coupling in the nuclear force.
Basic facts pointing to the existence of magic numbers are:

• The energies of the first excites states in magic nuclei are higher than those of
nearby nuclei (see Fig. 4.4).

• The energy needed for removing a nucleon from a magic nucleus is higher than
in nearby even-even nuclei.

• The shape of the ground state is spherical for magic nuclei.
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Figure 4.4: Energy of the first excited states as a function of the proton (top) and
neutron (bottom) numbers. The diagram clearly shows peaks at the location of the
magic numbers.
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4.7.1 Digression: The Nuclear Quantum Many-body Prob-
lem

In the following, we will only introduce the formalism for microscopic models since
a full treatment would bring us too far from the topic of these notes. Moreover, it
is a very complex topic, still subject of active research.
The one of the central problems is the solution of the N-body stationary Schroedinger
equation:

HΨα(r1, r2, .., rA) = EαΨα(r1, r2, .., rA) (4.24)

where H is the hamiltonian, Eα the energy eigenvalues and Ψα(r1, r2, .., rA) the N-
body eigenfunctions dependent from the coordinates of every nucleon. The hamil-
tonian is composed by a kinetic and a potential term:

H =
A

∑

i=1

~
2

2µi

∇2
i +

∑

i6=j

Vij (4.25)

where µi is the reduced mass of the nucleons. The usual approach is the expansion
of the eigenfunctions on a complete basis state up to D states:

Ψα(r1, r2, .., rA) =

D
∑

k=1

Cα
k Φk(r1, r2, .., rA) (4.26)

Multiplying Eq. 4.24 from the left by Φ∗, using the definition 4.26 and the complete-
ness of the basis the problem can be recast in the following matrix form:

D
∑

k=1

HjkC
α
k = EαC

α
j (4.27)

The energy eigenvalues can be obtained solving the secular problem det(H−EαI) =
0. Once the Eα are obtained, also the expansion coefficients Cα

j are known and there-
fore also the wavefunctions. It is clear that for a correct description of the nucleus,
a large value of D should be used, which complicates the numerical treatment of the
problem. A careful choice of the expansion basis is also crucial for the feasibility of
the calculation.
We are not going into the details of the basis states, but we just point out that since
the nucleons are Fermions (particles obeying the Fermi statistics and the Pauli exclu-
sion principle) the basis states must be antisymmetric. The correct antisymmetriza-
tion is achieved writing the basis state as a Slater determinant of single-particle
wavefunctions:

Φk(r1, r2, .., rA) =
1√
A!
det

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1) φ1(r2) . . . φ1(rA)
φ2(r1) φ2(r2) . . . φ2(rA)

...
...

. . .
...

φA(r1) φA(r2) . . . φA(rA)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.28)

A simple choice for the single-particle wavefunctions are the harmonic oscillator
ones.
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4.8 The Nuclear Force
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Chapter 5

Nuclear Reactions

Nuclear reactions are a general name for the interactions of nuclei with other particles
or other nuclei. Nuclear reactions are important both in applications and in basic
science as a method to explore the nuclear structure.

5.1 Reaction Types

Reactions are classified mainly in two groups:

• Elastic Reactions: in this case the target nucleus and the projectile do not
change at the end of the reaction. For example, proton elastic scattering
against carbon will be: 12C(p,p)12C.

• Inelastic Reactions: in this case, the projectile loses energy which goes into
the target for exciting or breaking it. In the latter case of proton scattering
against carbon we could have: 12C(p,p’)12C∗.

If we consider the inelastic collision of two nuclei, more sub-cases arise. Let’s con-
sider the collision of Deuterium as projectile and Cobalt as target. Some possible
cases are summarized below:

Reaction Type
59Co(d,d)59Co Elastic
59Co(d,d’)59Co∗ Inelastic
59Co(d,γ)61Ni Radiative Capture
59Co(d,p)60Co Stripping
59Co(d,n)60Ni Stripping
59Co(d,3He)58Fe Pickup
59Co(d,α)57Fe Pickup

During a nuclear reaction, energy, linear momentum, angular momentum and mass
number are conserved. The amount of energy absorbed or released by the reaction is
commonly known as the Q of the reaction. If Q is positive, the reaction is exoergic
and energy is released. IF the Q is negative, the reaction is endoergic and the
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reaction requires energy in order to happen.
If the Q is negative, the projectile must have a higher energy than |Q| for initiating
the reaction. The reason is that part of the projectile’s energy goes into momentum
conservation and in overcoming the Coulomb repulsive barrier.
the minimum amount of energy needed to initiate the reaction is called threshold
energy.

5.2 Momentum Correction

We would like to estimate the amount of energy needed for initiate a reaction with
negative Q. Let’s consider an approximate case where we neglect relativity and
assume the target nucleus at rest with mass M. The projectile with mass m will
hit the target with velocity vi in the center forming a compound nucleus with total
mass (m+M). After the collision, the final nucleus will move with velocity vf .
The kinetic energies before and after the collision will be Ei = 1

2
mv2

i and Ef =
1
2
(M +m)v2

f respectively.
Momentum conservation requires:

mvi = (m+M)vf ⇒ vf =
m+M

m
vi (5.1)

Squaring vf in the last equation and comparing it with vi = 2Ei/m from the initial
kinetic energy:

2Ei

m
=

(

m+M

m

)2

v2
f (5.2)

and solving for Ei we obtain:

Ei =
(m+M)2v2

f

2m
(5.3)

Now we can calculate the ratio between final and initial kinetic energies:

Ef

Ei
=

m

m+M
(5.4)

The ratio in the last equation represents the fraction of initial kinetic energy required
to fulfill the momentum conservation law. We can now calculate

Ef

Ei
+ X = 1: X

will be the fraction of energy left and available for the reaction:

X =

(

M

m+M

)

Ei (5.5)

The last fraction should be equal at least to Q for starting the reaction (the threshold
energy), therefore we need a projectile energy of at least:

Eth
i =

(

m+M

M

)

|Q| (5.6)
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As an example application, consider the reaction (discovered by Rutherford, see the
history chapter):

14N + α −→17 O + p+Q (5.7)

with Q = -1.19.
Using Eq. 5.6 we can calculate the minimum kinetic energy of the α particle needed:

Eth =

(

Mα+MN

MN

)

Q =

(

14 + 4

14

)

1.19 ≈ 1.5MeV (5.8)

The last estimate is still an underestimation: we have to take into account additional
energy needed to overcome the Coulomb repulsion between the nuclei.

