
NUMERICAL ALGORITHMS

Luca Doria

Institut für Kernphysik
J.J. Becher-Weg 45 55128 Mainz (Germany)

doria@uni-mainz.de

Computer Science
Wintersemester 2022-2023

Fachbereich Physik, Mathematik und Informatik
der Johannes Gutenberg-Universität Mainz

September 2022

Contents

1 Introduction 1

2 Errors and Number Representation 3
2.1 Approximation Errors . 3
2.2 Rounding Errors . 3
2.3 Absolute and Relative Errors 4
2.4 Error Propagation . 5
2.5 Number Representation . 7
2.6 Machine-specific Precision . 8
2.7 Subtraction and Machine Precision 10
2.8 More on Number Representations 11

3 Linear Systems 13
3.1 Introduction . 13
3.2 The Condition Number . 15
3.3 Tha Gauss Elimination Algorithm 16
3.4 Pivoting . 19
3.5 Tri-diagonal and Diagonally Dominant Matrices 21
3.6 LU Decomposition . 22
3.7 LU Decomposition: General Case 25
3.8 Choleski Decomposition . 28
3.9 Steepest Descent and

Conjugate Gradient Methods 29
3.10 The Gauss-Seidel Algorithm 37
3.11 Eigenvalues and Eigenvectors: the Power Method 39
3.12 Eigenvalues and Eigenvectors: the Jacobi Method 41

i

CONTENTS

4 Approximation and Interpolation 49
4.1 Linear Interpolation . 49
4.2 Parabolic Interpolation . 51
4.3 Cubic Splines Interpolation 52
4.4 Cubic Splines with Smooth Second Derivatives 56
4.5 Lagrange Interpolation . 59
4.6 Least Squares Method . 61
4.7 Linear Interpolation with the Least Squares Method 62
4.8 Error on the Estimated Linear Parameters 63

5 Root Finding 67
5.1 Incremental Method . 67
5.2 Bisection Method . 68
5.3 Newton’s Method . 69
5.4 Multidimensional Newton’s Method 71
5.5 Secant Method . 73
5.6 Brent’s Method . 74

6 Numerical Integration 77
6.1 Introduction . 77
6.2 Newton-Cotes Methods . 78
6.3 The Trapezoidal Rule . 78
6.4 Simpson’s Rule . 80
6.5 Romberg Integration . 81
6.6 Gaussian Quadrature: Introduction 86
6.7 Gaussian Quadrature: a more general case 87
6.8 Orthogonal Polynomials . 88
6.9 The Gaussian Quadrature Algorithm 89
6.10 Multidimensional Integration 90
6.11 Introduction to Stochastic Integration 93
6.12 Monte Carlo Integration . 94
6.13 Importance Sampling . 95
6.14 Gaussian Random Numbers: Box-Muller Transformation . . 96

7 Numerical Differentiation 97
7.1 Backward and Forward Differences 97
7.2 Central Difference . 98
7.3 Second Derivative . 99

ii

CONTENTS

7.4 Another derivation . 100
7.5 Derivatives with Interpolation 102

8 Numerical Ordinary Differential Equations 103
8.1 Introduction to Initial Value Problems 103
8.2 Euler’s Method . 104
8.3 Runge-Kutta Method: RK2 105
8.4 Higher-order Runge Kutta Methods: RK4 108
8.5 Fouth-Order Runge-Kutta Method in two Dimensions . . . 108
8.6 Fourth-Order Runge-Kutta Method for Second-order Dif-

ferential Equations . 109
8.7 Taylor Expansion Methods . 110
8.8 Stability Analysis . 110
8.9 Adaptive-Mesh Methods . 111
8.10 Application: Predator-Prey Model 112
8.11 Boundary Value Problems . 117
8.12 Central Difference Method for Boundary Value Problems . . 117
8.13 Upwind Difference Method 118
8.14 Leapfrog method for second order differential equations . . 119
8.15 Leapfrog Method: Application to the Damped Oscillator . . 121
8.16 The Numerov Method . 123
8.17 Application to the Schrödinger Equation: Particle in a Box

Potential . 125
8.18 Application to the Schrödinger Equation: The Hydrogen

Atom . 126

9 Elliptic Equations 131
9.1 Introduction . 131
9.2 Boundary Value Problems for Elliptic Equations 132
9.3 Dirichlet Problem on a Rectangle 132

10 Parabolic Equations 139
10.1 Definition of the problem . 139
10.2 Explicit Method for the Initial-Boundary Problem for the

Heat Equation . 139
10.3 Explicit Method for the General Parabolic Equation 141
10.4 Implicit Central Difference Method 142
10.5 The Crank-Nicolson Method 143

iii

CONTENTS

10.6 Reaction-Diffusion Systems 144
10.7 Bidimensional Systems: Turing Instability 145
10.8 A non-linear Turing Instability Example 147

11 Financial Applications 149
11.1 Introduction: the Ito Formula 149
11.2 The Black-Scholes Equation 151
11.3 Analytic Solution . 153
11.4 Numerical schemes for the Black-Scholes Equation 156
11.5 Monte Carlo Approach . 159

12 Hyperbolic Equations 163
12.1 Introduction . 163

12.1.1 The Cauchy Problem 163
12.1.2 The Initial Boundary Problem 165

12.2 Explicit Method for the Initial Boundary Problem 166
12.3 Implicit Method for the Initial Boundary Problem 167
12.4 The Lax-Wendroff Method . 168

13 The Navier-Stokes Equations 171
13.1 Introduction . 171
13.2 2-Dimensional Flow . 172
13.3 A general Finitie-Difference Scheme 172

13.3.1 Boundary conditions 173
13.3.2 Numerical approximation scheme 174

14 The Fourier Transform 177
14.1 Introduction . 177
14.2 Fast Fourier Transform . 178
14.3 Aliasing . 179

iv

Chapter 1 | Introduction

Many situations require a numerical solution of a mathematical problem using a
computer. Typical examples is the calculation of an integral or the solution of a
differential equation. Actually there are more cases where the latter examples are
not solvable analytically than the contrary: actually the possibility of an analytical
solution should be regarded as a rare case.
While integrals of polynomial functions have analytical solutions, other funda-
mental integrals like ∫ b

a
e−x2

dx , (1.1)

does’nt, although it plays a central role in probability theory and in other applica-
tions.
Concerning differential equations, even simple mechanical systems like the pen-
dulum, described by

∂ttx + ω2 sin x = 0 , (1.2)

do not have an analytical solution. Only the “small angle approximation” sin x ≈ x
yields the known oscillatory solution x ∼ sin x.
Moving to non-linear systems, the difficulty of finding closed solutions increases
even more.
The latter simple considerations show the need of reliable numerical methods for
solving a very large class of problems relevant in manny applications.
The formulation of a numerical scheme must fulfill some important requirements:

1. Consistency: If the numerical scheme is based on a discretization, the
equations must become exact if the length of the discrete step tends to zero.

2. Stability: Numerical errors should not grow during the computation

3. Convergence: The solution must converge to the exact one as the discrete
steps tend to zero.

1

CHAPTER 1. INTRODUCTION

4. Conservation: If conservation laws are implied, these should be fulfilled
by the numerical method.

5. Boundedness: Solutions must stay bounded.

Not all the listed requirements must hold for every method but all of them apply to
the solution of equations for example.
In these notes, we will describe in a simple way different numerical methods for
solving common mathematical problems in the form of computer algorithms. For
most of the methods, a Python code will show its implementation. The codes are
essential and only describe the core of the algorithms and they can be expanded
with more functionalities, checks, object orientation or other programming tech-
niques. The implementation of the algorithms on a computer presents additional
challenges in terms of errors induced by the finite representation of numbers and
the need to keep the computation within manageable time and space (memory)
limits. In the next chapters, after the discussion of the errors that might be intro-
duced by the use of a concrete computer, we will describe different mathematical
problems like the solution of linear systems, interpolation, solution of algebraic
equations, derivation, and integration. In the second part, we will apply the numer-
ical derivation methods to the solution of ordinary differential equations and then
to partial differential equations (PDE). This last field is extremely vast and here
we will only describe the most simple methods also showing some applications
to biology and finance. Among the PDEs, the Navier-Stokes equation governing
fluid motion has a special standing given its difficulty. Here we will only mention
the most basic problems in devising a numerical scheme for this very important
equation which has wide application in many scientific and engineering fields.
We conclude with a brief discussion of the numerical Fourier transform describing
one algorithm for accelereting its calculation.

Aknowledgements

I thank the students of the Winter Semester 2022-2023 of the Computer Science
department at the Johannes Gutenberg University (Mainz, Germany) for the many
suggestions and corrections while preparing these notes.

Luca Doria
(JGU Mainz, February 1st, 2023).

2

Chapter 2 | Errors andNumberRep-
resentation

The result of a calculation with a digital computer might be affected by errors. In
the following, we will refer to accuracy as the capability to match the true value
with a calculated one. The word precision refers instead to the number of digits
we can use in a computation. A computer works with a definite representation of
numbers which implies always a finite precision.

2.1 Approximation Errors

Some numerical calculations can involve an infinite series of steps for reaching the
true result. A typical example is the approximation of functions using the Taylor
expansion. For example, wemight want to calculate the value ofπ with the Leibniz
series

π = 4
∞

∑
i=0

(−1)i

2i + 1
= 4 · (1− 1

3
+

1
5
− 1

7
+ ...) . (2.1)

In this case, since we cannot perform the infinite sum, we have to truncate the series
to a certain step i = N: the accuracy of the result will depend on N. Note that the
series terms become smaller and smaller, and at a certain point we will reach the
limit of the number representation of the computer: we will be thus limited also in
precision.

2.2 Rounding Errors

Aswe said, the representation of numbers on a computer is finite and if expressing a
number needs a very large number of digits, necessarily part of themwill be lost. A

3

CHAPTER 2. ERRORS AND NUMBER REPRESENTATION

typical example are computations involving irrational numbers, like (
√

2)2− 2 =
0. The result seems obvious, but if you try to perform the calculation with Python

>>> import numpy as np
>>> (np.sqrt(2))**2-2
4.440892098500626e-16

the result is different. The calculation of sqrt(2) produces a number with infinite
digits and only a fine amount of them is used for the next calculation (the squaring).
Swapping the square root with the square

>>> np.sqrt(2**2)-2
0.0

produces instead the correct result: no infinite-digits numbers are involved. Even
the subtraction in the above example is affected by a rounding error.

2.3 Absolute and Relative Errors

Denoting with x the true value of a quantity and with x̄ the result of a computation
for calculating x, we define the absolute error the difference between them

∆x = x̄− x . (2.2)

The absolute error can be positive or negative, but most of the times we are in-
terested only in its magnitude, therefore we consider |∆x| = |x̄ − x|. Another
practically useful definition is the error bound

|∆x| ≤ ε ⇒ x̄− ε ≤ x ≤ x̄ + ε , (2.3)

where ε is an upper limit for the absolute error.
Another common expression (especially in the natural sciences 1) for the error
bound is

x = x̄± ε . (2.4)

In many concrete cases, the absolute error might not quantify exactly how accurate
our numerical result is. Consider the following example where the “real” number
is

x1 = 1000.0
1In natural sciences this expression for the error usually involves statistical errors. In

the present case, we are referring to the absolute, or maximal error.

4

CHAPTER 2. ERRORS AND NUMBER REPRESENTATION

and the estimated one is
x̄1 = 999.0

The absolute error is ∆x1 = −1. Consider now the case

x2 = 1000000.0

and the estimated one is
x̄2 = 999999.0

The absolute error ∆x2 = −1 is the same as in the case of x1, but in this case
we clearly did a better job in calculating a larger number relatively to its precision.
These considerations lead to the definition of the relative error

δx =
∆x
x

=
x̄− x

x
. (2.5)

Analogously to the absolute error, we can introduce an error bound for the relative
error

|δx| =
∣∣∣∣∆x

x

∣∣∣∣ ≤ ε (2.6)

2.4 Error Propagation

A natural problem is the combination of quantities affected by an error, or more
generically, the calculation of a function with arguments affected by errors. The
errors propagate through the operations needed for calculating the function lead-
ing to a result with a combined error. In the following, we will start with simple
operations like sums and products and then tackle the most general case.

Addition and Subtraction of Errors

Consider the difference between two quantities x = x1 − x2 and the same for the
calculated ones x̄ = x̄1 − x̄2. Applying the definition of absolute error,

∆x = ∆(x1 − x2) = (x1 − x2)− (x̄1 − x̄2) = (2.7)
x1 − x2 − (x1 − ∆x1 − x2 + ∆x2) = ∆x1 − ∆x2 . (2.8)

Since we are interested in error bounds, we can consider only absolute values of
the errors and applying the triangular inequality we obtain

|∆x| ≤ |∆x1|+ |∆x2| . (2.9)

5

CHAPTER 2. ERRORS AND NUMBER REPRESENTATION

An analogous calculation for the sum of two quantities leads to the same result,
as can be directly verified. The result tells us that the absolute error of the sum
or difference of two quantitites is bounded by the sum of the errors of the single
variables2.
A very important case is represented by the situation where x1 is very close to x2
and we have to assess the error of their difference. Considering now the relative
error

|δx| =
∣∣∣∣∆x

x

∣∣∣∣ ≤ ∆x1 + ∆x2

|x1 − x2|
≈ (|δx1|+ |δx2|)

|x1|
|x1 − x2|

, (2.10)

where we substituted the realtive errors δx1/2 = ∆x1/2/x1/2 and considered x1 ∼
x2. It is evident that if x1 and x2 have close values, the relative error becomes very
large. This effect is sometimes referred to catastrophic cancellation. Numerically
subtracting two similar numbers requires always care, especially if their difference
is close to the computer’s precision.

Multiplication and Division

We consider now the case x = x1 · x2 where the computed value is x̄ = x̄1 ·
x̄2. Remembering the definition of relative error, we can write x̄1/2 = x1/2(1−
δx1/2) and use it in the definition of relative error for x

δx =
x̄− x

x
=

x̄1x̄2 − x1x2

x1x2
=

x1(1− δx1)x2(1− δx2)− x1x2

x1x2
= δx1 + δx2 ,

(2.11)
where we neglected the higher-order term δx1δx2. Applying again the triangular
inequality

|δx| ≤ |δx1|+ |δx2| , (2.12)

we observe that the relative error of the product is bounded by the sum of the
relative errors of the factors. The x = x1/x2 case leads exactly to the same result.

2In the case of statistical errors, the errors add in quadrature. The numerical errors
are not statistical, and the presented treatment corresponds to a “worst case scenario”
where the error is maximal. In practice, one error can be large, and the other one very
small, but the sum of the two errors will always contain all the possible combination of
cases.

6

CHAPTER 2. ERRORS AND NUMBER REPRESENTATION

The General Case of Error Propagation

In the previous sections, we analyzed the error propagation in the case of the four
basic arithmetic operations among variables and now we will tackle the more gen-
eral case of a sequence of operations involving variables with an error, summarized
(in the case of a single variable) by a function y=f(x):

∆y = ȳ− y = f (x̄)− f (x) . (2.13)

The presence of an error changes the result of the function and in order to estimate
this change, we can expand f with a Taylor series

∆y = f (x + ∆x)− f (x) = f (x) +
d f
dx

(x̄− x) + ...− f (x) ≈ d f
dx

(x̄− x) ,
(2.14)

where we disregarded high-order terms assumung x̄− x as a small quantity. The
previous formula gives a recipe for calculating the absolute error of a function of
one variable. The relative errors is thus

δy =
∆y
y
≈ 1

f (x)
d f
dx

∆x =
x

f (x)
d f
dx

δx . (2.15)

In the multi-variable case y = f (x0, x1, ..., xn − 1), the absolute error is given by

∆y ≈
n−1

∑
i=0

∂ f
∂xi

∆xi , (2.16)

and the relative error by

δy ≈
n−1

∑
i=0

xi

f (x0, x1, ..., xn−1)

∂ f
∂xi

δxi . (2.17)

2.5 Number Representation

Internally, a computer represents numbers as bit strings. The Python language
does not restrict the number of digits for an integer number, and there are no limits
to how large an integer can be. Real numbers are represented with 64 bits (this is
the float type) in the form

± mantissa × 10exponent . (2.18)

7

CHAPTER 2. ERRORS AND NUMBER REPRESENTATION

The 64 bit limit means that not all the real numbers can be represented but there is
a limit in precision, which is given by these two numbers

± 4.9× 10−324 ↔ ±1.8× 10308 . (2.19)

In this representation, real numbers can be represented with a precision of 1 part
in 252 ≈ 2.2× 10−16 (or 15-16 decimal digits) which is sufficient for almost all
the applications.
Technically, Python uses 64 bits as follows:

• 1 bit for the overall sign (positive or negative)

• 11 bits for the exponent

• 52 bits for the significant digits.

2.6 Machine-specific Precision

The machine precision εm can be defined as the smallest number larger than 1
which can be expressed by the representation of the real numbers adopted. In the
previous section, we saw that in the mantissa/exponent representation and 64 bits,
this number is

εm ≈ 2.2× 10−16 . (2.20)

It is interesting to explore the behaviour of the numbers as they come close to the
machine precision limit. In order the look directly at what happens, we can try to
take a number and apply some operations to reduce it, for example, we can half it
many times:

1 #start with a number close to the machine precision
limit

2 x = 0.5**50
3 for step in range (0,3):
4 x = x/2
5 print(step , 1+x, x)

8

CHAPTER 2. ERRORS AND NUMBER REPRESENTATION

The output of the previous code fragment is

0 1.0000000000000004 4.440892098500626e-16
1 1.0000000000000002 2.220446049250313e-16
2 1.0 1.1102230246251565e-16

The second line displays the smallest increment from 1, while in the last line no
increment is present and the variable x stays equal to 1.
We can also try to get close to the machine limit with a direct calculation:

>>> 1.0 + 2.3e-16
1.0000000000000002
>>> 1.0 + 1.6e-16
1.0000000000000002
>>> 1.0 + 1.12e-16
1.0000000000000002
>>> 1.0 + 1.1e-16
1.0

The last test looks surprising at first sight: 1.6e− 16 for example is smaller than
the machine precision, but still we obtain a number which is larger than one. The
explanation lies in the rounding: 1.6e− 16 is rounded up to the machine precision
2.2e-16, while 1.1e-16 is rounded down to 1.
An interesting side-note is that very small numbers can be stored: for example we
can assign 10−300 to a variable and our representation system will work without
problems. Instead, the number 1.0 + 10300 will be truncated, since the precision
is limited to O(10−16).

