Exercise Sheet 1

Exercise 1

Given two quantities x_{1} and x_{2} affected by numerical errors, estimate an upper limit to the error of the product

$$
x=x_{1} \cdot x_{2}
$$

Exercise 2

Given a numerically estimated quantity x , estimate the relative numerical error on

$$
f(x)=\sqrt{x} .
$$

Exercise 3

Use the general error propagation formula for a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$$
\Delta f=\sum_{i=1}^{n}\left|\frac{\partial f}{\partial x_{i}} \Delta x_{i}\right|
$$

for deriving the formula for the error of the ratio of two variables $f=x_{1} / x_{2}$ and show that the relative error is exactly the one calculated during the lecture with another method. Note that we consider the absolute value of the derivatives, since we would like to obtain an upper limit.