5.3 Coulomb Barrier Correction

The Coulomb barrier the projectile particle with Z1 protons has to overcome for a
target with Z2 protons and a distance equal to the sum of their radii is:

Ec =
Z1Z2e

2

R1 +R2
(5.9)

Remembering that e2 = 1.44MeV fm and using for the radius the uniform density
approximation R = R0A

1/3 = 1.4A1/3fm:

Ec =
1.44 · Z1Z2

1.4(A
1/3
1 + A

1/3
2 )

(5.10)

In the case of the reaction considered before:

Ec =
1.44 × 2 × 7

1.4(141/3 + 41/3)
≈ 3.6MeV (5.11)

The last estimation is classical and in some cases, quantum mechanical tunneling
can lower the Coulomb barrier energy needed.
Combining the two corrections we calculated so far, we need a projectile with an
energy of at least the Coulomb barrier energy times the fraction required by the
momentum correction. Applying this to the αN reaction:

Eth =

(

Mα+MN

MN

)

× ECoulomb =
14 + 4

14
× 3.6 ≈ 4.6MeV (5.12)

So we need at least 4.6MeV α particles for initiating the reaction.

5.4 Cross Section

A key parameter describing a reaction is its cross section usually indicated with
the letter σ. The cross section is what an experiment can measure and it is also
what the theoretical calculations predict. The cross section is directly related to
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the probability of the reaction to happen. Classically, the cross section has a simple
geometrical meaning. Since the projectile, for interacting with the target must hit it,
the probability of the process should be proportional to the area of the target seen
by the projectile. In a very simple approximation where the nucleus is a sphere,
the total geometric cross section will be σ = πR2 where R is the radius of the
nucleus. In fact, since the nucleus is a sphere, the effective surface the projectile
“sees” is a disk of area σ. In nuclear physics, cross sections are of the order of one
barn=10−24cm2=100fm2. During an experiment, we can measure the number of
particles emerging from a reaction in a given energy range and in a given angular
range. This permits the calculation of a differential cross section. If we would be
able to measure all the energies and all the angles, then we can calculate the total
cross section which is the equivalent of the geometric cross section previously
considered.
Let’s see how the cross section is experimentally measured in some cases.

5.4.1 Thin Target

A target is considered thin is the projectile particles are not attenuated passing
though it. The number of particles per second I is called flux (or current) and
the flux per area is called flux density or current density and is measured in
cm−2s−1. If the target is thin, the flux density is constant across the target. The
number of reactions induced by the projectiles per unit time (the rate R) is:

R = Idρσ (5.13)

where d is the target thickness and ρ the number of target nuclei per unit volume.
If the target is embedded into an uniform flux (the main example is a target inside
the neutron flux of a nuclear reactor) the rate is given by

R = nφσ (5.14)

Another useful form is obtained integrating over time the last one:

Nreactions = NtargetsφσT (5.15)

where t is the total exposure time (irradiation time).

5.4.2 Thick Target

A target is thick is the projectiles are attenuated passing through it. If the initial
flux is I0, the attenuation (difference in flux between two points in the target) will be
proportional to the target thickness, the number of nuclei in the target, the intensity
of the beam and the cross section. In differential terms, for a distance dx in the
target, the attenuation will be:

−dI = Iρσ · dx (5.16)

Solving for I with the boundary condition of an initial flux I0 and starting distance
x=0 we find:

I(x) = I0e
−ρσx (5.17)



Appendix A

Statistics and Error Analysis

A.1 Momentum Generating Functions

The momentum generating function Mx(t) is defined as the expectation value of etx:

Mx(t) = E(ext) (A.1)

From the linearity properties of E we have:

Mx(t) = 1 + tE(x) +
t2

2!
E(x2) + ... =

∑

i

ti

i!
E(xi) (A.2)

The momentum generating function gives all the moments Mk of the distribution
according to:

Mk =
dkMx(t)

dtk
|t=0 (A.3)

A.2 Binomial Distribution

Let us consider a random event E which happens with a constant probability p.
The probability that E will not happen is q=1-p. We would like to determine the
probability P(N,k) that in N repeated trials the event E happens k times. In N
trials, there are

(

N
k

)

=
N !

(N − k)!k!
(A.4)

possible simple combinations (or groups of k positive outcomes). Since the events
are independent, there is a probability pkqN−k that we have k positive and (N-k)
negative outcomes.
Putting together the latter observations, we have:

P (N, k) =

(

N
k

)

pkqN−k (A.5)

The average of this distribution is E(x) = Np and the variance V (x) = Npq.
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A.3 Poisson Distribution

The Poisson distribution can be seen as a limit of the Binomial distribution when
N → ∞ as the product Np stays constant, say Np = λ. Another way to look at the
Poisson distribution is to say that it gives the probability to observe k events when
λ are expected.
The limiting Binomial distribution can be rewritten as:

lim
N→∞

(

N
k

)

pkqN−k =
1

k!
N(N − 1)..(N − k + 1)

(Np)k

Nk

(

1 − Np

N

)N−k

(A.6)

The term N(N−1)..(N−k+1) in the limit goes like Nk and the term in parenthesis
as eλ. After substitution and simplifications we obtain the Poisson distribution:

P (λ, k) =
λkeλ

k!
(A.7)

The Poisson distribution can be obtained also asking what is the probability of a
given number of events k occurring in a fixed interval of time (and/or space) if these
events occur with a known average rate and independently of the time since the last
event.
The parameter λ can be interpreted as the product of a rate R and a time interval
T: λ = RT .
It turns out that E(x) = V ar(x) = λ so the Poisson distribution has average equal
to its variance.