9

CHAPTER 2. ERRORS AND NUMBER REPRESENTATION

2.7 Subtraction and Machine Precision

We have already seen, that subtracting numbers can lead to large errors. If we
consider only themachine precision error εm and the relative error of the difference
given by Eq. 2.10 we have

|δx| ≤ |x1|
|x1 − x2|

· 2εm . (2.21)

The last result shows that in general, the relative subtraction error can be potentially
much larger that the machine precision.
When numbers are close to each other, the error can be significant and might lead
to a loss of significant figures. Consider this example where we subtract close
numbers:

1.84759264759824671064− 1.84759264759824000000 =

0.00000000000000671064

The calculation is trivial “by hand”, but this is what a Python code would produce:

>>> 1.84759264759824671064 - 1.84759264759824000000
6.661338147750939e-15

The figures after the 16th one are affected by the machine precision error. This can
be seen also letting Python print out the first number, which has more figure than
it is allowed by the machine precision:

>>> 1.84759264759824671064
1.8475926475982467

while the second number is represented correctly. From Eq. 2.21, we have εm ≈
0.06 or a 6% relative error in the result.

10

CHAPTER 2. ERRORS AND NUMBER REPRESENTATION

2.8 More on Number Representations

Not all floating point numbers are exactly representable on a machine with finite
precision. It might be surprising that for example numbers like 0.1, 0.2, and 0.3
are not exactly representable. This can be seen with the following simple code:

>>> x = 0.1 + 0.2
>>> print(x)
0.30000000000000004

If you try to print just 0.1 or 0.2, the interpreter will display the correct result, but
this happens only because the representation error is so small, that it is truncated
in the output. Instead, in the sum 0.1 + 0.2 the errors in both numbers accumulate
and become visible. It turns out, that a number is exactly representable only if it is
of the form x1/x2 where x1 and x2 are integers and x2 is a power of 2. Clearly, the
machine precision error remains and depends on how many bits you use in your
representation. In more detail, a floating-point number x is calculated fixing a base
b (which is 2 usually, or 10), an exponent e and a “significant” s, or mantissa. For
example, x = 12345.678 = 1.2345678× 103 and in general

x =
s

bp−1 · b
e ,

where p is the precision. From the formula, it is clear that if b=2, the number
0.1=1/10 cannot be exactly represented.
Actually, the number in binary is the infinite sequence 0.00011001100110011...,
where the pattern of 0011 repeats, therefore we cannot store such a number3. In-
deed, the binary of 10 is 1010 and when we divide 1 by 1010, the division process

3Number representation once lead to a tragic episode, as reported by Computer Sci-
entist R. Brent: During the first Iraq war (1991) an Iraqi Scud missile was fired towards
Dhahran, Saudi Arabia. A US Patriot missile failed to intercept it, leading to the death
of 28 soldiers and 97 more injured. It turned out that the Patriot system had an internal
clock that incremented every 0.1 seconds, and the time (in seconds) was determined
by multiplying the counter value by a 24-bit approximation to 1/10. As we learned,
numbers like 1/N are infinite binary sequences, if they are not a power of 2. The Patriot
system was multiplying by a number close to 0.0999999 instead of 0.1000000. The Patriot
was intended to be a mobile system that would run for only a few hours at one site, and
in that case the rounding error would not be serious. However, in Dhahran it ran for

11

CHAPTER 2. ERRORS AND NUMBER REPRESENTATION

will never terminate and we obtain a periodic number in base 2.
An important consequence of this not exact representation for certain numbers is
that it is always dangerous comparing floating-point numbers coming from differ-
ent calculations. For example, the following comparison will fail

>>> x = 0.1 + 0.2
>>> y = 0.3
>>> x == y
False

The common and safe solution to this problem is to compare the difference between
floating-point numbers and check if it is smaller than a quantitity we can accept.

100 hours, accumulating a rounding error of 0.34 seconds. The Patriot became confused
(presumably because it had two different values for the time), could not track the in-
coming Scud missile, treating it as a false alarm. The press reported that the Patriot
“missed” Scud, but actually the Patriot never left the ground!

12

Chapter 3 | Linear Systems

3.1 Introduction

Linear systems are algebric systems of the type
a11x1 + a12x2 + ... + a1nxn = b1
a21x1 + a22x2 + ... + a2nxn = b2

...
an1x1 + an2x2 + ... + annxn = bn

(3.1)

where in general n > 1 and xi (i=1..n) are often called the unknowns. The system
of linear equations can be recast in matrix form Ax=b, or explicitly

a11 a12 ... a1n
a21 a22 ... a2n
...

an1 an2 ... ann

︸ ︷︷ ︸

A

·

x1
x2
...

xn

︸ ︷︷ ︸

x

=

b1
b2
...

bn

︸ ︷︷ ︸

b

(3.2)

Before attempting a numerical solution of a linear system, we must be sure that
a solution exists. Moreover, the solution must be also unique for a meaningful
numerical approach. The following theorem provides the result we need:

Theorem 1. The system 3.2 has one unique solution if and only if det(A) 6= 0.

The following theorem gives a constructive receipt for finding the solutions of
a linear system and it has as direct consequence Theorem 1:

Theorem 2. (Cramer’s theorem) The system 3.2 has solutions

13

CHAPTER 3. LINEAR SYSTEMS

xi =
det(A|bi)

det(A)

where the matrix (A|bi) is obtained substituting the i-th column with the vector
b.

From Cramer’s theorem, the condition det(A) 6= 0 is clearly required.

Example:

Considering the linear system
x1 + x2 − x3 = 0
x1 − x2 + x3 = 1
−x1 + x2 + x3 = −1

After having verified that det(A) = −4 6= 0, the solutions according to Theo-
rem 2 are

x1 =

det

 0 1 −1
1 −1 1
−1 1 1

det

 1 1 −1
1 −1 1
−1 1 1

 =
−2
−4

=
1
2

x2 =

det

 1 0 −1
1 1 1
−1 −1 1

det

 1 1 −1
1 −1 1
−1 1 1

 =
2
−4

= −1
2

x3 =

det

 1 1 0
1 −1 1
−1 1 −1

det

 1 1 −1
1 −1 1
−1 1 1

 =
0
−4

= 0

In general, for matrices with few zero entries, the calculation of the determinants
becomes quickly intractable, since the direct computations grow asO(n!), where n
is the number of equations (and unknowns). This is the reason why we will discuss
computationally more efficient algorithms.

14

CHAPTER 3. LINEAR SYSTEMS

3.2 The Condition Number

Formally, the solution of the system Ax = b is x = A−1b and it is thus possible
only if A is invertible. Since we would like to solve the problem numerically, are
there case in between “invertible” and “not-invertible” which might affect a nu-
merical algorithm from finding a solution? The answer is given by the calculation
of the condition number, which we will describe in the following.
First, we define a matrix norm, which gives a measure of how large overall the
matrix elements are. This definition is not unique, but a widely used one is the
quadratic sum of all the matrix elements

‖ A ‖=

√√√√ N

∑
i=1

N

∑
j=1

a2
ij . (3.3)

The definition is convenient, since the squaring operation disregards signs and
takes into account only the magnitude and it resembles the Euclidean norm (actu-
ally for matrices sometimes this is called the Frobenius norm). A similar definition
could be based on the sum of the absolute values of the matrix elements, for ex-
ample.
For assessing how easily a linear system is solvable, we might be tempted to look
at the value of the determinant, which is connected to the invertibility of the ma-
trix. This reasoning is wrong, since the solution x = A−1b depends also from the
vector b. In general, the correct question to ask is: how a function y = f (x) is
sensitive to the input, or in other words, how a change δx in the x variable induces
a change δy through f ? We can thus define the condition number C as the max-
imum of the ratio between the two changes, or, even better, the ratio between the
relative changes:

C = max
[(

δx
x

)
/
(

δy
y

)]
. (3.4)

For a linear function, the vector plays the role of y so that the condition number C
is the maximum ratio of the relative error in x = A−1b to the relative error in b.
Assuming an error in b equal to δb and introducing a suitable norm for assessing
the “magnitude” of matrices and vectors

C =
‖ A−1δb ‖
‖ δb ‖ /

‖ A−1b ‖
‖ b ‖ =

‖ A−1δb ‖
‖ δb ‖ · ‖ b ‖

‖ A−1b ‖ . (3.5)

15

CHAPTER 3. LINEAR SYSTEMS

We are interested in the maximum value of C:

max
b,δb 6=0

C = max
δb 6=0

[
‖ A−1δb ‖
‖ δb ‖

]
·max

b 6=0

[
‖ b ‖
‖ A−1b ‖

]
=‖ A−1 ‖‖ A ‖ (3.6)

The condition number C quantifies how sensitive the “output” b is from the “input”
x: of C is of order unity, small errors in the input will not be amplified by the
function. The condition number is an intrinsic property of the function (A, in the
case of linear systems) and it is not depending from numerical errors or specific
numerical algoritms. If C is not much larger than one, the matrix is said to be
well-conditioned. If C is very large, then the matrix is ill-conditioned. An ill-
conditoned matrix is almost singular, and the solution of a linear system is very
sensitive to numerical errors. A matrix that is not invertible has C = ∞.
It is worth noting, that C does not depend directly from the determinant and an
overall scaling of the matrix elements does not change it.

3.3 Tha Gauss Elimination Algorithm

This method aims at simplifying the matrix A as much as possible reducing some
of its elements to zero by means of row or column linear transformations. These
transformations do not change the solutions of the system. In the following, wewill
explain the method by means of a concrete example. Consider the linear system
with det(A) = 290 6= 0

A
B
C
D

4x1 − x2 + 2x3 − x4 = 2
x1 + 4x2 − x3 + x4 = 2
x1 − 2x2 − 3x3 + x4 = 4

x2 − 4x4 = 0

The idea is to successively eliminate the unknowns (the procedure is indeed called
elimination). Starting with x1, we can divide Eq. A by 4 and then subtract it to
B and C, obtaining the equivalent system

B′

C′

D′

17
4 x2 − 3

2 x3 + 5
4 x4 = 3

2

−7
4 x2 − 7

2 x3 + 5
4 x4 = 7

2

x2 − 4x4 = 0

16

CHAPTER 3. LINEAR SYSTEMS

Now it is the turn of eliminating x2 multiplying B′ by 7/17 and adding it to C′ and
D′:

C′′

D′′

−70

17 x3 + 30
17 x4 = 70

17

6
17 x3 − 73

17 x4 = − 6
17

The last step will be to eliminate x3 multiplying C′′ by 6/70 arriving to a single
equation for x4 which can be readily solved:

D′′′ − 29
7

x4 = 0⇒ x4 = 0

Considering the obtained equations, the system was transformed to the equivalent
one (written in matrix form)

A
B′

C′′

D′′′

4 −1 2 −1
0 17

4 −3
2

5
4

0 0 −70
17

30
17

0 0 0 −29
7

 ·

x1
x2
x3
x4

 =

b1
b2
b3
b4

 (3.7)

The matrix A is now in “upper triangular” form and the last equation has only one
unknown, which once found can be substituted in C”, giving x3. After that, x3
can be substituted in B’ to obtain x2 and so on, in a procedure called backward
substitution. In order to build a numerical algorithm implementing elimination
and backward substitution, we have to formalize in a general way the operations
we carried out in the previous example.
First we introduce the notation aij for denoting the element in the i-th row and in
the j-th column of the matrix, and the index k = 1..n− 1 for labelling the step of
the algorithm.
Looking at the previous example, it is not difficult to derive the relations

ak+1
ij = a(k)ij −

a(k)ik

a(k)kk

a(k)kj , j = k, k + 1, .., n , (3.8)

bk+1
i = b(k)i −

a(k)ik

a(k)kk

b(k)k . (3.9)

17

CHAPTER 3. LINEAR SYSTEMS

The latter equations describe how to obtain the new matrix elements (step k+1)
starting from the previous ones (step k) multiplying by the correct factor and then
subtracting from the previous matrix row.
After elimination, backward substitution is described by

xn =
b(n)n

a(n)nn

(3.10)

which gives the trivial solution of the last variable, with which we can find all the
other ones with

xi =
b(i)i −∑n

j=i+1 a(i)ij xj

ai
ii

i = n− 1, n− 2, ...1 . (3.11)

The Python code 3.1 implements the elimination and backward substitution pro-
cedures described by equations 3.8, 3.9, and 3.10, 3.11.

18

CHAPTER 3. LINEAR SYSTEMS

1 import numpy as np
2 import sys
3

4 def GaussElimination(a,b):
5

6 n = len(b)
7 #Elimination
8 for k in range(0,n-1):
9 for i in range(k+1,n):

10 if a[k,k]==0:
11 sys.exit("ERROR: div. by zero.")
12 else:
13 if (a[i][k] !=0):
14 ratio = a[i][k]/a[k][k]
15 #Note this "vectorized" numpy loop
16 a[i,k+1:n] = \
17 a[i,k+1:n]-ratio*a[k,k+1:n]
18 b[i] = b[i] - ratio*b[k]
19

20 #Backward Substitution
21 for k in range(n-1,-1,-1):
22 b[k] = (b[k]-np.dot(a[k,k+1:n],b[k+1:n]))/a[k,k]
23

24 return b

Listing 3.1: Gauss Elimination

Code 3.1 differs slightly from Eq. 3.8: a check on the pivot element is added and
if aik = 0 the elimination is skipped for saving computing time. The index j in the
code starts with k + 1. This means that the original value of the matrix is never
replaced with a zero. This is irrelevant, since the backsubstitution phase never
accesses the lower triangular part of the matrix.

3.4 Pivoting

Observing equations 3.8, 3.9 of the elimination procedure, it is evident that the
division by a(k)kk (called pivot elements) can result in numerical problems if they
are either zero or very small in comparison to the other elements.
A common strategy for dealing with this problem is called pivoting.

19

CHAPTER 3. LINEAR SYSTEMS

Pivoting consists in choosing at each elimination step k the row index j for which

|a(k)jk | = max
j>k
|a(k)ik | (3.12)

and swap rows k and j.
For example, consider the linear system

A
B
C
D

x2 − x4 = 0

x1 − 2x2 − 3x3 + x4 = 4
x1 + 4x2 − x3 + x4 = 2

4x1 − x2 + 2x3 − x4 = 2

The pivot element a11 is zero and thus we cannot find a suitable number to multiply
equation A with. We notice though that |a41| = 4 is the largest element of the first
column (or |a41| = max |ai1|) and before applying the elimination step, we can
swap equation A with equation D. The pivoting procedure can be applied at every
step of the elimination process.
For understanding the numerical problem in more details, we can consider the very
simple linear problem {

εx + 2y = 4
x− y = 1 ,

where x, y are the unknowns and ε ≈ 0 is a small parameter. Writing the pre-
vious system in matrix form, we can try to find the solution applying the Gauss
elimination algorithm. We would like to have the lower-left element equal to zero,
subtracting to the second row the first one, divided by ε:(

ε 2 4
1 −1 1

)
→
(

ε 2 4
0 −1− 2/ε 1− 4/ε

)
Having eliminated one unknown in the last row, we can solve for the y variable
obtaining the system {

εx + 2y = 4
y = 4−ε

2+ε ≈ 2 .

Approximating y = 2 since ε is very small, we can insert this solution in the first
equation obtaining the puzzling result εx = 0 which cannot be solved.
Now let’s apply the pivoting, i.e. swap the rows since the lower row starts with a
larger value than the first and apply Gauss elimination(

1 −1 1
ε 2 4

)
→
(

1 −1 1
0 2 + ε 4− ε

)
20

CHAPTER 3. LINEAR SYSTEMS

This time, the system is reduced to{
x− y = 1

y = 4−ε
2+ε ≈ 2 .

and substituting y = 2 in the first equation we obtain x = 3 which is the correct
solution within the ε ≈ 0 approximation. Note that after pivoting, ε does not ap-
pear in denominators anymore, eliminating the numerical problem present before.
Pivoting can be applied (if needed) at every step of the ellimination algorithm.
More precisely, swapping only rows (or only columns) is called partial pivoting,
while in general both rows and columns can be swapped. In most cases, swapping
only rows (or only columns) is sufficient and prevents the accumulation of numer-
ical errors in the case of very large matrices.
Approximately, Gauss elimination can be applied to systems up to few hundreds
of equations: after that, rounding errors may accumulate yielding inaccurate solu-
tions.

3.5 Tri-diagonal and Diagonally Dominant Ma-
trices

In many concrete applications, matrices assume a particular form called tridiag-
onal. A matrix A is tridiagonal if it has the following form

A =

a11 a12 0 0 0 0 ... 0
a21 a22 a23 0 0 0 ... 0
0 a32 a33 a34 0 0 ... 0
0 0 0
0 0 0 0
... an−1,n−2 an−1,n−1 an−1,n
0 0 0 0 0 0 an,n−1 an,n

(3.13)

In the matrix A, all the elements not belonging to the three major diagonals are
zero.
Diagonally dominant matrices are matrices for which the diagonal elements
are larger than all the others:

|aii| ≥
n

∑
j=1,j 6=i

|aij| . (3.14)

21

CHAPTER 3. LINEAR SYSTEMS

with strict inequality for at least one value of i. A relevant theorem related to the
given definitions is the following:

Theorem 3. Let the linear system Ax = b have a matrix A which is tridiagonal,
diagonally dominant, and satisfy

aii < 0 i = 1, 2, ..., n
aj,j+1 > 0 j = 1, 2, ..., n− 1
aj+1,j > 0 j = 1, 2, ..., n− 1

(3.15)

Then, there exists an unique solution of the system.

