Exercise Sheet 5

Exercise 1

Implement the Trapezoid Integration Algorithm

Exercise 2

Implement the Simpson's Integration Algorithm.

Exercise 3

Try the two algorithms integrating the following function:

$$
\begin{equation*}
I=\int_{0}^{4 \pi} x^{2} \sin (x) d x \tag{1}
\end{equation*}
$$

The integrand is an oscillating function, thus you can expect cancellations between positive and negative areas during the integration. Make a plot of the function if you think it could be useful.
Check your numerical results agains the analitical solution:

$$
\begin{equation*}
I=-x^{2} \cos x+2 x \sin x+2 \cos x \tag{2}
\end{equation*}
$$

Exercise 4

Show in a graph how the error in the integration of Eq. 2 scales with the mesh spacing $h=\frac{4 \pi-0}{N}$ for the two algorithms.
Which algorithm scales better?