A.4 Exaple: Radioactive Decays

Let’s consider a radioactive substance containing a radionuclide. The probability of
detecting k decays in a certain time T is given precisely by the Binomial distribution
changing the time T in a certain number of trial measurements N. In this case, the
Poisson distribution is a very good approximation because we are measuring events
with a small probability p but doing a very large number of observations N.
If we measure a rate R for the radioactive substance for a time T, we can calculate λ
and answer the question about the probability of observing k events during the time
T. In practice, whenever the Poisson distribution is a good approximation of the
Binomial, the former is always preferred for computational reasons: the factorials
in the Binomial distributions become quickly difficult to calculate as N and k grow.
The Poisson distribution describes the random arrival time of events in a time in-
terval and a radioactive rate measurement is exactly the same problem. This give
us a way to assess the error affecting a rate measurement which will be equal to the
root mean square of the Poisson distribution, or σ =

√

V ar(x) This means that if
we measure k events, the error on the measurement will be:

R = k ±
√
k (A.8)
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A.5 Normal Distribution

The Normal distribution

N(µ, σ) = e−
(x−µ)2

2σ2 (A.9)

is a limiting case of the Poisson distribution in the case of large λ values.
Let’s first calculate the momentum generating function (MGF) of the Poisson dis-
tribution:

E(etk) =
∑

k

λkeλ

k!
etk = eλ

∑

k

(λet)k

k!
= e−λeetλ = eλ(et−1) (A.10)

The MGF for the Normal distribution is easily calculated:

E(etx) =

∫

N(µ, σ)etxdx = etµ+ 1
2
σ2t2 (A.11)

We would like to show that the limit of the Poisson’s MGF is the Normal’s MGF.
First we rescale a Poisson random variable X as:

Z =
X − λ√

λ
(A.12)

In this way, we have for the new random variable: E(Z)=0 and Var(Z)=1. From
properties of the MGF:

MZ(t) = e−t
√

λMX(
t√
λ

) (A.13)

and therefore:

MZ(t) = e−t
√

λeλ(e
t

√

λ −1) = e
t2/2+ t3

3!
√

λ
+...

(A.14)

The last expression tends to et2/2 as λ → ∞ which is the MGF of a Gaussian with
E(Z)=0 and Var(Z)=1. Remembering from the Biniomial that λ = Np, the latter
limit corresponds to a large number of trials keeping the probability fixed.

A.6 Histograms

The question we would like to answer is what is the error associated to a histogram’s
bin. The error on the X axis is the bin width itself, but what about Y? A bin
generally contains N entries where N can be also zero. Let’s suppose that a bin
contains N entries: if the true value we should see is x, what is the probability of
observing N? In such a case, we can use the Poisson distribution with λ = N and
the error turns out to be

√
N .

In conclusion, histogram bins have a Poisson error of ±
√
N when the bin content is

N entries.
A histogram can indeed be regarded as made with independent Poisson distributions
for the number of entries in each bin.
What stated above is fine as long as we keep in mind what does the error mean.
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Since it comes from the Poisson distribution, it does not have the 68% coverage of
the Normal distribution (68% is the area between ±σ in a Normal distribution).
The Poisson distribution for small counts is also asymmetric and therefore also the
error bars should be asymmetric.
Moreover, we do not know what the variance really is, since N is just an estimate.
Other problems are connected to bins with N=0 which will have no error and this
is suspicious.
Indeed a good solution to the histogram error bars cannot really exist and it would
be better to draw error bars or contours around the model curve we are comparing
with.
All the mentioned problems fade away as N becomes big enough to have the Poisson
distribution approaching a Normal one but still one can object that if we observe N
counts this is it: there is no error involved in that!

A.7 Indirect Measurements

Very often we are interested in quantities which are derived from combinations of
other quantities affected by a measurement error. For example, for obtaining the
area of a square we can just measure a side and then square it. The side measurement
will have an error: what about the error of the square? The general problem is to
derive the error σy of a quantity y which depends on other quantities x1, x2, x3, .. or:
y = y(x1, x2, x3, ..). The quantities xi have also an error σxi

associated with them.
Expanding the definition of root mean square around the average measurements (x
is now the collective vector of variables):

σ2
y =

1

N − 1

∑

i

(fi(x) − f(x̄))2 ≈ (A.15)

≈ 1

N − 1

∑

i

[

(xi,1 − x̄)2(
∂fi(x)

∂x1

)2 + (x2,i − x̄)2(
∂fi(x)

∂x2

)2 + ...