A more general theorem with less restrictive assumptions is the following

Theorem 4. If the linear system Ax = b is diagonally dominant with the strict
inequality

|aii| >
n

∑
j=1,j 6=i

|aij| ∀i , (3.16)

then det(A) 6= 0. Under the same assumption, this theorem is clearly valid also
for tridiagonal systems.

3.6 LU Decomposition

The Gauss elimination algorithm finds solution to the linear system Ax = b. In
many applications, the matrix A remains the same, while the vector b changes. In
such cases, the Gauss algorithm should be applied for every different vector b. An
alternative is given by the LU decomposition algorithm, which gives a clever de-
composition of thematrix A as the product of twomatrices: one is upper-triangular
(U) and the other one is lower-triangular (L) such that A=LU. Once this decompo-
sition is done, the solution of the linear system is fast and can be repeated many
times for different vectors b.
A first observation is that the upper-triangular matrix U can be constructed with
the Gauss elimination algorithm and therefore a system like Ux=b is solvable by
backward substitution. It is easy to see that the system Lx=b is instead solved by
forward substitution. Let’s see how this can be done in practice. Let’s consider
a linear system Ax = b, where A has the tridiagonal form of Eq. 3.13 and assume

22

CHAPTER 3. LINEAR SYSTEMS

we can factorize A such that A = L ·U where

L =

p1 0 0 0 0 ... 0
a21 p2 0 0 0 ... 0
0 a32 p3 0 0 ... 0
0 0 0
0 0 0 0
...
0 0 0 0 0 an,n−1 pn

(3.17)

is lower triangular and

U =

1 q1 0 0 0 ... 0
0 1 q2 0 0 ... 0
0 0 1 q3 0 ... 0
0 0 0
0 0 0 0
... qn−1
0 0 0 0 0 0 1

(3.18)

is upper triangular. The matrix elements pi (i=1,..,n) and qi (i=1,..,n-1) have to
be determined. Calculating the product of matrices 3.17 and 3.18 we obtain

L ·U =

p1 p1q1 0 0 0 ... 0
a21 a21q1 + p2 p2q2 0 0 ... 0
0 a32 a32q2 + p3 q3 0 ... 0
0 0 0
0 0 0 0
...
0 0 0 0 0 an,n−1 an,n−1qn−1 + pn

(3.19)

Comparing matrix 3.19 with the matrix A, we can derive the following relations

p1 = a11 ,
q1 = a12

p1
p2 = a22 − a21q1 ,

q2 = a23
p2

p3 = a33 − a32q2 ,
... ...
qn−1 =

an−1,n
pn−1

pn = ann − an,n−1qn−1 ,

(3.20)

23

CHAPTER 3. LINEAR SYSTEMS

which can be condensed in

p1 = a11
qj−1 = aj−1,j/pj−1 j = 2, 3, ..., n
pj = ajj − aj,j−1qj−1

(3.21)

Now that we know how to LU-decompose the initial matrix A, we have to solve the
corresponding linear system Ax = b⇒ LUx = b. The strategy is the following:
first we set

Ux = z , (3.22)

and then
Lz = b . (3.23)

Starting from the last equation, the system looks like

p1z1 = b1
a21z1 + p2z2 = b2
a32z2 + p3z3 = b3
...
an,n−1zn−1 + pnzn = bn

(3.24)

By forward substitution (first solve for z1, then for z2, ...) we have

z1 = b1/p1
z2 = (b2 − a21z1)/p2
z3 = (b3 − a32z2)/p3
...
zn = (bn − an,n−1zn−1)/pn

(3.25)

or in a form easy to translate into a computer code (compare it with the Gauss
elimination algorithm)

z1 = b1
p1

zj =
bj−aj,j−1zj−1

pj
j = 2, 3, ..., n

(3.26)

24

CHAPTER 3. LINEAR SYSTEMS

Now that we have the vector z, we can solve Ux = z and obtain the vector x:

x1 + q1x2 = z1
x2 + q2x3 = z2
...
xn−1 + qn−1xn = zn−1
xn = zn

(3.27)

The last system can be easily solved by backward substitution:

xn = zn
xj = zj − xj+1qj j = n− 1, n− 2, ..., 1 (3.28)

An important observation is that the solution of the tridiagonal system has com-
putational complexity O(n), while the Gauss elimination has O(n3).

3.7 LU Decomposition: General Case

It is possible to decompose a generic matrix (not necessarily tri-diagonal) in the
product of a lower-diagonal matrix L and an upper-diagonal matrix U. The de-
composition is not unique and a choice has to be made usually about the diagonal
elements. Since L and U have non-zero diagonals, a choice could be to fix the
diagonal elements of L to 1. We illustrate the method with a 3x3 matrix A = LU
with

L =

 1 0 0
l21 1 0
l31 l32 1

 U =

 u11 u12 u13
0 u22 u23
0 0 u33

 . (3.29)

Performing the multiplication

A = LU =

 u11 u12 u13
u11l21 u12l21 + u22 u13l21 + u23
u11l31 u12l31 + u22l32 u13l31 + u23l32 + u33

 . (3.30)

Let is now try to simplify this matrix with the Gauss elimination algorithm. The
first step is

Row 2→ Row 2− l21 · Row 1

25

CHAPTER 3. LINEAR SYSTEMS

Row 3→ Row 3− l31 · Row 1

This operation eliminates the matrix entries a21 and a31, respectively, resulting in
the equivalent matrix

A′ =

 u11 u12 u13
0 u22 u23
0 u22l32 u23l32 + u33

 . (3.31)

Appliying the last step

Row 3→ Row 3− l32 · Row 2

we eliminate a32 obtaining

A′′ =

 u11 u12 u13
0 u22 u23
0 0 u33

 . (3.32)

The result of the elimination process proved the following results:

1. The matrix U corresponds to the upper triangular matrix obtained with the
Gauss elimination method.

2. The off-diagonal elements of the matrix L are the pivot elements used in the
elimination algorithm. In other words, the elements lij are used to eliminate
the elements aij.

The latter results show that the LU decomposition algorithm (or the Doolittle
algorithm in this particular choice of the diagonal elements of L) is identical
to the Gauss elimination algorithm: the matrix U is produced by the elimination
process, while the matrix L is composed by the pivot elements.
An interesting implementation of the algorithm stores the results in one single
matrix for saving memory space. The idea is to store the elements of L in the zero
elements of U, remembering that the diagonal of L has all the entries equal to 1:

(LU) =

 u11 u12 u13
l21 u22 u23
l31 l32 u33

 . (3.33)

The algorithm is implemented in the python code 3.2.

26

CHAPTER 3. LINEAR SYSTEMS

1 import numpy as np
2

3 #LU decomposition (Doolittle version)
4 def LUdecomposition(A):
5 n = len(A)
6

7 #Perform Gauss elimination for calculating U
8 for k in range(0,n-1):
9 for i in range(k+1,n):

10 if A[i,k] != 0.0:
11 Lambda = A[i,k]/A[k,k]
12 A[i,k+1:n] = A[i,k+1:n] - \
13 Lambda * A[k,k+1:n]
14

15 #Record the L matrix elements
16 A[i,k] = Lambda
17 return A
18

19 def LUsolver(A,b):
20 n = len(A)
21 #Forward substitution
22 for k in range(1,n):
23 b[k] = b[k] - np.dot(A[k,0:k],b[0:k])
24 #Backward substitution
25 for k in range(n-1,-1,-1):
26 b[k] = (b[k] - np.dot(A[k,k+1:n],b[k+1:n])) \
27 /A[k,k]
28 return b
29

30 #Example
31 A = np.array ([[1 ,2 ,23] ,[3 ,14 ,5] ,[6 ,7 ,8]])
32 b = np.array ([15 ,6 ,37])
33

34 A = LUdecomposition(A)
35 X = LUsolver(A,b)
36

37 #Solutions of the linear system
38 print(X)

Listing 3.2: LU Decomposition

27

CHAPTER 3. LINEAR SYSTEMS

3.8 Choleski Decomposition

Another possible matrix decomposition, which is very useful in many applications
is the Choleski decomposition, which can be applied to Hermitian positive-definite
matrices. A complex matrix is Hermitian if it is equal to its complex-conjugated
transpose (denoted with A∗). An Hermitian real matrix A is symmetric, or A =
AT. A matrix A is positive-definite if vT Av > 0 ∀v 6= 0, which is equivalent to
the following properties:

• A is equivalent to a diagonal matrix with positive real elements.

• A is Hermitian and all its eigenvalues are real and positive.

• A is Hermitian, and all its leading principal minors are positive.

• There is a matrix U with det(U) 6= 0 with conjugate transpose U∗ such that
A = U∗U

The last equivalent property leads to the Choleski decomposition of a hermitian
matrix A:

A = LL∗ , (3.34)

where L is a lower triangular matrix (U was instead an upper triangular matrix).
The formulas for the decomposition can be inferred from a simple n=3 example
with real matrix elements

A = LLT =

 l11 0 0
l21 l22 0
l31 l32 l33

 ·
 l11 l21 l31

0 l22 l32
0 0 l33

 (3.35)

Performing the multiplication LLT and comparing with the corresponding ele-
ments of A we obtain

L =

√

a11 a21/l11 a31/l11

a21/l11

√
a22 − l2

21 (a32 − l31l21)/l22

a31/l11 (a32 − l31l21)/l22

√
a33 − l2

31 − l2
32

 (3.36)

The last result allows us to infer the general formulas for the matrix elements of L

28

CHAPTER 3. LINEAR SYSTEMS

ljj = ±
√

ajj −∑
j−1
k=1 l2

jk

lij = 1
ljj

(
∑

j−1
k=1 likljk

)
i > j

(3.37)

When the Choleski decomposition can be used, it is about twice as fast with respect
to the LU decomposition, although asymptotically the methods are equivalent.
The Choleski decomposition method is implementes in code 3.3.

1 import numpy as np
2

3 def Choleski(A):
4 n = len(A)
5 for k in range(n):
6 A[k,k] = np.sqrt(A[k,k] - \
7 np.dot(A[k,0:k],A[k,0:k]))
8 for i in range(k+1,n):
9 A[i,k] = \

10 (A[i,k] - np.dot(A[i,0:k],A[k,0:k]))/A[k,k]
11 for k in range(1,n): A[0:k,k] = 0.0
12 return A
13

14 #Example
15 A = np.array ([[4,-2,2],[-2,2,-4],[2,-4,11]])
16 L = Choleski(A)
17

18 print("LLt = ",np.dot(L,np.transpose(L)))

Listing 3.3: Choleski Decomposition

3.9 Steepest Descent and
Conjugate Gradient Methods

The algorithms examined up to nowwere “direct” methods. Another class of meth-
ods involves “iterative” methods which try to approximate the exact solution with
iterative steps starting from an initial guess solution. These algorithms can out-
perform direct methods when the matrix is sparse and very large, since for sparse

29

CHAPTER 3. LINEAR SYSTEMS

matrices we can record only the non-zero values of the elements and this can not
only same memory but also speed up matrix-vector multiplications. Iterative pro-
cedures are also safe against rounding errors, since they correct by themselves
through the iterations.
We will describe here one of the most popular iterative methods: the conjugated
gradient method and the less efficient steepest descent method. We consider first
the minimization of the following linear function

L(x) =
1
2

xT Ax− bx , (3.38)

where b,x are vectors and A is a symmetric and positive definite matrix. The min-
imization with respect to x involves the gradient of the function L and setting it to
zero

∇L(x) = Ax− b = 0 . (3.39)

The last result shows that the minimization of L solves the linear system Ax = b.
We would like to find the minimum of L with an iterative procedure, starting from
guess solution x0 and then iterate with successive corrections

xk+1 = xk + αksk . (3.40)

The number αk is the step length and is chosen for minimizing L in the direction
given by the vector sk.
Substituting the last equation in the linear system we have

A(xk + αksk) = b , (3.41)

and introducing the errors, or residuals ek = b− Axk we can rewrite

αAsk = ek . (3.42)

Multiplying Eq. 3.42 by sT
k to the left and solving for the step length

αk =
sT

k ek

sT
k Ask

. (3.43)

Now we have a procedure for updating the step length: we still have to choose the
direction sk.
A good choice seems to be

sk = ek = −∇L(x) . (3.44)

30

CHAPTER 3. LINEAR SYSTEMS

The reason is that with the latter choice, we move in the direction of where the the
function is steeper: indeed such algorithm is called steepest descent method.
This is not the best choice we can do and actually its convergence can be slow.
A more efficient algorithm is based on the following update rule

sk+1 = ek+1 + βksk , (3.45)

where the number βk is chosen is such a way that two successive directions are
conjugated:

sT
k+1Ask = 0 . (3.46)

The last choice consists in the conjugated gradient method: the two successive
directions are orthogonal in the metric induced by the matrix A. Concretely, this
means that the new direction does not spoil the previous minimization step and the
advantage gained is always conserved. In other words, two successive minimiza-
tion steps do not interfere with oneanother. To see this, we substitute Eq. 3.45 in
Eq. 3.46 obtaining

(eT
k+1 + βksT

k)Ask = 0 , (3.47)

which we can solve for β

βk = −
eT

k+1Ask

sT
k Ask

. (3.48)

With the last update rule, the algorithm is complete. As starting parameters, we
can choose x0 (the closer to the real solution, the less steps will be needed), and
e0 = b− Ax0 with the starting direction s0 = e0.
We remark again that the method works for a symmetric and positive definite ma-
trix: this ensures that if a vector v1 is conjugated to a vector v2 through A, i.e
v1Av2 = 0, also v2 is conjugated to v1 and Av1v2 = 0.
Positive definiteness ensures that α and β do not change sign during the iterations
which would otherwise result in a non-convergence of the algorithm.
Code 3.4 implements the conjugated gradient method, which we also summarize
in the following:

• Choose an initial vector x0, if possible close to the solution.

• Calculate the initial error e0 and proceed in the steppest descent direction
s0 = e0

• For k = 0, .., Nmax, where Nmax a maximum number of iterations, or stop
when |ek| < ε with ε a suitable acceptable error, DO:

31

CHAPTER 3. LINEAR SYSTEMS

1. xk+1 = xk + αksk and ek = b− Axk+1 with:

αk =
sT

k ek

sT
k Ask

.

2. βk = −
eT

k+1 Ask

sT
k Ask

3. sk+1 = ek+1 + βksk

• END DO.

32

CHAPTER 3. LINEAR SYSTEMS

1 import numpy as np
2 from math import sqrt
3

4 def ConjugatedGradient(A,b,x,maxiter ,err):
5

6 e = b-np.dot(A,x)
7 s = e
8

9 for i in range(0,maxiter):
10

11 u = np.dot(A,s)
12 alpha = np.dot(s,e) / np.dot(s,u)
13

14 x = x + alpha*s
15 e = b - np.dot(A,x)
16

17 if (sqrt(np.dot(e,e))) < err:
18 break
19 else:
20 beta = - np.dot(e,u) / np.dot(s,u)
21 s = e + beta*s
22

23 return x,i
24

25 #Linear system to solve
26 A=[[3 ,2 ,1] , [2,3,2] , [1,2,3]]
27 b =[1,2,3]
28

29 #Starting guess solution
30 x = np.array ([0,0 ,0])
31

32 maxiter = 30 #maximum number of iterations
33 tolerance = 1e-6 #precision wanted
34

35 x,iterations = ConjugatedGradient(A,b,x,maxiter ,
tolerance)

36

37 print("Iterations = ",iterations)
38 print("Solution x = ",x)

Listing 3.4: Conjugated Gradient Algorithm

33

CHAPTER 3. LINEAR SYSTEMS

The following code employs the previous one for plotting the iterative steps of
the algorithm for arriving to the solution of the linear problem.

1 from itertools import product
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from math import sqrt
5

6 def L(x):
7 Ax = np.dot(A, x)
8 xAx = np.dot(x, Ax)
9 bx = np.dot(b, x)

10 return 0.5 * xAx - bx
11

12 #creates a x,y,z=L(x,y) mesh using the function L
13 def create_mesh(f):
14 x = np.arange(-5, 5, 0.025)
15 y = np.arange(-5, 5, 0.025)
16 X, Y = np.meshgrid(x, y)
17 Z = np.zeros(X.shape)
18 mesh_size = range(len(X))
19 for i, j in product(mesh_size , mesh_size):
20 x_coord = X[i][j]
21 y_coord = Y[i][j]
22 Z[i][j] = L(np.array([x_coord , y_coord]))
23 return X, Y, Z
24

25 #creates a contour plot from the x,y,z mesh
26 def plot_contour(ax , X, Y, Z):
27 ax.set(title=’Iteration Path’,xlabel=’x_1’,ylabel=

’x_2 ’)
28 CS = ax.contour(X, Y, Z)
29 ax.clabel(CS, fontsize=’small ’, fmt=’%1.2f’)
30 ax.axis(’square ’)
31 return ax

Listing 3.5: Plot of iteration steps part 1/2

34

CHAPTER 3. LINEAR SYSTEMS

1 def ConjugatedGradient(A,b,x,maxiter ,err):
2 e = b-np.dot(A,x)
3 s = e
4 path = [x] #for recording the steps
5 for i in range(0,maxiter):
6 u = np.dot(A,s)
7 alpha = np.dot(s,e) / np.dot(s,u)
8 x = x + alpha*s
9 e = b - np.dot(A,x)

10 path.append(x)
11 if (sqrt(np.dot(e,e))) < err:
12 break
13 else:
14 beta = - np.dot(e,u) / np.dot(s,u)
15 s = e + beta*s
16 return x,i,np.array(path)
17

18 #Linear problem to solve
19 A = np.array ([[2.23 , -0.56] ,[-0.56 ,2.23]])
20 b = np.array ([1 ,2.7])
21

22 x0=np.array ([-2,2])
23 x,iterations ,path = ConjugatedGradient(A,b,x0 ,10,1e-6)
24

25 fig , ax = plt.subplots(figsize =(6, 6))
26 X, Y, Z = create_mesh(L)
27 ax = plot_contour(ax, X, Y, Z)
28 ax.plot(path[:,0], path[:,1], linestyle=’--’, marker=’o’

, color=’blue’)
29 ax.plot(path[-1,0], path[-1,1], ’ro’)
30 plt.show()

Listing 3.6: Plot of iteration steps part 2/2

35

CHAPTER 3. LINEAR SYSTEMS

Figure 3.1: Output of the previous code. The steps (bllue line) of the
algorithm are plotted over a contour map of the quadratic function
L(x) = 1

2 xT Ax− bTx.

36

CHAPTER 3. LINEAR SYSTEMS

3.10 The Gauss-Seidel Algorithm

This algorithm is another interesting application of the iterative ideas for solving
a linear system. It can be applied to any matrix with non-zero elements on the
diagonals and the convergence is guaranteed only if the matrix is either strictly
diagonally dominant or symmetric and positive definite.
The main idea is to split the matrix A of the linear system Ax = b into a lower-
diagonal matrix L (which comprehends also the main diagonal) and an upper-
diagonal matrix U (with zeroes on the main diagonal). For example:

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 = L + U =

 a11 0 0
a21 a22 0
a31 a32 a33

+

 0 a12 a13
0 0 a23
0 0 0

(3.49)

Using this decomposition, Ax = b ⇒ (L + U)x = b ⇒ x = L−1(b −Ux).
Writing the last result in iterative form (with iteration index k)

x(k+1) = L−1
(

b−Ux(k)
)

. (3.50)

Being L lower triangular, it is easy to prove that its inverse has the the inverse of
its diagonal elements aii on the main diagonal. Grouping these elements you and
remember the triangular structure of L and U, we can rewrite the i components of
the last equation as

x(k+1)
i =

1
aii

(
bi −

i−1

∑
j=1

aijx
(k+1)
j −

n

∑
j=i+1

aijx
(k)
j

)
. (3.51)

It is interesting to note that the calculation of x(k+1)
i at step (k + 1) uses recently

calculated elements at the same iteration step. As usual, the iteration is performed
either until a maximum step or when a specific condition is met, like for example
when the residual ri = |Ax(k) − b| < ε is smaller than a threshold ε.
A very simple example in dimension two is the following two-dimensional lienar
system: {

3x + y = 5,
x + 2y = 5, (3.52)

where the associated matrix decomposes to

A = L + U =

(
3 1
1 2

)
=

(
3 0
1 2

)
+

(
0 1
0 0

)
(3.53)

37

CHAPTER 3. LINEAR SYSTEMS

The diagonal elements of L−1 are 1/3 and 1/2 while Eq. 3.51 becomes, in compo-
nents

x(k+1)
1 = 1

3

(
5− x(k)2

)
x(k+1)

2 = 1
2

(
5− x(k+1)

1

) (3.54)

The last equations show explicitly how the second equation uses the already cal-
culated element from the first. While the memory requirements of the algorith are
modest and onlyone matrix has to be remembered, it is difficult to parallelize and
this is why it is not commonly used for very large problems 1. The algorithm is
implemented in Python in code 3.10

1 import numpy as np
2

3 def GaussSeidel(A,b,tol ,Nmax):
4

5 x = np.zeros_like(b, np.float_)
6 for iterations in range(1, Nmax):
7 x_new = np.zeros_like(x, dtype=np.float_)
8 for i in range(A.shape [0]):
9 s1 = np.dot(A[i, :i], x_new[:i])

10 s2 = np.dot(A[i, i + 1:], x[i + 1:])
11 x_new[i] = (b[i] - s1 - s2) / A[i, i]
12 #Compare element -wise wrt a tolerance
13 if np.allclose(x, x_new , tol):
14 break
15 x = x_new
16 return x,iterations
17

18 tol = 1e-6 #tolerance
19 Nmax = 1000 #maximum number of iterations
20 x,iterations = GaussSeidel(A,b,tol ,10000)
21 print("Solution:",x)
22 print("Found in ",iterations ," iterations")
23 error = np.dot(A, x) - b
24 print(f"Error: ",error)

Listing 3.7: Gauss-Seidel Algorithm

1Although Gauss was of the opinion that the method is so simple that you can almost
sleep or think about something else while going through the iterations by hand ...

38

CHAPTER 3. LINEAR SYSTEMS

3.11 Eigenvalues and Eigenvectors: the Power
Method

In many problems related to a matrix A, it is required to find a set of constants λi
and vectors vi such that

Avi = λivi , (3.55)

where λi are the eigenvalues corresponding to the eigenvectors vi. The last equa-
tion can be rewritten as

(A− λi I)vi = 0 , (3.56)

(I is the identity matrix) which has a non-trivial solution if det(A − λi I) = 0,
requiring that vi are non-zero vectors.
In general, finding the eigenvalues and the eigenvectors of large matrices is a com-
plex problem. In some applications, it is sufficient to evaluate the spectral radius,
which is the largest of the eigenvalues. This can be achieved with a simpler algo-
rithm called the power method. We assume that λ1 > λ2 > ... > λn, λ1 is
real,

|λ1| > |λi| , , i = 2, 3, ..n , (3.57)

and A has n linearly independent eigenvectors vi normalized such that the maxi-
mum component is equal to 1. If a vector x0 is an initial guess and the next vectors
at step k + 1 are obtained with

xk = Axk−1 , k = 1, 2, .., n , (3.58)

If x0 is represented by a linear combination of the eigenvectors (we write it on the
eigenvector base)

x0 = c1v1 + c2v2 + ...cnvn , c1 6= 0 , (3.59)

Acting with A on the last vectors, we obtain the sequence:

x1 = Ax0 = c1λ1v1 + c2λ2v2 + ... + cnλnvn

x2 = Ax1 = c1λ2
1v1 + c2λ2

2v2 + ... + cnλ2
nvn

... ...

... ...

xk = Axk−1 = c1λk
1v1 + c2λk

2v2 + ... + cnλk
nvn

39

CHAPTER 3. LINEAR SYSTEMS

Note that the upper indices k indicate the iteration step, while the upper index of
the eigenvalues λ is an exponent.
Rewriting the last iteration as

xk = λk
1

[
c1v1 + c2

(
λ2

λ1

)k
v2 + ... + cn

(
λn

λ1

)k
]

, (3.60)

and as k becomes large (in the limit k→ ∞) we have

xk −→ λk
1c1v1

xk+1 −→ λk+1
1 c1v1 ,

and taking the ratio of the last two iterations gives an estimate of the largest eigen-
value

xk+1

xk −→ λ1 . (3.61)

The Python code 3.8 implements the power method in a single loop, where the
vector is continuously renormalized with the previous one’s norm.
More in details, the algorithm works as follows

1. Start with a vector x normalized to 1

2. Calculate x_k1 = Ax

3. Calculate |x_k1|

4. Set x=x_k1/|x_k1| and go to step 2 until convergence.

The result will be |x_k1|=λ1 and x = v1. The sign of the eigenvalue is deter-
mined looking if xk1 changes sign between iterations. If this happes, the sign is
negative, otherwise, positive.

40

CHAPTER 3. LINEAR SYSTEMS

1 import numpy as np
2 from math import sqrt
3

4 #A symmetrix matrix
5 A = np.array ([[1, 2, 3],\
6 [2,-3, 4],\
7 [3, 4, 3]])
8

9 #Initial guess vector with unit norm
10 x = np.array ([1,0 ,0])
11

12 #Iterations
13 N=100
14

15 for i in range(N):
16 x_old = x.copy()
17 x_k1 = np.dot(A,x)
18 x_k1_norm = np.sqrt(np.dot(x_k1 ,x_k1))
19

20 x = x_k1/x_k1_norm #Normalize
21

22 if (np.dot(x_old ,x) <0.0):
23 sign = -1.0
24 x=-x
25 else: sign = 1.0
26 if np.dot(x_old -x,x_old -x) <1.0e-6 : break
27

28 lambda1 = sign * x_k1_norm
29 print("Iterations = ",i)
30 print("Largest Eigenvalue = ",lambda1)

Listing 3.8: Power Method

3.12 Eigenvalues and Eigenvectors: the Jacobi
Method

The Jacobi method (1846) returns the eigenvectors and the eigenvalues of sym-
metric matrices, which are particularly relevant in many applications. We remind

41

CHAPTER 3. LINEAR SYSTEMS

here that the eigenvalues of a symmetric matrix are always real and if the matrix
is positive-definite, they are also positive. Another relevant property of symmetric
matrices is that their eigenvectors are orthonormal.
The basic idea of the Jacobi algorithm, is to apply successive rotations in order
to diagonalize the matrix and then obtain the eigenvalues as its diagonal elements.
First we will discuss similarity transformations and rotations in particular, and then
the application to the eigenvalue problem.

Similarity Transformations

Considering the eigenvalue problem Ax = λx, we can apply the transformation
matrix x = Px′ (P is a non-singular matrix). Substituting the transformation into
the eigenvalue problem and multiplying by the inverse of P

P−1APx′ = λP−1Px′ ⇒ A′x′ = λx′ , (3.62)

where we defined the transformed matrix A′ = P−1AP. Since λ are scalars,
they are not changed by the transformation and we conclude that A and A’ have
the same eigenvalues: A and A’ are thus called similar and P encodes a similarity
transformation.
If we could find P such that A’ is diagonal, the eigenvalue problemwould be solved,
since the diagonal terms of A’ are exactly the sought eigenvalues. Moreover, if
A’ is diagonal, (A′ − λI)x = 0 implies that the eigenvectors are of the form
xi = (0, 0, ...1, ...0, 0) and the X matrix built with the eigenvectors as columns is
the identity matrix and therefore:

X = PX′ = PI = P , (3.63)

and we conclude that the similarity transformation P contains the eigenvectors of
A.

Rotations

We introduce now special similarity transformations x = Rx′ which have the
geometrical interpretation of rotations around an axis. The rotation matrices R

42

CHAPTER 3. LINEAR SYSTEMS

have the form (8-dimensional example)

R =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 cos θ 0 0 sin θ 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 − sin θ 0 0 cos θ 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

, (3.64)

From now on, we simplify the notation defining c = cos θ and s = sin θ. The c and
s elements in a generic rotationmatrix are found in the positions (k, k), (l, k), (l, k), (l, l),
while the other diagonal elements are equal to 1 and the other off-diagonal elements
are zero. The relevant property of rotation matrices is R−1 = RT: the transpose is
equal to the inverse. Applying an orthogonal matrix as similarity transformation
to a matrix A

A′ = R−1AR = RT AR , (3.65)

therefore A’ will have the same eigenvalues of A and moreover (thanks to the or-
thogonality of R) A’ will also be symmetric, like A. The transformation in Eq. 3.65
can be written algebrically as

A′kk = c2Akk + s2All − 2csAkl (3.66)

A′ll = c2All + s2Akk + 2csAkl

A′kl = A′lk = (c2 − s2)Akl + cs(Akk − All)

A′ki = A′ik = cAki − sAli for i 6= k i 6= l
A′li = A′il = cAli + sAki for i 6= k i 6= l

Jacobi Diagonalization

The basic idea is to apply successive rotations to the matrix A for reducing to zero
all the off-diagonal elements. An obivious problem is that a rotation could spoil the
effect of the previous one. The nice feature of the rotations is though that zeroed
off-diagonal elements might re-appear, but with a smaller magnitude. This means
that we can write our similarity transformation as

P = R1 · R2 · R3 · ... (3.67)

43

CHAPTER 3. LINEAR SYSTEMS

where Ri are orthogonal matrices (rotations). Let’s consider the off-diagonal ele-
ments A′kl in the list 3.66 and force them to be equal to zero, obtaining

(c2 − s2)Akl + cs(Akk − All) = 0 ⇒ tan 2θ = − 2Akl
Akk − All

, (3.68)

where we used the trigonometric identities c2− s2 = cos 2θ and cs = (sin 2θ)/2.
Eq. 3.68 can be solved for θ and the orthogonal transformation is fully determined.
Numerically, there is a better algorithm for the calculation of c and s. Considering
instead of the tangent its reciprocal or cotangent

φ = cot 2θ = − 2Akl
Akk − All

, (3.69)

and the trigonometrical identity

tan 2θ =
2t

1− t2 with t = tan θ , (3.70)

we have
tan 2θ =

1
φ
=

2t
1− t2 ⇒ t2 + 2φt− 1 = 0 . (3.71)

Solving the last quadratic equation, the roots are t = −φ±
√

φ2 + 1. The root
|t| < 1 corresponding to |θ| ≤ 45◦ is the most numerically stable transformation,
therefore we choose the plus-sign root if φ > 0 and the minus-sign if φ ≤ 0:

t = sgn(φ)
(
−|φ|+

√
φ2 + 1

)
. (3.72)

Multiplying the last equation by |φ|+
√

φ2 + 1 and solving for t

t =
sgn(φ)

|φ|+
√

φ2 + 1
≈ 1

2φ
. (3.73)

The second-last manipulation can be used for minimizing round-off errors in the
case where φ is large and the approximation (1/2φ) is useful for preventing over-
flows in the calculation of φ2.
Now that we have a stable calculation of t, using known trigonometric relations
we have

c =
1√

1 + t2
(3.74)

s = tc (3.75)

44

CHAPTER 3. LINEAR SYSTEMS

Going back to the condition for zeroing the off-diagonal elements (Eq. 3.68), we
can derive

All = Akk + Akl
c2 − s2

cs
, (3.76)

and substituting the last expression in all the instances of All in the equations 3.66
we obtain the new relations

A′kk = Akk − tAkl (3.77)

A′ll = All + tAkl

A′kl = A′lk = 0

A′ki = A′ik = Aki − s(Ali + ωAki) for i 6= k i 6= l
A′li = A′il = Ali + s(Aki −ωAli) for i 6= k i 6= l

where ω = s/(1 + c) is introduced for obtaining all the equation in a form where
the new value is equal to the old value plus/minus a factor.

The Algorithm

At the beginning of the algorithm, the similarity transformation P is initialized
with the identity matrix I. The rotation is

P′ = PR (3.78)

but we have to decide which off-diagonal elements to eliminate first (equivalently,
around which axis make the rotation). Jacobi’s original procedure required to zero
the largest element, but this implies scanning the matrix before every rotation and
this can slow down the algorithm for very large dimensions.
An alternative procedure is to apply the rotation to every element if its magnitude
is larger than a certain threshold. After a first rotation of all the elements above
threshold, the threshold can be lowered and the procedure repeated. The overall
algorithm can be summarized in the following steps

1. Initialize P=I and find the largest element Akl in the upper halp of A (it is a
symmetric matrix).

2. Compute φ and then derive c, s, and ω.

3. Apply the rotation 3.77.

45

CHAPTER 3. LINEAR SYSTEMS

4. Update the transformationmatrix Pwith Eq. 3.78, where only the off-diagonal
elements are affected:

P′ik = Pik − s(Pil + ωPik)

P′il = Pil + s(Pik −ωPil)

(3.79)

5. Repeat until |Akt| < ε with ε the chosen error tolerance.

At the end of the iterations, thematrix Awill be diagonal and the diagonal elements
will be the estimated eigenvalues, while the columns of matrix P will eventually
contain the eigenvectors. The code implementing Jacobi’s algorithm is showed
(divided in two halves) in Codes 3.9 and 3.10. The function Jacobi accepts a
matrix A as input as well as a tolerance (how close to zero a matrix element should
be). Jacobi implements the version of the algorithm where the rotations done by
the sub-function Rotation are always applied to the largest matrix element found
by the sub-function maxElement.

46

CHAPTER 3. LINEAR SYSTEMS

1 from math import sqrt
2 import numpy as np
3

4 def Jacobi(A,tol =1.0e-9):
5 #Largest off -diagonal element (upper half)
6 def maxElement(A):
7 n = len(A) ; themax = 0.0
8 for i in range(0,n-1):
9 for j in range(i+1,n):

10 if abs(A[i,j]) >= themax:
11 themax = abs(A[i,j])
12 k = i
13 l = j
14 return themax ,k,l
15

16 #Apply a rotation to male A[k,l]=0
17 def Rotation(A,P,k,l):
18 n = len(A)
19 diff = A[l,l] - A[k,k]
20 if abs(A[k,l])<abs(diff)*1.0e-36:
21 t = A[k,l]/diff
22 else:
23 phi = diff /(2.0*A[k,l])
24 t = 1.0 / (abs(phi) + np.sqrt(phi**2 + 1.0))
25 if phi < 0.0: t = - t
26 c = 1.0 / np.sqrt(t**2 + 1.0)
27 s = t*c
28 omega = s/(1.0 + c)
29 tmp = A[k,l]
30 A[k,l] = 0.0
31 A[k,k] = A[k,k] - t*tmp
32 A[l,l] = A[l,l] + t*tmp

Listing 3.9: Jacobi’s Algorithm (1/2)

47

CHAPTER 3. LINEAR SYSTEMS

1 for i in range(k): #if i<k
2 tmp = A[i,k]
3 A[i,k] = tmp - s*(A[i,l] + omega*tmp)
4 A[i,l] = A[i,l] + s*(tmp - omega*A[i,l])
5 for i in range(k+1,l): #if k<i<l
6 tmp = A[k,i]
7 A[k,i] = tmp - s*(A[i,l] + omega*A[k,i])
8 A[i,l] = A[i,l] + s*(tmp - omega*A[i,l])
9 for i in range(l+1,n): #if i>l

10 tmp = A[k,i]
11 A[k,i] = tmp - s*(A[l,i] + omega*tmp)
12 A[l,i] = A[l,i] + s*(tmp - omega*A[l,i])
13 for i in range(k): #Update P
14 tmp = P[i,k]
15 P[i,k] = tmp - s*(P[i,l] + omega*P[i,k])
16 P[i,l] = P[i,l] + s*(tmp - omega*P[i,l])
17

18 n = len(A)
19 maxRotations = 5 * (n**2) #Rule of thumb
20 P = np.identity(n)*1.0
21 for i in range(maxRotations):
22 themax , k, l = maxElement(A)
23 if themax < tol: return np.diagonal(A),P
24 Rotation(A,P,k,l)
25 print("Jacobi Method not converged ...")