]

= (A.16)

= (
∂f(x)

∂x1
)2σ2

x1
+ (

∂f(x)

∂x2
)2σ2

x2
+ ... (A.17)

The final formula for propagating the errors from the measured quantities xi to the
derived quantity y is:

σy =

√

(
∂f(x)

∂x1

)2σ2
x1

+ (
∂f(x)

∂x2

)2σ2
x2

+ ... (A.18)



Appendix B

Basic Introduction to Quantum
Mechanics

B.1 Introduction

At the turn of the century between 800s and 900s, experiments measuring the ra-
diation spectrum from a black body were showing surprising results which were
unexplained by the available theories of classical mechanics, thermodynamics and
electromagnetism. The first successful equation describing the black body spectrum
was due to Planck, who was forced to introduce a new constant (h, now known
as Planck’s constant) and to assume that the oscillators emitting radiation in the
black body were “quantized” with energy E = hν. In another fundamental contri-
bution, A.Einstein explained the photoelectric effect with the same hypothesis. In
1924, L.deBroglie proposed that matter was behaving like a wave with wavelenght
inversely proportional to the momentum of the particle:

λ =
h

p
(B.1)

The hypothesis was spectacularly confirmed three years later with experiments show-
ing the diffraction of electrons, a phenomenon known only for waves. Many facts
and theoretical results were pointing towards the need of a new kind of physics for
describing the microscopic world. The resulting new theory was called quantum
mechanics and it had many contributors. In the following we will briefly introduce
the quantum mechanics picture first developed in 1926 by E. Schrödinger, which
became quickly popular for its success and similarity with older physics techniques.
The quantum mechanics version developed by W.Heisenberg in 1925 was more ab-
stract and will be more fruitful in the future in connection with relativistic formu-
lations. The Schrödinger picture was called “wave mechanics” while the Heisenberg
picture was called “matrix mechanics”. Schrödinger was quickly able to prove that
his wave mechanics was contained in the matrix mechanics of Heisenberg, but not
the opposite case. Only in 1929, J.von Neumann was able to give a rigorous formal
proof of the equivalence of the two methods.
After this short historical over overview, let’s concentrate on the Schrödinger picture.
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First of all, the Schrödinger equation cannot be derived. Anyway, also Newtons’s
equation F=ma cannot be derived: it is a generalization of experimental facts. The
Schrödinger equation was constructed in the same way: we are looking for an equa-
tion able to accommodate the known facts: after writing it, we can use it to make
predictions and see if it works.

B.2 The Schrödinger Equation

From deBroglie’s hypothesis, we know that matter should behave like a wave, so
let’s consider the simplest wave possible, a plane wave:

ψ = ψ0e
i(k̄x̄−ωt) (B.2)

Introducing the new “quantum” relations discovered by Planck, Einstein and de-
Broglie: p = k~ = h/λ,E = ~ω = hν we can rewrite the plane wave as:

ψ = ψ0e
i
~
(p̄x̄−E·t) (B.3)

We notice that applying specific operators to ψ we can extract important physics
quantities like energy and momentum:

∇ψ =
i

~
pψ (B.4)

∂

∂t
ψ = − i

~
Eψ (B.5)

Rearranging the terms from the last equations we obtain the differential operators
acting on the wave function ψ and extracting the energy and momentum from it:

p̂ψ = −i~∇ψ = pψ (B.6)

Êψ = i~
∂

∂t
ψ = Eψ (B.7)

In the latter equations we introduced the “hat ”notation which denotes operators.
For example, Ê is the total energy operator, not the scalar number E denoting the
classical total energy.
Now we can rewrite Eq. B.7 as

i~
∂

∂t
ψ = (T̂ + V̂ )ψ (B.8)

where we used Ê = T̂ + V̂ . We know the operator extracting the total energy E.
We need the operator for the kinetic energy T. Classically, the kinetic energy can be
rewritten as T = p2

2m
where p is the momentum and m the mass of the particle. We

know already the momentum operator from Eq. B.6, so we can rewrite the kinetic
energy operator T̂ as:

T̂ =
p̂ · p̂
2m

= − ~
2

2m
∇2 (B.9)
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Putting together Eq. B.8 and Eq. B.9 we obtain the celebrated Schrödinger Equa-
tion:

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + V̂ ψ (B.10)

The last equation is a linear differential equation with a first derivative with
respect to time and second derivative with respect to space. The Maxwell
and other classical wave equations had a second derivative in respect to time. More-
over, the Schrödinger equation is complex. Therefore, the Schrödinger equation
looks like a complex version of the heat/diffusion equation.

B.3 Observables

The solution of the Schrödinger Equation is a wavefunction ψ which could be com-
plex, while our measurements in the laboratory are real numbers.
The connection to measurements is given by the Born rule (1926): every observ-
able (position, momentum, etc..) is associated to an hermitian operator Â. Let
restrict us only to discrete cases. The operator Â will have a discrete spectrum of
eigenvalues ai and eigenfunctions fi when acting on the wavefunction ψ. We can
therefore expand the wavefunction on the eigenfunction’s basis:

ψ = c1f1 + c2f2 + ... =
∑

i

cifi (B.11)

Every function fi corresponds to a specific eigenvalue ai and the coefficients ci are
in general complex numbers.
Now the core concept of the Born’s rule: the probability to make a measurement
and find a result equal to the eigenvalue ax is given by:

P (ax) =
|〈fx|ψ〉|2
|〈ψ|ψ〉|2 =

|cx|2
∑

k |ck|2
(B.12)

Usually, we assume that the wavefunctions are normalized to 1 (as we do in proba-
bility theory): |〈ψ|ψ〉|2 = 1. The general notation 〈f |g〉 denotes an integral over a
certain variable. In the space basis the wavefunctions are functions of time and space
and all the integrals are done with respect to x and the normalization condition will
be (in one dimension):

|〈ψ|ψ〉|2 =

∫ +∞

−∞
|ψ|2dx =

∫ +∞

−∞
ψψ∗dx (B.13)

Now we have a recipe for calculating observables in quantum mechanics. Actually
what we can do is calculating probabilities for the outcome of an experiment.
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B.4 Commutation Relations

Real numbers commute with respect to the multiplication operation but it might
not the case for two operators Â and B̂ applied to a wavefunction ψ.