Listing 3.10: Jacobi’s Algorithm (2/2)

48

Chapter 4 | Approximation and In-
terpolation

A typical problem arising in concrete applications is the approximation of discrete
data. If a discrete dataset is available, a way to study it is to find a (continuous)
function which reproduces the data but also “fills the gaps” between them. Once
such function is obtained, one can study the function instead of the data, obtaining
effectively a compression of the initial information. Another problem is checking if
a specific model given in the form of a function describes a discrete dataset or not.
It is useful to introduce the definition of discrete function, which is a function
defined only on a finite number of points:

yi = f (xi) , xi ∈ Ri+1 , i = 0, 1, 2, ...n . (4.1)

In this chapter, numerical algorithms for approximating and interpolating discrete
data will be described.

4.1 Linear Interpolation

This is the simplest interpolation algorithm, where the idea is to approximate the
dataset with pieacewise linear functions, or connect the points of the dataset with
lines.
If the dataset is defined on a grid of n + 1 points a = x0 < x1 < ... < xn = b
and the spacing between the points is h = (b− a)/n, then a linear interpolation
function L is given by

L(x) = yi +
yi+1 − yi

h
(x− xi) , xi ≤ x ≤ xi+1 . (4.2)

49

CHAPTER 4. APPROXIMATION AND INTERPOLATION

which is implemented in code 4.1

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 #Linear interpolation function
5 def LinearInterpolation(x,X,Y):
6 L=0
7 n = np.size(X)
8 h = (X[n-1] - X[0])/(n-1)
9 for i in range(0,n-1):

10 if (X[i]<=x and x<=X[i+1]):
11 L = Y[i] + (Y[i+1]-Y[i])/h * (x-X[i])
12 return L
13

14 #Example data
15 x = np.array ([1,2,3,4,5,6,7])
16 y = np.array ([1,2,5,7,4,4,2])
17

18 #Interpolate (return y given a single x)
19 N=100
20 xf = np.linspace (1,7,N)
21 yf = np.zeros(N)
22 k=0
23 for i in xf:
24 yf[k] = LinearInterpolation(i,x,y)
25 k = k+1
26

27 #Plot
28 plt.plot(x,y,’ro’)
29 plt.plot(xf,yf)
30 plt.xlabel(’x’)
31 plt.ylabel(’y’)
32 plt.show()

Listing 4.1: Linear Interpolation

In the code, the linear interpolation function is written for producing a single
point as output, given a single input value. This implies passing to the function
every time the dataset. The output is showed in Fig. 4.1.

50

CHAPTER 4. APPROXIMATION AND INTERPOLATION

Figure 4.1: Linear interpolation of a discrete function.

4.2 Parabolic Interpolation

If linear interpolation were not sufficient as an approximation, a parabolic interpo-
lation between points can be used instead.
Considering three non-collinear points (x0, y0), (x1, y1), (x2, y2), we can choose
x1 = 0 without loss of generality (a translation is always possible). The choice
for x1 implies x0 = −h and x2 = h. If the three points must lie on a parabola
y = a + bx + cx2 then we have

y0 = a− bh + ch2

y1 = a
y2 = a + bh + ch2

(4.3)

and solving for the coefficients a, b, c:

a = y1

b = y2−y0
2h

c = y2−2y1+y0
2h2 .

(4.4)

For assuring that the solution we found describes really a parabola, we have to
require that c 6= 0. Since h 6= 0, we must have

y2 − 2y1 + y0 = (y2 − y1)− (y1 − y0) 6= 0 ⇒
⇒ (y2 − y1) 6= (y1 − y0)

51

CHAPTER 4. APPROXIMATION AND INTERPOLATION

Figure 4.2: Parabolic interpolation of a discrete function.

but the last condition is assured by the non-collinearity of the points. If two points
are collinear, the formula falls back in the linear interpolation case. Taking into ac-
count a shift of the variable x and the results of Eq. 10.1 we can derive the parabolic
interpolation equation

P(x) = yi +
yi+1−yi−1

2h (x− xi) +
yi+1−2yi+yi−1

2h2 (x− xi)
2

xi−1 ≤ x ≤ xi+1 , i = 1, 3, 5, ..., n− 1 .
(4.5)

Considering the same dataset used in the linear interpolation example, an analog
code was written for producing Fig. 4.2.

4.3 Cubic Splines Interpolation

A major drawback of linear and parabolic interpolation is the discontinuity of the
first derivative of the obtained functions. The first derivative is discontinuous ex-
actly at the points of the discrete dataset and this might not be realistic in certain
applications. A typical example is when the discrete points correspond to positions

52

CHAPTER 4. APPROXIMATION AND INTERPOLATION

in space and the derivative of the interpolating function is thus the velocity. The
idea is to use a higher order polynomial function for “glueing” not only the pieces
of the function at the discrete points, but also its first derivatives. This is the basis
of the cubic splines method.
Let’s consider again three points where we fix x0 = 0 and therefore x1 = h
and x2 = 2h. We require that the points belong to a cubic function of the form
y = a + bx + cx2 + dx3:

y0 = a
y1 = a + bh + ch2 + dh3

y2 = a + 2bh + 4ch2 + 8dh3
(4.6)

The derivative of the cubic function is y′ = b+ 2cx+ 3dx2, which implies y′0 = b.
With the last condition, we can solve for the cubic function coefficients:

a = y0
b = y′0
c = 8y1−7y0−y2−6hy′0

4h2

d =
3y0−4y1+y2+2hy′0

4h3 ,

(4.7)

which lead to the cubic function

y(x) = y0 + y′0x +
8y1 − 7y0 − y2 − 6hy′0

4h2 x2 +
3y0 − 4y1 + y2 + 2hy′0

4h3 x3 .
(4.8)

We assume that we know the value of the derivative at the first point y′0 but we still
need a relation for evaluating the derivative at the other points. Taking the first
derivative of Eq. 4.8 and comparing it with the derivative of the cubic equation in
x2 = 2h we have

y′(x2) = b + 4ch + 12dh2 , (4.9)

and substituting the coefficients given in Eqs. 4.7 after some algebra we find

y′2 = y′0 + 2
y2 − 2y1 + y0

h
. (4.10)

The obtained equations 4.8 and 4.10 can be readily generalized to the cubic spline
formulas

53

CHAPTER 4. APPROXIMATION AND INTERPOLATION

S(x) = yi−1 + y′i−1(x− xi−1) +
8yi−7yi−1−yi+1−6hy′i−1

4h2 (x− xi−1)
2+

+
3yi−1−4yi+yi+1+2hy′i−1

4h3 (x− xi−1)
3

y′i+1 = y′i−1 + 2 yi+1−2yi+yi−1
h , i = 1, 3, 5, ..n− 1 .

(4.11)

In the following code 4.2, the spline interpolation formulas are implemented,
and the output of is showed in Fig. 4.3.

54

CHAPTER 4. APPROXIMATION AND INTERPOLATION

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 #Example data
5 x = np.array ([1,2,3,4,5,6,7,8,9,10])
6 y = np.array ([1,2,5,7,4,3,2,4,3,1])
7

8 def SplineInterpolation(X,Y,Y10 ,npoints):
9

10 n = np.size(X)
11 h = (X[n-1] - X[0])/(n-1)
12 S = np.zeros(npoints)
13 Y1 = np.zeros(np.size(X))
14

15 Y1[0] = Y10
16 k=0
17 grid = np.array ([1,3,5,7])
18 for i in grid:
19

20 for x in np.linspace(X[i-1],X[i+1] ,100):
21

22 A = 8.0*Y[i]-7*Y[i-1]-Y[i+1] -6.0*h*Y1[i-1]
23 B = 3.0*Y[i-1] -4.0*Y[i]+Y[i+1]+2.0*h*Y1[i-1]
24

25 S[k] = Y[i-1] + Y1[i -1]*(x-X[i-1]) + \
26 A/4.0/h/h*(x-X[i-1]) **2 + \
27 B/4.0/h/h/h*(x-X[i-1]) **3
28 k=k+1
29 Y1[i+1] = \
30 Y1[i-1] + 2.0/h*(Y[i+1] -2*Y[i]+Y[i-1])
31

32 return S,Y1
33

34 S,Y1 = SplineInterpolation(x,y,1 ,400)
35 xf = np.linspace (1,9,np.size(S))
36

37 #Plot
38 plt.plot(x,y,’ro’)
39 plt.plot(xf,S)
40 plt.xlabel(’x’)
41 plt.ylabel(’y’)
42 plt.show()

Listing 4.2: Spline Interpolation

55

CHAPTER 4. APPROXIMATION AND INTERPOLATION

Figure 4.3: Spline interpolation of a discrete function.

Looking at the figure and comparing it with the outputs of linear and parabolic
interpolation, it is clear that the continuity of the first derivative generates smoother
curves without kinks at the discrete dataset points. Many different interpolation
schemes can be constructed along the lines of the cubic splines and we will show
one more in the next section.

4.4 Cubic Splines with Smooth Second Deriva-
tives

In some applications, it could be important the guarantee the continuity of the
first and second derivative. In the previous method, we forced a cubic function
to pass through 3 consecutive points. Since a cubic function has 4 parametes, the
knowledge 3 points was not sufficient and we provided one initial value of the first
derivative. In the method we will describe here, we will use only 2 consecutive
points and a cubic function: the additional missing information will be provided
by the first and second derivative.

56

CHAPTER 4. APPROXIMATION AND INTERPOLATION

Assuming again x0 = 0 and x1 = h with y = a + bx + cx2 + dx3 we have

y0 = a
y′0 = b
y′′0 = 2c
y1 = a + bh + ch2 + dh3 ,

(4.12)

so in the interval [0, x1] the cubic function is

y(x) = y0 + y′0x +
1
2

y′′0 x2 +
y1 − y0 − hy′0 − (1/2)h2y′′0

h3 x3 . (4.13)

Considering now all the intervals [xi, xi+1], we can write the general algorithm.
First, in analogy to the derivation of Eq. 4.13, we calculate the first and second
derivatives:

y′i = y′i−1 + hy′′i−1 + 3
yi − yi−1 − hy′i−1 − (1/2)h2y′′i−1

h
, (4.14)

y′′i = y′′i−1 + 6
yi − yi−1 − hy′i−1 − (1/2)h2y′′i−1

h2 , (4.15)

and then the final piecewise function

y(x) = yi + y′i(x− xi) +
y′′i
2 (x− xi)

2+

yi+1−yi−hy′i−(1/2)h2y′′i
h3 (x− xi)

3 .

(4.16)

Besides the usual iterative solution, we can show that the cubic splines with contin-
uous second derivatives can be obtained from the solution of a tridiagonal linear

57

CHAPTER 4. APPROXIMATION AND INTERPOLATION

system of equations.
If S(x) is the interpolating function we would like to find, it has to have the prop-
erty S(xi) = yi for i = 0, 1, ..., n. If we call Si the i − th piece of the function,
the continuity of the derivatives implies:

S′i(xi) = S′i+1(xi) i = 1, 2, ..., n− 1
S′′i (xi) = S′′i+1(xi) = zi , (4.17)

where we called zi the values of the second derivatives. The idea now is to build
a function expressing the fact that the second derivative is continuous:

S′′i (x) = zi−1
xi − x

h
+ zi

x− xi−1

h
, xi−1 ≤ x ≤ xi . (4.18)

It is easy to verify that S′′i (xi) = zi and S′′i (xi−1)− zi−1.
By direct integration of Eq. 4.18 we have

S′i(x) = −zi−1
(xi − x)2

2h
+ zi

(x− xi−1)
2

2h
+ c1 , (4.19)

Si(x) = zi−1
(xi − x)3

6h
+ zi

(x− xi−1)
3

6h
+ c1x + c2 . (4.20)

From the last equation, since yi = S(xi):

yi =
1
6 zih2 + c1xi + c2 ,

yi−1 = 1
6 zi−1h2 + c1xi−1 + c2 ,

(4.21)

we can solve for the constants c1 and c2 obtaining

c1 = (yi−yi−1)−h2(zi−zi−1)/6
h ,

c2 = (xiyi−1−xi−1yi)−h2(xizi−1−xi−1zi)/6
h .

(4.22)

Substituting the coefficients in Eq. 4.20 we obtain the piecewise interpolating cu-
bic function we can solve for the constants c1 and c2 obtaining

S(x) =
zi−1

(xi−x)[(xi−x)2−h2]
6h +

zi
(x−xi−1)[(x−xi−1)

2−h2]
6h +

yi−1(xi−x)+yi(x−xi−1)
h .

(4.23)

58

CHAPTER 4. APPROXIMATION AND INTERPOLATION

We still need to find the values of the z parameters (the second derivatives). We
can take the first derivative of Eq. 4.23

S′(x) =
zi−1

h2−3(xi−x)2

6h +

zi
3(x−xi−1)

2−h2

6h +
yi−yi−1

h .

(4.24)

and impose its continuity Si(xi)− Si+1(xi):

zi−1h
6

+
zih
3

+
yi − yi−1

h
= −zih

3
− zi+1h

6
+

yi+1 − yi

h
. (4.25)

Bringing all the unkowns on the left side we have

1
6

zi−1 +
2
3

zi +
1
6

zi+1 =
yi+1 − 2yi + yi−1

h2 . (4.26)

The last equation describes exactly a tridiagonal system which we learned to solve
in the previous chapter.

4.5 Lagrange Interpolation

The methods outlined in the previous sections were quite specialized: one chooses
a polynomial and a number of given informations (couple of points, triples of
points, derivatives, and so on) and then constructs the piecewise interpolating func-
tion. A method due to Laplace is able generalize the procedure for any given num-
ber of points.
For explaining the method, we start from the parabolic interpolation of three points
(x0, y0), (x1, y1), (x2, y2). Lagrange reasoned that the interpolating function must
depend from y0,1,2 and therefore assumed a solution of the form

y(x) = y0A(x) + y1B(x) + y2C(x) . (4.27)

A,B, and C must be second degree polynomials. Since at the nodes the function
must work correctly, we must have y(x0) = y0, y(x1) = y1, and y(x2) = y2.

59

CHAPTER 4. APPROXIMATION AND INTERPOLATION

This happens if
A(x0) = 1 A(x1) = 0 A(x2) = 0
B(x0) = 0 B(x1) = 1 B(x2) = 0
C(x0) = 0 C(x1) = 0 C(x2) = 1

(4.28)

and it is not difficult to see that second-order polynomials satisfying these condi-
tions are

A =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
, (4.29)

B =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
, (4.30)

C =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
. (4.31)

Multiplying the parentheses and with some algebra, it can be proved that the ob-
tained solution is identical to the one found in Sec. 4.2: just the form of it is dif-
ferent, and much more useful for a generalization.
The structure of A,B, and C is evident. For example, since A is associated with the
point x0, we see that it is not present in the numerator, while in the denomitator
it gets subtracted by the other remaining points. The same observation applies to
B and C. Suppose now that we would like to interpolate a cubic through 4 points
instead of 3 (we add the point (x3, y3)). Following the previous considerations,
we should now have

A =
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
, (4.32)

and so on for B, C, and a new coefficient D. The generalization to k points is given
by the Lagrange interpolation formula. Defining the cardinal functions

Qj =
(x− x0)(x− x1)...(x− xj−1)(x− xj+1)...(x− xk−1)(x− xk)

(xj − x0)(xj − x1)...(xj − xj−1)(xj − xj+1)...(xj − xk−1)(xj − xk)
,

(4.33)

we can define the Lagrange formula

60

CHAPTER 4. APPROXIMATION AND INTERPOLATION

Pk(x) =
k

∑
j=0

yjQj(x) . (4.34)

Besides degenerate cases, Pk is a polynomial of degree k and represents a piece-
wise interpolation formula for k nodes.

4.6 Least Squares Method

Up to now, the nodes contained in the discrete dataset to interpolate, belonged
to the interpolating functions. We are now looking for a different method which
generates a function which does not necessarily go through the nodes, but it will
do it as much as possible. Such a method answers also the need to fit a specific
model to a dataset. The method of the least squares is designed for fitting a generic
function (not only polynomials) to a dataset.
The idea of the method is quite simple: minimize the deviation of the function
from the dataset points. This can be formalized defining the “distance” of the
function from a point i as the “error” ei = f (xi)− yi. We are not interested in the
“direction” of the error, so we might consider |ei|. This choice is not convenient,
since at the end we would like to do a minimization, which involves derivatives and
the modulus has no continuous derivative everywhere. A more convenient choice
is e2

i which removes the sign while having a continuous derivative.
What we have to do now is to minimize the overall error E on all nodes:

E =
n

∑
i=0

e2
i . (4.35)

The minimization is done taking derivatives of the error function with respect to
the parameters ai of the fitting function:

∂E
∂ai

= 0 . (4.36)

The latter system of equations have as solution the optimal values of the parameters
ai.