ÂB̂ψ 6= B̂Â⇒ (ÂB̂ − B̂Â)ψ 6= 0 ⇒ [Â, B̂]ψ 6= 0 (B.14)

It is for example the case of the space and momentum operators. Neglecting the
wavefunction ψ which we always assume the operator expressions are applied to:

[x̂, p̂] = i~ (B.15)

The fact that in quantum mechanics we have non-commuting observables will have
very important consequences as we shall see in the next section.

B.5 The Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle states in its simpler form that we cannot mea-
sure position and momentum of a particle with arbitrary accuracy. More generally,
it states that we cannot be arbitrarily precise in measuring at the same time two
non-commuting observables, like space and momentum, for example.
Actually, the uncertainty principle is a theorem which can be derived from the non-
commutativity of observables.
Let’s consider two non commuting operators:

[Â, B̂] = iĈ (B.16)

The commutator gives a third operator Ĉ where we extracted the imaginary factor
for convenience. Now we define (again in analogy with probability theory) the
average of an observable considering for the sake of concreteness the space basis:

〈Â〉 =

∫

ψ∗Âψ (B.17)

We can now define the displacement of an operator from its average:

∆Â = Â− 〈Â〉 (B.18)

It easy to verify that the commutation relation [∆Â,∆B̂] = iĈ still holds.
Now we introduce the function I(α) where α is a real non-zero number:

I(α) =

∫

|α∆Â− i∆B̂|2dx (B.19)

The latter function value is either zero or positive: I(α) ≥ 0.
Let’s work out the integrand of I:

|α∆Â−i∆B̂|2 = (α∆Â−i∆B̂)(α∆Â+i∆B̂) = α2∆Â2+iα[∆Â,∆B̂]−∆B̂2 (B.20)
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Taking the integral of the last expression, remembering the definition of average of
an operator and that I(α) ≥ 0 we obtain:

α2〈∆Â2〉 + α〈∆Ĉ〉2 − 〈∆B̂2〉 ≥ 0 (B.21)

Solving the last second order equation for α we realize that it is satisfied for every
α only if:

〈∆Â2〉 · 〈∆B̂2〉 ≥ 1

4
〈∆Ĉ〉2 (B.22)

The last equation represents the Heisenberg uncertainty principle and the av-
erage of the square of the displacement from the mean (eg: 〈∆Â2〉) expresses the
known statistical notion of root mean square. Applying the result to space and
momentum:

〈∆x̂2〉 · 〈∆p̂2〉 ≥ 1

4
~

2 (B.23)

B.6 Stationary Schrödinger Equation

In many applications, the potential V does not depend on time. If this is true, we
can factorize the wavefunction Ψ in one part depending only from space and another
one depending on time:

Ψ = ψ(x)f(t) (B.24)

Substituting the latter decomposition into the Schrödinger equation B.10 and bring-
ing to opposite sides the x and t dependencies:

i~
∂f

∂t

1

f
= − ~

2

2m

1

ψ
∇2ψ (B.25)

If both sides are equal, then both sides should be equal to the same number which
we call E for now. We obtain two equations:

i~
∂f

∂t

1

f
= E (B.26)

− ~
2

2m
∇2ψ + V ψ = Eψ (B.27)

The first one is easily solved: f(t) = e−i i
~
Et. From dimensional analysis, it is clear

that the constant E is an energy. Remembering the definition of the total energy
operator Ê which we call here Ĥ (the “hamiltonian”) we can rewrite the second
equation as:

Ĥψ = Eψ (B.28)

The last equation is an eigenvalue equation and its solution will provide the eigen-
functions ψ along with the eigenvalues E.
The full solution reads:

Ψ(x, t) = ψ(x)e−i i
~
Et (B.29)
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The remarkable fact is that:

ΨΨ∗ = ψ(x)e−i i
~
Etψ(x)e+i i

~
Et = ψ(x)2 (B.30)

does not depend on time. This means that our probability measure does not depend
on time. Eq. B.28 is commonly called stationary Schrödinger equation.

B.7 Application: the Square Well

Applying the Schrödinger equation to eg the Hydrogen atom is a quite complex
task, although Schrödinger himself calculated it rather early after the discovery of
the equation finding nice agreement with the known experimental results and with
Bohr’s previous calculations. Let’s apply the equation to one of the simplest cases
we can think of (besides the free particle case, where V=0): a square well potential in
one single dimension for just one particle. The square well potential is constructed
such that V(x)=0 for 0 < x < L with L > 0 a real number and V (x) = +∞
otherwise.
The one dimensional Schrödinger equation will be:

i~
∂ψ

∂t
= − ~

2

2m

∂2

∂x2
ψ + V̂ ψ (B.31)

There are no forces acting on the particle inside the box with infinitely high sides,
so we can use as an ansatz for the wavefunction a simple superposition of sines and
cosines:

ψ(x, t) = [a sin(kx) + b cos(kx)] e−iωt (B.32)

where a and b are in general complex numbers and (k,ω) were related to impulse
and energy respectively through the deBroglie wave-particle relation. The form of
the solution comes from the stationary equation derived before, since V does not
depend on time.
The probability of finding a particle somewhere is given by the square of the wave-
function (Born’s rule). Since the potential walls are infinite, it is impossible to find
a particle at x < 0 and x > L: the wavefunction must vanish in those regions. The
wavefunction should be also smooth in the sense that it cannot jump from one value
inside the box to zero outside. The latter consideration forces us to choose b=0.
The set of eigenfunctions solving the equation Eq. B.28 must be of the form:

ψn(x, t) = a sin(knx)e
−iωt (B.33)

for 0 < x < L and ψ = 0 otherwise.
Substituting in the stationary equation we obtain:

En =
k2

~
2

2m
(B.34)

which is the energy of a free particle (which is correct, inside the walls).
In order to have ψ = 0 on the walls, the wave numbers can only assume the values
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kn = nπ/L. Substituting into Eq. B.34 we find an expression for the energy levels
of a particle in an infinitely high box:

En =
n2h2

8mL2
(B.35)
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Appendix C

Topics related to Astrophysics

C.1 Gravitational Binding Energy

We would like to calculate the binding energy due to the gravitational attraction of
matter particles. Physically the binding energy would be equivalent to the energy
needed to pull all the particles away to infinity from the initial body. The binding
energy is equal to the negative of the total gravitational potential energy. For
simplicity, let’s consider a sphere with constant mass density.
In general, the gravitational potential V of a mass m1 is given by

V (r) = −Gm1

r
(C.1)

with G the universal gravitational constant. The potential energy of a second mass
m2 in the potential generated by m1 is give by:

U(r) = m2V (r) = −Gm1m2

r
(C.2)

Let’s calculate the potential energy of a thin “crust” of matter of mass dm around
a spherical distibution with constant density ρ and mass mcore = (4/3)πr3ρ. The
energy of the shell is:

dUshell(r) = V (r)dm =
−Gmcoremshell

r
= −G

(

4
3
πr3ρ

)

(4πr2drρ)

r
(C.3)

After some simplifications and substituting the constant density ρ = M/Vsphere =
M/(4/3)πR3 we obtain:

dUshell(r) = −G16π2

3
ρ2r4dr (C.4)

Integrating up to a radius R:

BEgrav = −
∫ R

0

dU =
3

5

GM2

R
(C.5)
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Appendix D

Relativistic Dynamics and Particle
Accelerators

D.1 Introduction

In the following, we will derive useful expressions for charged particles moving in
electromagnetic fields relevant for the analysis of beam dynamics in circular particle
accelerators. Knowledge of lagrangian and hamiltonian mechanics is assumed.

D.2 Relativistic Lagrangian and Hamiltonian Kine-

matics

In a reference frame where we are at rest, a moving clock travels a distance dl =
sqrtdx2 + dy2 + dz2 in a time dt. In the reference frame attached to the clock, the
traveled distance is ds′ = 0. We ask now the question: what is the time interval dt′

in the clock’s reference frame? Since the metric ds2 = c2dt2 − dx2 + dy2 + dz2 is
invariant in all inertial reference frames:

ds2 = c2dt2 − dx2 + dy2 + dz2 = c2dt′2 (D.1)

Solving for dt′:

dt′ = dt

√

1 − dx2 + dy2 + dz2

c2dt2
= dt

√

1 − v2

c2
=
dt

γ
=
ds

c
(D.2)

where we introduced the factor γ = 1/
√

1 − v2

c2
.

Let us now construct an action Srel for relativistic dynamics. Lorentz invariance
requires Srel to be a scalar and the only available scalar is ds (it is the same in every
inertial reference frame) or something proportional to it:

Srel = −α
∫

ds = α

∫

ds

c
c = −α

∫

c

√

1 − v2

c2
(D.3)
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where α is a positive constant and the “-” sign will turn out to be a convenient
choice later. Since by definition S =

∫

Ldt with L the Lagrangian, we have:

L = −αc
√

1 − v2

c2
(D.4)

The constant α can be fixed considering that the non-relativistic limit should match
the classical expression Lclass = 1

2
mv2. Considering low velocities, we can expand

the Lagrangian in the small parameter v/c:

L ≈ −αc +
αv2

2c
+ O(v2/c2) (D.5)

Comparing the last expression with Lclass we have finally:

L = −mc2
√

1 − v2

c2
(D.6)

Having the Lagrangian, we can calculate the momentum (let’s forget for notational
simplicity that momenta and velocities are vectors):

p =
∂L
∂v

=
mv

√

1 − v2

c2

(D.7)

Having p, we can directly derive the hamiltonian via the Legendre transformation
H = pv − L obtaining:

H =
mc2

√

1 − v2

c2

(D.8)

As a check, we can again expand the last expression in the limit of small velocities
in the parameter v/c:

H ≈ mc2 +
1

2
mv2 + O(v2/c2) (D.9)

The last formula agrees with the classical expression for the kinetic energy Ekin =
1
2
mv2 but the additional relativistic term mc2 indicates that also a body at rest has

a non-zero energy E = mc2 directly proportional to its mass.
The last expressions still contains the velocity v, while the Hamiltonian should be
a function of positions and momenta only (or other two canonically conjugated
variables). Considering p2 and substituting it in H2, v can be eliminated obtaining
finally:

H = c
√

p2 +m2c2 (D.10)

Since in this case the Hamiltonian is equivalent to the total energy E, we can rewrite
the last equation also in the useful and common expression:

E2 − c2p2 = m2c4 (D.11)

which shows the 4-vector character of energy and impulse. In fact, if we arrange E
(scalar) and p (3-vector) in a 4-vector (E/c,p), Eq. D.11 corresponds to the square
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of it. Since the square of a 4-vector (its norm) is the same in every inertial reference
frame, Eq. D.11 holds in all of them and therefor its usefulness. We note also the
similarity between the 4-vectors (E/c,p) and (ct,x): the energy plays the role of
time component, while the momentum plays the role of space component. Another
correspondence is that indeed the couples (energy,time) and (momentum,space) are
canonically conjugated variables.