61

CHAPTER 4. APPROXIMATION AND INTERPOLATION

4.7 Linear Interpolation with the Least Squares
Method

Let’s assume we would like to approximate a dataset (xi, yi) (i = 1, .., N) with a
linear function of the form f (x) = a + bx. The error function will be

E(a, b) = ∑
i
[yi − (a + bxi)]

2 . (4.37)

Differentiating with respect to the parameters for minimizing the error

∂E
∂a

= −2
N

∑
i
[yi − (a + bxi)] = 0 , (4.38)

∂E
∂b

= −2
N

∑
i
[yi − (a + bxi)]xi = 0 , (4.39)

which leads to the following result

Na + b ∑
i

xi = ∑
i

yi , (4.40)

a ∑
i

xi + b ∑
i

x2
i = ∑

i
xiyi . (4.41)

Solving for the parameters a and b, we have

a =
∑i yi ∑i x2

i −∑i xi ∑i xiyi

N ∑i x2
i − (∑i xi)

2 , (4.42)

b =
N ∑i xiyi −∑i xi ∑i yi

N ∑i x2
i − (∑i xi)

2 . (4.43)

A more suggestive form of the equations can be obtained introducing the defini-
tions

Nσ2
xx = ∑

i
(xi − x̄)2 =

(
∑

i
x2

i

)
− Nx̄2 , (4.44)

62

CHAPTER 4. APPROXIMATION AND INTERPOLATION

Nσ2
yy = ∑

i
(yi − ȳ)2 =

(
∑

i
y2

i

)
− Nȳ2 , (4.45)

Nσxy = ∑
i
(xi − x̄)(yi − ȳ) =

(
∑

i
xiyi

)
− Nx̄ȳ . (4.46)

where we introduced the mean values Nx̄ = ∑i xi and Nȳ = ∑i yi. The number
σxy is often called covariance of the two variables x and y and measures how well
the points (x,y) are aligned along a line. Rewriting the least squares coefficients
with the covariance and the sum of the squared deviation σxx (the variance) we
have

a = ȳ− bx̄ , (4.47)

b =
σxy

σxx
. (4.48)

The quality of the obtained fit can be assessed calculating the correlation coeffi-
cient

ρ =
σxy√
σxxσyy

, (4.49)

which by construction has a maximum (minimum) value of 1 (−1) in the case of
a perfect (anti-)correlation.
An example of a linear fit is showed in Fig. 4.7.

4.8 Error on the Estimated Linear Parameters

The parameters a and b of the linear function f (x) = a + bx fitted to a data set
(xi, yi) (i=0,1,..,N) have also an uncertainty which stems from the uncertainty of
the yi values. The uncertainty σy on the yi values can be estimated with Eq. 4.50:

σy =
1
N ∑

i
[yi − (a + bxi)]

2 . (4.50)

63

CHAPTER 4. APPROXIMATION AND INTERPOLATION

Figure 4.4: Linear fit of a set of 30 data points generated with function
f (x) = a + bx + RDM and parameters a = 0, b = 1. RDM is a random
number in the range [-2,2].

Here and in the following, for simplifying the notation we assume that all the sums
are made over the entire available dataset: ∑N

i=0 → ∑i.
The previous equation gives a measure of the “dispersion” of the data around the
fitted line 1. Having a definition for σy, we can now apply error propagation to the
coefficients a and b:

σ2
a = ∑

i

(
∂a
∂yi

)2

σ2
y ,

σ2
b = ∑

i

(
∂b
∂yi

)2

σ2
y ,

where a and b are expressed by Eqs. 4.42 and 4.43.
In the following , we consider the angular coefficient b and start with calculating

1Statistically, the correct formula has an N-2 in the denominator instead of N. This
comes for compensating for the previous knowledge of the two parameters a and b.
The formula in general can be justified with the maximum likelihood principle applied
to gaussian distributed data: in this discussion we neglect these statistical details for
concentrating more on the algorithms themselves.

64

CHAPTER 4. APPROXIMATION AND INTERPOLATION

the derivative

∂b
∂yi

=
1
∆

∂b
∂yi

(
N ∑

i
xiyi −∑

i
xi ∑

i
yi

)
=

1
∆

(
Nxi −∑

i
xi

)
, (4.51)

where we define2 ∆ = N ∑i x2
i − (∑i xi)

2 which can be factorized outside the
derivative since it depends only on xi.
Now we can substitute the derivative in the error propagation equation

σ2
b =

1
∆2 ∑

i

(
Nxi −∑

j
xj

)2

σ2
y =

σ2
y

∆2

N2 ∑
j

x2
j + N

(
∑

j
xj

)2

− 2N ∑
i

xi ∑
j

xj

 .

(4.52)
The last two terms in the parenthesis can be subtracted and the numerator can be
identifyed as N · ∆:

σ2
b =

σ2
y

∆2

N2 ∑
j

x2
j − N

(
∑

j
xj

)2
 =

Nσ2
y

∆
. (4.53)

Repeating the same procedure for σ2
a , the formulas for the calculation of the un-

certainties on the linear regression parameters are

σ2
a =

σ2
y ∑i x2

i

∆
, (4.54)

σ2
b =

Nσ2
y

∆
. (4.55)

2the name ∆ for this quantity indicates that it is actually the determinant of the linear
system to be solved for obtaining a and b.

65

CHAPTER 4. APPROXIMATION AND INTERPOLATION

66

Chapter 5 | Root Finding

A common problem is the solution of a non-linear or linear equation or a system of
equations f (x) = 0. Geometrically, the same problem can be viewed (for exam-
ple, in one dimension) as finding the x-axis crossing point of a function y = f (x).
The solution of linear systems of equations analyzed in Chap. 3 can be considered
part of the root finding algorithms.
In general, root finding works best when we know already that a solution is con-
tained in a known interval.

5.1 Incremental Method

This method is likely the simplest one which can be applied for the search of an
equation’s roots. The idea is to make small steps dx until a change of sign in the
function is detected. If the function is positive before the step and negative after it
(or the other way around), it means that we crossed the x-axis and we found a root.
A simple implementation of this concept is given by the following code 5.1

67

CHAPTER 5. ROOT FINDING

1 #Incremental Method algorithm
2 def IncrementalMethod(f,a,b,dx):
3 x1 = a
4 x2 = a+dx
5

6 f1 = f(a)
7 f2 = f(x2)
8

9 while f1*f2 > 0.0:
10 if x1 >= b: return None ,None
11 x1 = x2
12 f1 = f2
13 x2 = x1 + dx
14 f2 = f(x2)
15 else: return x1 , x2

Listing 5.1: Incremental Method

In the code, the condition f1*f2 > 0 checks if the function changes sign after a
small step dx.
This simple algorithm has some potential problems. This first one is computa-
tional: if the steps are small and the interval large (in the case we do not have any
guesses about the location of the root), the convergence might be slow (especially
if the algorithm has to be executed several times). Another obvious issue consists
in the inability to detect roots which are closer than dx.
Another problem is that singularities can be identified as roots. The classic case is
f (x) = tan(x), where at x = nπ n = 1, 3, 5, .. the function changes sign without
crossing the axis.
Double roots are also not detected by this algorithm: try for example to find the
roots of (x− 1)2 = 0 and then the roots of the equivalent equation x2− 2x + 1 =
0.

5.2 Bisection Method

A slight improvement could be to constrain the location of the root from both sides,
instead of moving in small steps from one side of the interval to the other in one
direction. This idea is contained in the bisection method, where the interval is it-
eratively halved until the root is reached.

68

CHAPTER 5. ROOT FINDING

The presence of a root between two points x1 and x2 at its sides leads to the con-
dition we have seen in the previous section f (x1) · f (x2) < 0.
The idea of bisection is to calculate a point x3 = (x1 + x2)/2 between x1 and x2
and then check the sign of f (x1) · f (x3) < 0 and f (x2) · f (x3) < 0.
The algorithm proceeds iteratively halving one of the two intervals where the prod-
uct is negative.

1 from math import ceil ,log
2 def BisectionMethod(f,x1 ,x2,tol):
3 f1=f(x1)
4 if f1==0: return a
5 f2=f(x2)
6 if f2==0: return b
7 if f1*f2 > 0.0:
8 print("Root not in the interval")
9 return 0

10 n = ceil(log(abs(x2 -x1)/tol)/log (2.0))
11 for i in range(n):
12 x3 = 0.5 * (x1+x2)
13 f3 = f(x3)
14 if f3 == 0.0: return x3
15 if f2*f3 < 0.0:
16 x1 = x3
17 f1 = f3
18 else:
19 x2 = x3
20 f2 = f3
21 return (x1+x2)/2.0

Listing 5.2: Bisection Method

Also the previous code 5.2 has problems with the identification of double roots.

5.3 Newton’s Method

Newton’smethod (sometimes calledNewton-Raphsonmethod) exploits the knowl-
edge of the derivative of a function for locating the roots. The requirement to know
the derivative might also be seen as a drawback of this algorithm.

69

CHAPTER 5. ROOT FINDING

Newton’s method starts with a guess solution x0. If f (x0) = 0 we found a root
and if it is not the case, we generate a next guess solution in the following way. We
consider the tangent line to f at x0: this line must cross the x-axis in a location
between x0 and the root. In general, this choice generates a larger step than the
one chosen in an incremental method. This leads to an average faster convergence.
The equation of the tangent is

y− f (x0) = f ′(x0)(x− x0) (5.1)

and the intersection x1with the x axis is given by the condition y = 0

x1 = x0 −
f (x0)

f ′(x0)
. (5.2)

which leads to the iterative solution

xi+1 = xi −
f (xi)

f ′(xi)
, f ′(x1) 6= 0 . (5.3)

When xi+1 = xi (or |xi+1 − xi| < ε), we obtain the value of the root. This algo-
rithm can converge to the root faster than the previous ones and can identify also
double roots. The number of steps is dependent from the required precision and
the derivative must be calculated in advance. The method can be applied to both
linear and non-linear problems.
A further improvement of the algorithm is the Generalized Newton Method
where we consider the interative equation

xi+1 = xi −ω
f (xi)

f ′(xi)
, f ′(x1) 6= 0 , (5.4)

where ω is a suitable weight which might speed up the convergence. Usually,
0 < ω < 2, with ω = 1 the special case of Newton’s algorithm. It can be proved,
that the error at each step of Newton’s algorithm is given by

Ei+1 = − f ′′(xi)

f ′(xi)
E2

i , (5.5)

70

CHAPTER 5. ROOT FINDING

thus the method converges quadratically.
A last observation is about the calculation of the derivatives. We said that a draw-
back of Newton’s algorithm might be the required knowledge of the first deriva-
tives. This problem could be circumvented letting the computer, through a numer-
ical method, calculate them.

5.4 Multidimensional Newton’s Method

Another way to derive Newtons’s method is to Taylor-expand the function f

f (xi+1) ≈ f (xi) + f ′(xi)(xi+1 − xi) + (5.6)

If xi and xi+1 are close, we can drop higher orders and keep only the first and if
xi+1 is a root (i.e. f (xi+1 = 0) we obtain Newton’s formula.
The method can readily generalized to more dimensions, where the Taylor expan-
sion around a vector x̄ is

f (x̄ + ∆x̄) ≈ f (x̄) + J(x̄)∆x̄ + (5.7)

The Jacobian J is the matrix of first derivatives

Jij =
∂ fi

∂xj
, (5.8)

and ∆x̄ is a vector step. If f (x̄ + ∆x̄) = 0, we have to solve the matrix equation
J(x̄)∆x̄ = − f (x̄) obtaining the new step

∆x̄ = −J−1(x̄) f (x̄) . (5.9)

We can now summarize the multidimensional Newton’s algorithm with the follow-
ing list of steps

1. Choose a starting vector x̄i and evaluate f (x̄i) with i = 0.

2. Calculate the Jacobian J(x̄).

3. Solve Eq. 5.9.

4. Calculate the new vector xi+1 = xi + ∆x̄i.

5. repeat steps 2, 3, 4, 5, until |∆x̄| < ε.

71

CHAPTER 5. ROOT FINDING

Note that Eq. 5.9 is a matrix equation and thus it could be solved for example with
the Gauss Algorithm presented in Chap. 3.
In this multidimensional version of the algorithm, the calculation of the deriva-
tives might be even more impractical as the number of equations grows. A nu-
merical calculation of the derivatives becomes even more important than in the
one-dimensional case. Without relying to sophisticate algorithms for the calcula-
tion of the derivative, for this application we could use directly the definition

∂ fi

∂xj
≈

fi(x̄ + hej)− fi(x̄)
h

,

where ej is a unit vector representing a direction and, for consistency with the
equations introduced before, ∆x̄ = hej.
The multi-dimensional Newton’s method is implemented in the code 5.3 which
also includes checks for arresting the algorithm. The first check, stops the iteration
when

|| f (~x)||
D

< tolerance , (5.10)

where D is the number of dimensions and || · || is the Euclidean norm. The second
check controls if the steps become too small with respect to the tolerance:

||∆~x||
max |~x| < tolerance < 1 . (5.11)

The algorithm (see code 5.3) requires many evaluations of the function f , which
might be expensive, especially for the O(n) time complexity of the Jacobian cal-
culation. A simplification might be keeping the Jacobian constant when close to
the solution (after ∆x becomes smaller than a number decided beforehand, for ex-
ample).

72

CHAPTER 5. ROOT FINDING

1 import numpy as np
2 from math import sqrt
3

4 def NewtonN(f, x, h=1.0e-4, maxint =20, tol =1.0e-6):
5

6 def Jacobian(f,x):
7 n = len(x)
8 J = np.zeros ((n,n))
9 f0 = f(x)

10 for i in range(n):
11 tmp = x[i]
12 x[i] = tmp + h
13 f1 = f(x)
14 x[i] = tmp
15 J[:,i] = (f1-f0) / h
16 return J, f0
17

18 for i in range(maxint):
19 J, f0 = Jacobian(f,x)
20 if sqrt(np.dot(f0 ,f0)/len(x)<tol): return x
21 dx = GaussElimination(J,-f0)
22 x = x + dx
23 if sqrt(np.dot(dx ,dx)) < \
24 tol * max(abs(np.amax(x)) ,1.0):
25 return x
26

27 print("Maximum number of iterarations reached.")

Listing 5.3: N-dim Newton Method

5.5 Secant Method

This method is similar to Newton’s method but it does not require the calculation of
the derivative. The idea at the basis of this algorithm is considering a line between
two starting points x1 and x2

y =
f (x1)− f (x2)

x1 − x2
(x− x1) + f (x1) , (5.12)

73

CHAPTER 5. ROOT FINDING

and calculate the point x3 where it intersects the x-axis

y = 0⇒ x3 = x2 − f (x2)
x2 − x1

f (x2)− f (x1)
. (5.13)

The points x1 and x3 can be now taken for a second calculation of the “secant”
line. The iteration of the process should converge to the point where the function
f crosses the x-axis and therefore to the root of the equation

xn+1 = xn − f (xn)
xn − xn−1

f (xn)− f (xn−1)
. (5.14)

One advantage of the secant method over the bisection one is that no fixed interval
should be specified. On the other hand, without a fixed interval, the algorithm
could diverge.

5.6 Brent’s Method

The “hybrid”method of Brent 1 evolves the bisection algorithm including parabolic
instead of linear interpolation. It is generally faster than bisection, depending on
the smoothness of the function. Like bisection, the advantege of Brent’s method
lies in the fact that it does not need explicitly the calculation of derivatives.
In the bisection method, starting from two points x1 and x2 supposedly containing
the root in the interval [x1, x2], a third point x3 = (x1 + x2)/2 is constructed.
Bisection continues looking in which direction the function changes sign, while
in Brent’s algorithm, an inverse parabolic interpolation is used leveraging on the
three obtained points. Since we would like to obtain a “new” x-coordinate, we use
parabolic interpolation where the roles of f and x are interchanged in the cardinal
functions

x(f) =
(f − f2)(f − f3)

(f1 − f2)(f1 − f3)
x1 +

(f − f1)(f − f3)

(f2 − f1)(f2 − f3)
x2 +

(f − f1)(f − f2)

(f3 − f1)(f3 − f2)
x3 ,

(5.15)

1Richard P. Brent is an Australian mathematician and Computer scientist and devised
this algorithm in 1973. Hi was a PhD student of George E. Forsythe (1917-1972), founder
of the Stanford Computer science department and the person who coined the term
“Computer Science”. His wife, mathemticin Alexandra W. Illmer Forsythe, was one of
the first female Computer scientists and the first ever person writing a textbook on the
subject: “Computer Science: A First Course” (1969).

74

CHAPTER 5. ROOT FINDING

where fi = f (xi) and f = f (x).
Since we look for a crossing of the interpolation with the x-axis, we choose f=0,
and after some algebra

x(0) = − f2 f3x1(f2 − f3) + f3 f1x2(f3 − f1) + f1 f2x3(f1 − f2)

(f1 − f2)(f2 − f3)(f3 − f1)
. (5.16)

The updated candidate root is xnew = x3 + ∆x so that the “change” in abscissa is
∆x = x(0)− x3 which can be rewritten as

∆x = f3
x3(f1 − f2)(f2 − f3 + f1) + f2x1(f2 − f3) + f1x2(f3 − f1)

(f2 − f1)(f3 − f1)(f2 − f3)
.

(5.17)
A code implementing the algorithm is shown in code 5.4. The code is rather sim-
plified and a number of checks can be added. For example, a check should be done
in order to make sure that the root does not lie at the borders of the interval and
that the solution is really inside the interval. The bisection method is still used if
quadratic interpolation results in a point outside the search interval. The conver-
gence of the method is usually very fast for smooth functions. In general, Brent’s
method needs less steps with respect to bisection, although a single step is com-
putationally more expensive. This is the most widely used root finding method
in numerical libraries, which also implement more numerical checks at different
stages of the computation.