D.3 Relativistic Dynamics with Electromagnetic

Fields

Let’s add to the action S we derived before, another scalar containing the electro-
magnetic potentials arranged into the 4-vector (φ,Ai) (roman indices run from 1 to
3, greek indices from 1 to 4):

SEM = −e
c

∫

Aµdx
µ (D.12)

Considering S = Srel + SEM and decomposing the index sum:

S =

∫

[

−mc2
√

1 − v2

c2
dt+

e

c
Aidx

i − eφdt

]

=

∫

[

−mc2
√

1 − v2

c2
+
e

c
Aiv

i − eφ

]

dt

(D.13)
Therefore, the relativistic Lagrangian is:

L = −mc2
√

1 − v2

c2
+
e

c
Aiv

i − eφ (D.14)

As we did before, we can calculate the momentum and then the Hamiltonian ob-
taining:

pi = mviγ +
e

c
Ai (D.15)

and

H =
mc2

√

1 − v2

c2

+ eφ (D.16)

Again, we have to eliminate the velocity. A faster way to derive the Hamiltonian
is to consider Eq. D.11 and observing that in the electromagnetic case we have the
substitutuions: p→ p+ e

c
A and H → H − eφ. The last consideration permits us to

write right away:
(H− eφ

c

)2

− c2
(

p− e

c
A

)2

= m2c4 (D.17)

and finally:

H =

√

m2c4 + c2(p− e

c
A)2 + eφ (D.18)
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D.4 Motion on a curve: Frenet Coordinates

For parameterizing the trajectory of a particle, few concepts from differential geom-
etry are useful.
Let us consider a function in E3 space P : (a, b) → E3 with (a,b) an open set of R.
The function P is regular if P ∈ C1 and ∂P

∂ǫ
6= 0∀ǫ ∈ (a, b).

If we introduce a coordinate system (x,y,z) in E3, a representation of P in such
coordinates is P (ǫ) = (x = x(ǫ), y = y(ǫ), z = z(ǫ)). All the last 3 functions must
be C1 and their derivatives must never be zero at the same time.
A subset Γ of E3 is a regular curve if Γ may be regarded as the image of a regular
function P : I → E3. Regular curves can have many representations and to be
regular, they must be regular at least in one representation.
Let’s now introduce the curvilinear abscissa (or curvilinear coordinate). Let Γ be a
regular curve, its curvilinear coordinate is:

S(ξ) − S(ξ0) =

∫ ξ

ξ0

‖dP
dξ

‖dξ =

∫ ξ

ξ0

√

(

dx

dξ

)2

+

(

dy

dξ

)2

+

(

dz

dξ

)2

dξ (D.19)

S has a metric meaning which the previous parameter ξ did not have: S really
measures the amount of space we travelled on the curve.
At every point of the curve parameterized by S, we can attach three orthonormal
vectors defined as follows:

t =
dP

dS
(D.20)

n =
dt

dS
/‖ dt
dS

‖ (D.21)

b = t ∧ n (D.22)

The vector t is called tangent vector, n is the normal vector and b is the binormal

vector. These three vectors have unitary norm and they are orthogonal to each
other.
Let’s verify for example that t ⊥ n. Consider t(s) · t(s) = 1, then taking the d/ds
derivative of both sides, 2t(s) dt

ds
= 0 which implies t ⊥ s.

The three defined vectors are ”intrinsic” in the sense that assigned the curve, also
the vectors are fixed. As the parameter S changes, the three vectrs ”rotate” along
the curve. The Frenet Formulas express how the vectors change along the curve.
Let’s see how first considering how the binormal vector changes:

db(s)

ds
=

d

ds
(t(s) ∧ n(s)) =

dt

ds
∧ n+ t ∧ dn

ds
= cn ∧ n + t ∧ dn

ds
= t ∧ dn

ds
(D.23)

In the last equation, we used the fact that dt/ds is in the direction of n and we have
introduced a proportionality constant c which we call curvature. Then we used the
fact that n ∧ n = 0. The result informs us that db/ds ⊥ b and therefore db/ds is in
the direction of n:

db

ds
= τn (D.24)
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The proportionality constant τ is called torsion.
Now since the vectors t,n,b are orthogonal, n = b∧ t. Taking the d/ds derivative of
the last relation:

dn

ds
=
db

ds
∧ t+ b ∧ dt

ds
= τu ∧ t+ b ∧ cn = −τb− ct (D.25)

We can summarize the relations obtained up to now in the following system (the
Frenet Formulas):

dt

ds
= cn (D.26)

dn

ds
= −ct− τb (D.27)

db

ds
= τn (D.28)

(D.29)

or in matrix form:

d

ds





t
n
b



 =





0 c 0
−c 0 −τ
0 τ 0



 ·





t
n
b



 (D.30)

Note that the matrix is antisymmeric and this has an obvious connection to the
generalized angular velocity. The curvature and the torsion are invariants, in the
sense that their value depends only on the curve and not on the representation.

D.5 Frenet Coordinates in Circular Accelerators

In describing the orbit in circular accelerators, it is useful to consider instead of
coordinates with respect to a certain point (eg the accelerator’s geoemtric centre),
coordinates describing the deviations from a reference orbit. Let’s introduce three
Frenet unit vectors (x̂, ŷ, ŝ) attached to the orbiting particle such that x̂ ∧ ŷ = ŝ.
The unit vectors x̂ and ŷ are transverse to the particle’s orbit while s is tangential
to it (plays the role of the vector t of the previous section). The position of the
particle is now described by

R(x, y, s) = xx̂+ yŷ +R0(s) (D.31)

where R0 is the vector describing the reference orbit. The following relations hold:

ŝ =
dR0

ds

dx̂

ds
=

1

ρ
ŝ

dŷ

ds
= 0

dŝ

ds
= −1

ρ
x̂ (D.32)

The parameter ρ is the curvature, x̂ measures the “horizontal” displacement and ŷ
the “vertical” one with respect to the reference trajectory. The variable s follows
the reference orbit.
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Our aim is to rewrite the Hamiltionian in the new coordinates. The generating
function of the transformation is:

F3(x̄new, P̄old, t) = P̄ · R̄(x, y, s) (D.33)

where x̄new are the new coordinates (x,y,s) and P̄old are the new momenta. With
the generating function we van derive the new momenta:

Px =
∂F

∂x
= P̄ x̂ (D.34)

Py =
∂F

∂y
= P̄ ŷ (D.35)

Ps =
∂F

∂s
= P̄

(

1 +
x

ρ

)

ŝ (D.36)

Since the generating function does not depend on the time, the new Hamiltonian has
the same form of the old one, but with the new canonical coordinates. Remembering
the implicit form of the Hamiltonian in Eq. D.17, we note that it has the form of a
4-vector with norm mc2. By Lorenz invariance, the norm should stay the same in
every reference frame. If we now define for convenience:

As =

(

1 +
x

ρ

)

Āŝ = hĀŝ (D.37)

where h = 1 + x/ρ.
Substituting the square of the new momenta in the implicit Hamiltonian:

mc2 =

(

E − qφ

c

)2

− (Px − qAx)
2 − (Py − qAy)

2 −
(

Ps − qAs

1 + x/ρ

)2

(D.38)

All the canonical variables have the same status, so we can explicitate everyone of
them. An useful choice is to explicitate the Ps momentum. The Hamiltonian in this
case reads:

Hs = −qAs −
(

1 +
x

ρ

)

√

−m2c2 − (Px − qAx)2 − (Py − qAy)2 +

(

E − qφ

c

)2

(D.39)
In the last Hamiltonian, the coordinate s plays the role of time, so the canonical
equations are now of the form:

dP̄

ds
= −∂H

∂x̄
;

dx̄

ds
=
∂H

∂P̄
(D.40)

Now we would like to use the previous equations of motion in a simplified case but
first let’s recover the expression for the magnetic field in the new coordinates:

B̄ = rotĀ =







1
h

∂As

∂y
− ∂Ay

∂s
∂Ax

∂s
− 1

h
∂As

∂x
∂Ay

∂x
− ∂Ax

∂y






(D.41)
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As a way to check the validity of the last Hamiltonian, let’s consider the special case
of a magnetic field such that Ax = Ay = 0 and a particle moving exactly on the
reference trajectory. This means that x = y = 0 and Px = Py = 0. Using the last
conditions in the canonical equations of motion:

0 =
dPx

ds
= −∂H

∂x
= q

∂As

∂x
+

1

ρ

√

E2

c2
−m2c2 (D.42)

Since the square root in the last formula is the particle’s momentum on the reference
trajectory Pref and Bref

y = −(1/h)∂As/∂x we obtain:

Bref
y · ρ =

1

q
P ref

x (D.43)

An analogous equation can be obtained for P ref
y and we recognize the usual relation-

ship between momentum and radius for a particle moving in a constant magnetic
field. The combination B · ρ is known as magnetic rigidity. Since B and ρ may vary
along the trajectory, the more general formula holds:

Bref
y (s) · ρ(s) =

1

q
P ref

x (D.44)

Another special case can be considered turning off all the electromagnetic fields. In
this case, the canonical equations of motion are (let’s neglect y for simplicity and
use the energy as Hamiltonian):

{

ẋ = c2Px

E

Ṗ = c2

ρE
P 2

s

(1+x/ρ)3
(D.45)

and
{

ṡ = c2

E
Ps

(1+x/ρ)2

Ṗs = 0
(D.46)

Considering the non-relativistic reduction E
c2

≈ m, Px ≈ mẋ and Ps = mṡ(1+x/ρ)2:

{

ẍ = ṡ2

ρ
(1 + x/ρ)2 = ω2R

s̈ = −2c2

E
Ps

(1+x/ρ)3
ẋ
ρ

= −2ωẋ
(D.47)

In the last parts of the equations of motion, we used R = x+ ρ and ω = ṡ/ρ. The
first equation expresses the centripetal acceleration, while the second the Coriolis
acceleration.
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Appendix E

Nuclear Science Nobel Laureates

Year Laureate(s) Contribution
Chemistry

1908 Ernest Rutherford Radioactive Decays
1911 Marie Curie Discovery of Polonium and Radium
1921 Frederick Soddy Discovery of Isotopes
1922 Francis Aston Separation of the Ne isotopes
1934 Harold Urey Discovery of Deuterium
1935 Frederic and Irene Joliot-Curie Artificial Radioactivity
1943 Georg Hevesy Radiotracers and Neutron

Activation Analysis
and Neutron Activation Analysis

1944 Otto Hahn Nuclear Fission
1951 Edwin McMillan, Glenn Seaborg Discovery of Np and Pu
1960 Willard Libby 14C and 3H dating

Physics
1901 Wilhelm Roentgen X-rays
1903 Henri Becquerel, Marie and Pierre Curie Radioactivity
1935 James Chadwick Discovery of the Neutron
1938 Enrico Fermi Search of transuranic elements,

controlled nuclear fission
1939 Ernest Lawrence Development of the Cyclotron
1951 John Cockcroft, Ernest Walton First accelerator producing

nuclear reactions
1961 Rudolf Moessbauer Moessbauer effect
1963 M. Goeppert-Meyer, J. Jensen, E Wigner Nuclear Structure Studies
1968 Luis Alvarez Electron capture decay
1975 B. Mottelson, A. Bohr Collective models of the nucleus
1983 William Fowler Nucleosynthesis in stars
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Appendix F

Periodic Table of Elements
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