75

CHAPTER 5. ROOT FINDING

1 def BrentMethod(f,a,b,maxiter =20,tol=1e-6):
2 x1 = a
3 x2 = b
4 f1 = f(x1)
5 f2 = f(x2)
6 x3 = (a+b)/2
7 for i in range(maxiter):
8 f3 = f(x3)
9

10 # Reduce interval
11 if f1*f3 <0.0: b = x3
12 else: a = x3
13

14 # Output root if interval small enough
15 if (b-a) < tol*max(abs(b) ,1.0): return 0.5*(a+b)
16

17 # Parabolic interpolation
18 A = x3*(f1-f2)*(f2-f3+f1) + \
19 f2*x1*(f2-f3) + \
20 f1*x2*(f3-f1)
21 B = (f2-f1)*(f3-f1)*(f2 -f3)
22

23 # Check division by zero and shift point
24 try: dx = f3 * A/B
25 except ZeroDivisionError: dx = b-a
26 x = x3 + dx
27

28 # If interpolation out of interval , do bisection
29 if (b-x)*(x-a) < 0.0:
30 dx = 0.5*(b-a)
31 x = a + dx
32

33 # Set new reduced interval
34 if x<x3:
35 x2 = x3
36 f2 = f3
37 else:
38 x1 = x3
39 f1 = f3
40 x3 = x
41 print(x)
42 print("Maximum iterations reached")

Listing 5.4: Brent’s Method

76

Chapter 6 | Numerical Integration

6.1 Introduction

Numerical integration is also called quadrature andmany algorithms exist depend-
ing on the wanted precision, form of the integrating function and dimensions. Nu-
merical integration is an extremely important technique, given the fact that actu-
ally very few functions can be integrated analytically. Actually, picking a random
function from the space of all functions, the probability that such function can be
analytically integrated is zero.
Broadly speaking, there are two classes of algorithms: Newton-Cotes (NC) and
Gaussian integration (GI). A separate category encompasses stochastic techniques
like Monte Carlo methods.
NC techniques are characterized by an equal spacing in the integration variable,
while GI can also use variable-step mashes of points. NC are based on the inter-
polation formulas studied in the previous chapter and are generally very effective
for smooth functions. An advantage of GI methods is their ability to integrate also
functions containing for example singularities.
In general, the quadrature problem can be defined as

I =
∫ b

a
f (x) ≈

n

∑
i=0

ai f (xi) , (6.1)

where the integral I of a function f (x) is approximated by a finite sum over a mesh
of points xi (the “nodes” or nodal abscissas). The coefficients ai are sometimes
called the weights.

77

CHAPTER 6. NUMERICAL INTEGRATION

6.2 Newton-Cotes Methods

TheNCmethods are based on the integration of a function interpolating f (x). This
can be achieved in a general way considering Lagrange’s interpolation formula in
Eq. 4.5: in this way, we can rewrite f(x) as a polynomial of degree n

Pn(x) =
n

∑
i=0

f (xi)Qi(x) , (6.2)

where Qi(x) are the cardinal functions defined in Eq. 4.5. Substituting in Eq. 6.1

I =
∫ b

a
Pn(x)dx =

n

∑
i=0

(
f (xi)

∫ b

a
Qi(x)dx

)
=

n

∑
i=0

ai f (xi) , (6.3)

where the weights ai are

ai =
∫ b

a
Qi(x)dx , i = 0, 1, 2, ..., n . (6.4)

It looks like we have reduced the integration problem to another one (the calcula-
tion of the weights), but the Lagrange interpolation formula involves polynomials,
for which the integrals can be carried out.

6.3 The Trapezoidal Rule

The trapezoidal rule is the simplest numerical algorithm of the NC type and im-
plies interpolating linearly the function to integrate. The linear interpolation cor-
responds to n = 1 and the cardinal functions are:

Q0(x) =
x− x1

x0 − x1
, Q1(x) =

x− x0

x1 − x0
, (6.5)

which we can integrate to obtain the weights

a0 =
1
h

∫ b

a
(x− b)dx =

1
2h

(b− a)2 =
h
2

,

a1 =
1
h

∫ b

a
(x− a)dx =

1
2h

(b− a)2 =
h
2

.

78

CHAPTER 6. NUMERICAL INTEGRATION

Substitution in Eq. 6.3 gives

I =
h
2
(f (a) + f (b)) . (6.6)

The last formula corresponds to the area of the trapezoid one obtains approximat-
ing the function f with a line in the interval [a, b]. Indeed a simpler derivation
would have been to consider the line from the consecutive points (with spacing h)
x0 to x1

y = y0 +
y1 − y0

h
(x− x0) , (6.7)

and integrating∫ x1

x0

y(x)dx =

[
y0x +

y1 − y0

h
(x− x0)

2

2

]x1

x0

=
h
2
(y0 + y1) . (6.8)

In practice, the x axis is divided in a regular mesh of points and the formula is
applied piecewise

I ≈ h
2

n−1

∑
i=0

[f (xi) + f (xi+1)] . (6.9)

The latter formula can be rearranged for obtaining a small computational advantage

I ≈ h
2
[(y0 + y1) + (y1 + y2) + ...(yn−1 − yn)] (6.10)

where yi = f (xi). Summing the repeated terms, we arrive to the final formula for
the trapezoidal rule

I =
∫ b

a
f (x)dx ≈ h

2

[
y0 + 2

(
n−1

∑
i=1

yi

)
+ yn

]
. (6.11)

It is interesting to estimate the error involved in the trapeziodal approximation of
the integral I and an answer is contained in the following theorem:

Theorem 5. If f (x) is C2 in the interval [a, b] and the error Ei in [xi, xi+1] is

Ei =
∫ xi+1

xi

f (x)dx− h
2
[f (xi) + f (xi+1)] ,

79

CHAPTER 6. NUMERICAL INTEGRATION

then the error has the upper limit

|Ei| ≤
h3

12
max
[xi,xi+1]

| f ′′(x)| .

The convergence of the method is assured by

Theorem 6. Under the assumptions of previous theorem, if the total error is
E = ∑i Ei , then

lim
h→0

E = 0

A final note about the error: a more complete analysis yields

E = a1h2 + a2h4 + a3h6 + (6.12)

The last formula proves that the error does not follow exactly a h3 behaviour as
Theorem 5 might seem to imply. This is in fact not the case, since the evaluation
of the second derivative f ′′ is not completely independent from h.

6.4 Simpson’s Rule

Simpson’s rule (sometimes called “1/3 rule”) has a similar time computational
complexity as the trapezoidal rule, but a higher accuracy. It can be derived using
n = 2 in the NC formula (the trapezoidal rule had n = 1). Instead of applying the
NC formula, we will derive Simpson’s algorithm starting from a parabola interpo-
lating three points (x0, y0), (x1, y1), (x2, y2) choosing x0 = −h, x1 = 0, x2 = h
(see Eq. 4.5)

P(x) = y1 +
y2 − y0

2h
x +

y2 − 2y1 + y0

2h2 x2 . (6.13)

By direct integration ∫ x2

x0

P(x)dx =
h
3
(y0 + 4y1 + y2) . (6.14)

Since the result does not depend on xi=0,1,2, it can be generalized to∫ xi+2

x1

P(x)dx =
h
3
(yi + 4yi+1 + yi+2) . (6.15)

80

CHAPTER 6. NUMERICAL INTEGRATION

For the integration of a function f (x) in an interval [a, b] divided in n equal sub-
intervals (h = (b− a)/n), interpolating every three points we can approximate
its integral I with

I =
h
3

n/2−1

∑
i=0

(y2i + 4y2i+1 + y2i+2)

=
∫ b

a
f (x)dx =

h
3
[(y0 + 4y1 + y2) + (y2 + 4y3 + y4) + ...

+ (yn−2 + 4yn−1 + yn)] .

Regrouping the terms in the second line of the previous equation, we can rewrite
the Simpson’s rule in an alternative form for computational purposes, minimizing
the function calls

I =
∫ b

a
f (x)dx ≈ h

3
[y0 + 4y1 + 2y2 + 4y3 + ... + 2yn−2 + 4yn−1 + yn] .

(6.16)

The error estimate for Simpson’s rule is given by the following

Theorem 7. If f(x) is C4 in the interval [a, b], its total error is

|E| ≤ h5

90

n/2−1

∑
i=0

(
max

[x2i,x2i+2]

∣∣∣∣d4 f (x)
dx4

∣∣∣∣) .

The latter result shows also how much this method is precise with respect to
the trapezoidal rule, where the error scales with the smaller power h3.

6.5 Romberg Integration

Before introducing this high-order integration technique, we have first to discuss an
extrapolation algorithm known as Richardson Extrapolation. Suppose we have
to calculate numerically a quantity I and our numerical estimation i(h) depends
from a small parameter h. If the error we make in the estimation is E(h) and the
error scales with some power p of h we have

I = i(h) + chp , (6.17)

81

CHAPTER 6. NUMERICAL INTEGRATION

where c is some constant independent from h.
We can calculate numerically I on two different grids of points such that h1 are the
steps on the first grid and h2 are different steps (coarser or finer) on a second grid:

I = i(h1) + chp
1

I = i(h2) + chp
2

We can now eliminate the constant c in the previous equations and solve for I
obtaining

I =

(
h1
h2

)p
i(h2)− i(h1)(
h1
h2

)p
− 1

. (6.18)

For simplicity, it is common to choose one grid twice as smaller than the other,
thus h2 = h1/2 and the extrapolation formula becomes

I =
2pi(h1/2)− i(h1)

2p − 1
. (6.19)

Why the previous formula is an extrapolation formula will become clear in
discussing the following integration algorithm, which will merge the trapezoidal
rule with Richardson extrapolation.
Given a function f(x) to integrate, we introduce a sequence of finer and finer grids
with width

h =
b− a
2i−1 , (6.20)

such that each grid is half as smaller than the previous one (remembering the choice
we made in Eq. 6.19). Now we introduce the notation

Ii = Ri,1 , (6.21)

where Ii is the integral of f evaluatedwith the trapezoidal rule on 2i−1 sub-intervals
(or frames) of [a, b].
The algorithm starts with the calculation of I1 = R1,1: in this case h = (b− a) so
we have only one frame. Then, we calculate I2 = R2,1 with p = 2 obtaining an in-
tegration over two frames. Now we can use Richardson extrapolation to eliminate

82

CHAPTER 6. NUMERICAL INTEGRATION

the O(h2) error and going into the second step of the algorithm:

R2,2 =
22R2,1 − R1,1

22 − 1
=

4
3

R2,1 −
1
3

R1,1 . (6.22)

The next step is the calculation with the trapezoidal rule of I3 = R3,1 and obtain
the next extrapolation using the previous finer grid of two frames

R3,2 =
4
3

R3,1 −
1
3

R2,1 . (6.23)

After this calculation, we can take p=4

R3,3 =
24R3,2 − R2,2

24 − 1
=

16
15

R3,2 −
1

15
R2,2 . (6.24)

obtaining a O(h6) error.
How the algorithm works is shown in Fig. 6.5 in a graphical way. The figure sug-
gests that the Romberg algorithm can be stored in a triangular matrix where the
diagonal represent the results. When two successive diagonal elements are smaller
than a chosen tolerance, the algorithm can stop. Actually the matrix representation
is only useful for understanding the algorithm, since computationally only arrays
are needed.
The generalization of the previous formulas is

Ri,j =
4j−1Ri,j−1 − Ri−1,j−1

4j−1 − 1
, i > 1 , j = 2, 3, .., i . (6.25)

The Python code 6.1 implements the Romberg algorithm. The code employes
an iterative version of the trapezoidal rule adapted for 2k−1 frames, which works
as follows. Defining the integration interval length as L=(b-a), for one frame (or
k = 1) the trapezoidal integral is

I1 =
L
2
(f (a) + f (b)) .

For k = 2 (two frames)

I2 =
L
4
(f (a) + 2 f (a +

L
2
) + f (b)) =

I1

2
+

L
2

f (a +
L
2
) ,

83

CHAPTER 6. NUMERICAL INTEGRATION

Figure 6.1: Graphical representation of the Romberg integration algo-
rithm steps where two trapezoidal integrations on different grids are
merged through Richardson extrapolation.

and for k = 3 (4 frames)

I3 =
L
8
(f (a) + 2 f (a +

L
4
) + 2 f (a +

H
2
) + 2 f (a +

3L
4
) + f (b)) =

I2

2
+

L
4

[
f (a +

L
4
) + f (a +

3L
4
)

]
.

84

CHAPTER 6. NUMERICAL INTEGRATION

1 import numpy as np
2

3 #Iterative Trapezoid Routine
4 def Trapezoid(f,a,b,Iold ,k):
5 if k==1: Inew = (f(a)+f(b))*(b-a)/2.0
6 else:
7 n = 2**(k-2)
8 h = (b-a)/n
9 x = a + h/2.0

10 sum = 0.0
11 for i in range(n):
12 sum = sum + f(x)
13 x = x + h
14 Inew = (Iold + h*sum)/2.0
15 return Inew
16

17 #Romberg Integration
18 def Romberg(f,a,b,tol):
19

20 #Richardson Extrapolation
21 def Richardson(r,k):
22 for j in range(k-1,0,-1):
23 c = 4.0**(k-j)
24 r[j] = (c*r[j+1] - r[j]) / (c-1.0)
25 return r
26

27 r = np.zeros (21)
28 r[1] = Trapezoid(f,a,b,0.0 ,1)
29 r_old = r[1]
30

31 for k in range (2,21):
32 r[k] = Trapezoid(f,a,b,r[k-1],k)
33 r = Richardson(r,k)
34 if (r[1]-r_old) < tol*max(abs(r[1]) ,1.0):
35 return r[1] ,2**(k-1)
36 r_old = r[1]
37 print("Romberg Integration not converged")
38

39 def f(x):creturn np.sin(x)
40 a=0
41 b=np.pi
42 print(Romberg(f,a,b,1e-6))

Listing 6.1: Romberg Integration

85

CHAPTER 6. NUMERICAL INTEGRATION

In general, for k > 1 we can derive

Ik =
Ik−1

2
+

L
2k−1

2i−1

∑
i=1

f
[

a +
(2i− 1)L

2k−1

]
, k = 2, 3, .. . (6.26)

6.6 Gaussian Quadrature: Introduction

Gaussian quadrature is a method for integrating a function using the approximation∫ b

a
f (x)dx ≈∑

i
w(xi) f (xi) , (6.27)

where the problem is to find the weights wi and the nodes xi, in analogy to the
Newton-Cotes method.
We are going to introduce the idea of Gaussian quadrature restricting for now to
the integration interval [a = −1, b = 1].
The idea of the method is to approximate the function f(x) with a polynomial

f (x) ≈ a0 + a1x + a2x2 + a3x3... . (6.28)

Let us try to consider a linear approximation first. According to Eq. 6.27 we have∫ 1

−1
f (x)dx = w(x1) f (x1) , (6.29)

and we have to find the weight and the node x1. For finding two unknowns we
need two equations. A first equation is found supposing f equal to a constant
(zero-order) and we can choose 1 as its value. The second equation assumes a
linear function ∫ 1

−1
1 · dx = w1 · 1 = 2 ,∫ 1

−1
x · dx = w1 · x1 = 0 .

The solutions are x1 = 0 and w1 = 2 and we discover the not surprising result∫ 1

−1
f (x)dx = 2 f (0) . (6.30)

86

CHAPTER 6. NUMERICAL INTEGRATION

The latter formula is the lowest order approximation of an integral and it is exact
in the case of a linear function.
Consider now the case of a cubic approximation f = a0 + a1x + a2x2 + a3x3

∫ 1

−1
f (x)dx = w(x1) f (x1) + w(x2) f (x2) . (6.31)

A cubic has four coefficients and the latter equation has also four unknowns (x1,2,
w1,2). With an analog procedure as the one used in the linear approximation

∫ 1

−1
1 · dx = w1 + w2 = 2 ,∫ 1

−1
x · dx = w1x1 + w2x2 = 0 ,∫ 1

−1
x2 · dx = w1x2

1 + w2x2
2 = 2/3 ,∫ 1

−1
x3 · dx = w1x3

1 + w2x3
2 = 0 ,

noting also that all the odd powers result in a zero integral, since we integrate an
odd function on a symmetric interval.
Solving the latter system of equations we have w1 = w2 = 1 and x1,2 = ∓1/

√
3.

Thus we obtain the following approximation formula

∫ 1

−1
f (x)dx = f

(
− 1√

3

)
+ f

(
1√
3

)
, (6.32)

which is exact for cubic functions.
Continuing the same procedure to high (odd) orders, we can obtain in principle an
increasingly better approximation of the function f (x).

6.7 Gaussian Quadrature: a more general case

More in general, the Gaussian Quadrature procedure allows the estimation of in-
tegrals of the type

I =
∫ b

a
w(x) f (x)dx , (6.33)

87

CHAPTER 6. NUMERICAL INTEGRATION

where w(x) is called weighting function. As we did in the previous section, we
will try to approximate f(x) with a polynomial Pm(x) which we choose of degree
m = 2n + 1 (an odd order, as before)∫ b

a
w(x)Pm(x)dx =

n

∑
i=0

aiPm(xi) , m ≤ 2n + 1 . (6.34)

Note that now w indicates the weighting function and the weights defined in the
previous section are now called ai.
Concretely, taking for example the interval [0, ∞], w(x) = e−x and adopting a
cubic interpolation ∫ ∞

0
e−xdx = a0 + a1 = 1 ,∫ ∞

0
e−xxdx = a0x0 + a1x1 = 1 ,∫ ∞

0
e−xx2dx = a0x2

0 + a1x2
1 = 2 ,∫ ∞

0
e−xx3dx = a0x3

0 + a1x3
1 = 6 .

Solving the system we obtain

x0 = 2−
√

2 , x1 = 2 +
√

2 ,

a0 =

√
2 + 1

2
√

2
,

√
2− 1

2
√

2
,

and the integration formula finally is∫ ∞

0
e−x f (x)dx ≈ 1

2
√

2

[
(
√

2 + 1) f (2−
√

2) + (
√

2− 1) f (2−
√

2)
]

,

(6.35)
which is exact if f(x) is a cubic polynomial.

6.8 Orthogonal Polynomials

Before presenting the general Gaussian Quadrature algorithm, we have to intro-
duce the orthogonal polynomials. A set of polynomials φn(x) with degrees

88

CHAPTER 6. NUMERICAL INTEGRATION

Polynomial Interval [a, b] w(x) Normalization
Legendre pn(x) [−1, 1] 1 2/(2n+1)

Chebyshev Tn(x) [−1, 1] 1/
√

1− x2 π/2 n>0
Laguerre Ln(x) [0, ∞] e−x 1
Hermite Hn(x) [−∞, ∞] e−x2 √

π2nn!

n = 0, 1, 2, .. is said to be orthogonal with respect to a weighting function w(x)
over an interval [a, b] if∫ b

a
w(x)φm(x)φn(x)dx = 0 , m 6= n . (6.36)

The polynomials listed in Tab. 6.8 are among the most used and were introduced
originally as solutions of certain differential equations. The normalization N is
defined as N =

∫ b
a w(x)φ2

ndx.
Considering the Legendre polynomials, the first are

P1(x) = x ,

P2(x) =
1
2
(3x2 − 1) ,

P3(x) =
1
2
(5x3 − 3x) ,

P4(x) =

If one tries to calculate the roots of P1 and P2, we discover that they are exactly the
nodes we obtained in Sec. 6.6. Indeed, the Legendre polynomials are orthogonal
in [−1, 1], which is the interval we considered for the integration. This obser-
vation points towards a connection between integration formulas and orthogonal
polynomials.

6.9 The Gaussian Quadrature Algorithm

Here we will give the general Gauss Quadrature formulas, which will be proven
separately in the next section.
The solution of the integral I =

∫ b
a w(x) f (x)dx can be expressed as an integral

where the function f (x) is approximated by an orthogonal polynomial and∫ b

a
w(x)P2n+1(x)dx =

n

∑
i=0

aiP2n+1(x1) , (6.37)

89

CHAPTER 6. NUMERICAL INTEGRATION

where the nodes xi are the zeros of the polynomial P2n+1(x) and the weights ai
can be obtained from

ai =
∫ b

a
w(x)Ci(x)dx , i = 0, 1, 2, .., n , (6.38)

where Ci are the Lagrange’s cardinal functions already introduced in Chapt. 4.
For Legendre Polynomials

ai =
2

(1− xi)[P′n+1(xi)]2
. (6.39)

For Laguerre Polynomials

ai =
1

xi[L′n+1(xi)]2
. (6.40)

For Hermite Polynomials

ai =
2n+2(n + 1)!

√
π

[H′n+1(xi)]2
. (6.41)

Note that Gauss quadrature in the [−1, 1] interval can be applied to any finite in-
terval [a, b] by a proper change of variables dx/dy = (b− a)/2.

6.10 Multidimensional Integration

Integration in more than one dimension is a rather broad topic and here we will
present only one simple solution which leverages on the one-dimensional inte-
gration routines already analyzed. The most simple idea is to apply the one-
dimensional algorithm to each coordinate, while keeping the other coordinates
fixed. This can be realized in an iterative way over an n-dimensional grid of points.
A clever recursive algorithm is suggested by a close analysis of multidimensional
integration. Taking as example 3-dimensional integration, in order to perform the
integral I, it can always be written in this form

I =
∫

dxdydz f (x, y, z) =
∫ b

a

∫ y2(x)

y1(x)

∫ z2(x,y)

z1(x,y)
f (x, y, z)dxdydz . (6.42)

90

CHAPTER 6. NUMERICAL INTEGRATION

The most internal integral can be seen as a function of two variables

F2(x, y) =
∫ z2(x,y)

z1(x,y)
f (x, y, z)dz , (6.43)

while the second integral is a function of one variable

F1(x) =
∫ y2(x)

y1(x)
F2(x, y)dy . (6.44)

With the latter definitions, the integral is thus

I =
∫ b

a
F1(x)dx . (6.45)

As anticipated, the derived formulas can be translated in a recursive algorithm
where we integrate Eq. 6.45 with a 1-dimensional integration algorithm. The algo-
rithm (adapted from Numerical Recipes in C) is showed in code 6.2 exploiting
a simple 1-dimensional trapezoidal integration function.
The obvious general problem of multidimensional integration is the large amount
of computation required as the dimension grows. Algorithms along the lines of the
one described here can be quite precise and practical up to dimensions 3-4, but af-
ter that usually different techniques are required, as we will see in the next section.

91

CHAPTER 6. NUMERICAL INTEGRATION

1 #1D Integration (Trapezoidal rule in this case)
2 def Trapezoid(f,a,b,n=10):
3 h = (b-a)/float(n)
4 x = a
5 I=0
6 for i in range(int(n)):
7 I = I + (f(x) + f(x+h))*h/2.0
8 x = x + h
9 return I

10

11 #Function to integrate
12 def F(x,y,z): return x + y + z
13

14 #Integration limits on y
15 def y1(x): return 0
16 def y2(x): return 2
17

18 #Integration limits on z
19 def z1(x,y): return 0
20 def z2(x,y): return 2
21

22 xsav=0
23 ysav=0
24

25 def Integrate3D(a,b):
26 return Trapezoid(F1 ,a,b)
27

28 def F1(x):
29 global xsav
30 xsav = x
31 return Trapezoid(F2 ,y1(x),y2(x))
32

33 def F2(y):
34 global ysav
35 ysav = y
36 return Trapezoid(F3 ,z1(xsav ,y),z2(xsav ,y))
37

38 def F3(z): return F(xsav ,ysav ,z)
39

40 print("Integral = ",Integrate3D (0,2))

Listing 6.2: 3D Integration

92

CHAPTER 6. NUMERICAL INTEGRATION

6.11 Introduction to Stochastic Integration

Stochastic integration is a method for estimating integrals based on the generation
of random numbers. In order to understand the method, we start with a simple
example. We would like to calculate the area of the quarter of a circle with unit
radius. The exact area is C = π/4 and the quarter circle is completely contained
in a square of unit side.
For estimating the circle area C, we can generate N random points (x, y) with
x < 1 and y < 1 and check how many points p land inside the circle, checking
if
√

x2 + y2 < 1. The number of generated points will be proportional to the
square’s area Q=1, while the number of points landing inside the circle will be
proportional to the circle’s area, therefore

Q
C

=
N
p
⇒ C =

p
N

. (6.46)

Generating random numbers we have a method for estimating C and since π =
4 · C, we can even estimate the number π with the same procedure, as showed in
the example code 6.3

1 from math import *
2 import random
3

4 def EstimatePI(N):
5 p=0
6 for i in range(N):
7 x = random.random ()
8 y = random.random ()
9 if (sqrt(x**2+y**2) <1): p=p+1

10 return p/N * 4.0
11

12 print("pi = ",EstimatePI (100000))

Listing 6.3: π estimation

93

CHAPTER 6. NUMERICAL INTEGRATION

Figure 6.2: (Left) Generated 1000 random points in the unit square. The
ratio between the square and circle area is equal to the ratio of the number
of points landing in the circle (orange) and the total number of generated
points. Right: Value of π estimated with Monte Carlo integration on
a circle as a function of the number of generated points N. The error
decreases as 1/

√
N.

6.12 Monte Carlo Integration

If we have to calculate the multidimensional integral

I =
∫

A
f (x̄)dx̄ , (6.47)

over a set A, we can estimate it considering only a fine set of points xrnd in A
chosen randomly. If the total integral (the “volume”) of the set A is V =

∫
A dx̄,

we can use the approximation

Ĩ ≈ V · 1
N ∑

i
f (xi) = V · 〈 f 〉 . (6.48)

where 〈 f 〉 is the average of the function over the N random points. The last formula
is the simplest form of the Monte Carlo algorithm and its convergence to the true
value of I is guaranteed by the law of large numbers.
This method is very efficient for high-dimensional integrals, since we probe only
a subset of points in A, while grid methods will have to calculate the function over

94

CHAPTER 6. NUMERICAL INTEGRATION

the whole set A. Given the stochastic nature of the method, a statistical error in the
estimate is involved. This can be calculated considering the variance defined as

Var(f) = σ2 =
1

N − 1

N

∑
i=1

(
f (xi,gen)− 〈 f 〉

)2 , (6.49)

we can now calculate the variance of the estimator I ≈ V · 〈 f 〉

Var(Ĩ) =
V2

N2

N

∑
i=1

Var(f) =
V2σ2

N
. (6.50)

The square of the variance gives the root mean square error

Err(Ĩ) =
Vσ√

N
. (6.51)

which shows that the error decreases as the square root of the number of generated
random points (see Fig. 6.11).

6.13 Importance Sampling

The simple Monte Carlo algorithm described in the latter section can be further
improved. The random points were generated according to an uniform random
distribution within the integration volume. This in general is not very efficient:
we could sample more points where the function is larger and contributes more
to the integral for example. This observation leads to the idea of importance
sampling.
In general, the expectation value E of a variable or a function is defined as

E[f] =
∫

A
ρ(x̄) f (x̄)dx̄ , (6.52)

with respect to a probability distribution ρ. If we generate N random numbers
according to ρ, the last integral can be approximated by (1/N)∑i f (xi). This
observation suggests the importance sampling Monte Carlo method. If we have to
integrate a function f over a set A, we can perform the following manipulation∫

A
f (x)dx =

∫
A

f (x)
ρ(x)
ρ(x)

dx =
∫

A

f (x)
ρ(x)

ρ(x)dx ≈ 1
N

N

∑
i=1

f (xi)

ρ(xi)
, (6.53)

where the random numbers xi are sampled from the distribution ρ.
The advantage of the method is in the reduction of the variance if ρ is very close
to f .

95

CHAPTER 6. NUMERICAL INTEGRATION

6.14 Gaussian Random Numbers: Box-Muller Trans-
formation

In many applications, it is relevant to generate random numbers with a Gaussian
distribution. The Box-Muller algorithm (BM) is one of the available methods for
achieving this. BM considers two Gaussian distributions in the two variables X
and Y

P(X) =
1√
2π

e−
X2
2 ,

P(Y) =
1√
2π

e−
Y2
2 .

The product of the two latter distributions in spherical coordinates X = R cos θ
and Y = R sin θ is

P(X, Y) = P(X) · P(Y) = 1
2π

e
−(X2+Y2)

2 −→ P(R, θ) = P(R) =
1

2π
e
−R2

2 .
(6.54)

If we now generate two uniformly distributed random numbers x and y, we can
write

x =
θ

2π
⇒ θ = 2πx , (6.55)

because the product distribution in the new coordinates does not depend on the
“angle” θ and

y = e
−R2

2 ⇒ R =
√
−2 ln y . (6.56)

Having R(x,y) and θ(x,y), we can restore the original coordinates obtaining the
Box-Muller formulas

cccX = R cos θ =
√
− ln y · cos(2πx) , (6.57)

Y = R cos θ =
√
− ln y · sin(2πx) . (6.58)

Summarizing, the BM method generates two random numbers with Gaussian dis-
tribution starting from two uniformly distributed random numbers.

96

Chapter 7 | Numerical Differenti-
ation

The approximation of derivatives is a central problem in numerical analysis, since
it plays a key role in differential equations and therefore in many engineering and
science applications. Differentiation is a limiting process and on a computer it
will be always affected by round-off errors and therefore the derivative of a func-
tion will never be as precise as the computation of the function itself.
In this chapter, we will derive the most important and commonly used approxima-
tion schemes for the derivatives.

7.1 Backward and Forward Differences

Starting from the definition of derivative, a numerical approximation can be di-
rectly derived

f ′(x) = lim
∆x→0

f (x + ∆x)− f (x)
∆x

≈ f (x + h)− f (x)
h

, (7.1)

where h has to be “small”.
In the definition, ∆x can be positive or negative. In the positive case, the ap-
proximation is called forward difference, in the negative case, backward difference
approximation.
The grid size h instead has to be a positive number.
Considering only interior points (x1, x2, ..., xn−1) of a grid x0, x1, ..., xn, a numer-
ical approximation of the derivative must depend from two points such that we can
write (choosing consecutive points)

f ′(xi) = a f (xi) + b f (xi+1) . (7.2)

97

CHAPTER 7. NUMERICAL DIFFERENTIATION

We can now Taylor-expand the second term, remembering that xi+1 − xi = h

f (xi+1) ≈ f (xi) + h f ′(x) + O(h2). (7.3)

Inserting Eq. 7.3 in Eq. 7.2

f ′(xi) = (a + b) f (xi) + bh f ′(xi) + O(h2) . (7.4)

If we choose a + b = 0 and bh = 1, from which b = 1/h and a = −1/h, we
satisfy the equation up to first order. Inserting these results in Eq. 7.2 we obtain

f ′(xi) ≈
f (xi+i)− f (xi)

h
, (7.5)

which is a two-point forward difference approximation with error E =
(h/2) f ′′(x). With an analogous procedure, we could find

f ′(xi) ≈
f (xi)− f (xi−1)

h
, (7.6)

the two-point backward difference approximation.

7.2 Central Difference

In the last section, we used two points for approximating a derivative: here we will
consider three points

f ′(xi) = a f (xi) + b f (xi+1) + c f (xi−1) . (7.7)

Substituting the Taylor expansions for the last two terms up to third order

f (xi+1) ≈ f (xi) + h f ′(xi) +
h2

2
f ′′(x) + O(h3)

f (xi−1) ≈ f (xi)− h f ′(xi) +
h2

2
f ′′(x)−O(h3) ,

98

CHAPTER 7. NUMERICAL DIFFERENTIATION

we obtain

f ′(xi) = (a + b + c) f (xi) + h(b− c) f ′(xi) +
h2

2
(b + c) f ′′(xi) + O(h3) .

For satisfying the last equation we choose
a + b + c = 0
h(b− c) = 1
b + c = 0

⇒

a = 0
b = 1/(2h)
c = −1/(2h)

.

Inserting these results back in Eq.7.7 we obtain the three-point approximation

f ′(xi) ≈
f (xi+1)− f (xi−1)

2h
. (7.8)

The last formula is in fact a two-point approximation, since the third point disap-
peared from the calculation. This is why this result is better known as central
difference approximation.
The error is now improved with respect to forward and backward differences, since
we expanded the functions up to third order

E =
h2

12

[
f (3)(k1) + f (3)(k2)

]
, (7.9)

where xi < k1 < xi+1 and xi−1 < k2 < xi.

7.3 Second Derivative

For approximating the second derivative, we have to consider at least three points
f ′′(xi) = a f (xi) + b f (xi+1) + c f (xi−1) . (7.10)

In this case, for keeping a non-zero second derivative, we have to expand f (xi+1)
and f (xi−1) to the fourth order, obtaining

f ′′(xi) = (a + b + c) f (xi) + h(b− c) f ′(xi) +
h2

2
(b + c) f ′′(xi)+

f (3)(xi)

6
+

h4

24

[
b f (4)(k1) + c f (4)(k2)

]
.

99

CHAPTER 7. NUMERICAL DIFFERENTIATION

With the choice
a + b + c = 0
b− c = 1
h2(b + c) = 2

⇒

a = −2/h2

b = 1/h2

c = 1/h2
.

the central difference approximation for the second derivative becomes

f ′′(xi) ≈
f (xi+1)− 2 f (xi) + f (xi−1)

h2 , (7.11)

with error

E =
h2

24

[
f (4)(k1) + f (4)(k2)

]
, (7.12)

where xi < k1 < xi+1 and xi−1 < k2 < xi.
An alternative (perhaps simpler) derivation of the central difference formula for
the second derivative consists in calculating the Taylor expansion of f (x + h) +
f (x− h).

7.4 Another derivation

In this sectionwe present another procedure for deriving different numerical deriva-
tive formulas, which is based on the Taylor expansions

(a) f (x + h) = f (x) + h f ′(x) +
h2

2
f ′′(x) + O(h3)

(b) f (x− h) = f (x)− h f ′(x) +
h2

2
f ′′(x) + O(h3)

(c) f (x + 2h) = f (x) + 2h f ′(x) +
(2h)2

2
f ′′(x) + O(h3)

(d) f (x− 2h) = f (x)− 2h f ′(x) +
(2h)2

2
f ′′(x) + O(h3)

100

CHAPTER 7. NUMERICAL DIFFERENTIATION

f (x− 2h) f (x− h) f (x) f (x + h) f (x + 2h)
2h f ′(x) 0 -1 0 1 0
h2 f ′′(x) 0 1 -2 1 0

2h3 f ′′′(x) -1 2 0 -2 1
h4 f (4)(x) 1 -4 6 -4 1

Table 7.1: Coefficients of the numerical derivatives up to fourth order.

and their combinations

(e) f (x + h) + f (x− h) = 2 f (x) + h2 f ′′(x) +
h4

12
+ O(h6)

(f) f (x + h)− f (x− h) = 2h f ′(x) +
h3

3
f ′′′(x) + O(h5)

(g) f (x + 2h) + f (x− 2h) = 2 f (x) + 4h2 f ′′(x) +
4h4

3
f (4)(x) + O(h6)

(h) f (x + 2h)− f (x− 2h) = 4h f ′(x) +
8h3

3
f ′′′(x) + O(h5)

Solving equation (f) for f’(x) yields directly the central difference approximation

f ′(x) =
f (x + h)− f (x− h)

2h
− h2

6
f ′′′(x)+O(h5) ≈ f (x + h)− f (x− h)

2h
+O(h2)

Solving equation (e) for f ′′(x) yields the approximation of the second derivative
(see previous section).
Higher order derivatives can be obtained with other combinations. For example,
considering Eq. (f) and (g), and eliminating f ′(x), and solving for f ′′′(x):

f ′′′(x) =
f (x + 2h)− 4 f (x + h) + 6 f (x)− 4 f (x− h) + f (x− 2h)

h4 .
(7.13)

Note how higher order derivatives require the computation of the function at more
points. The central difference approximation results up to the fourth order can be
summarized in the Tab. 7.1

101

CHAPTER 7. NUMERICAL DIFFERENTIATION

7.5 Derivatives with Interpolation

The idea behind this class of algorithms is simple: interpolate a number of con-
secutive points of the discrete grid and then evaluate the analytic derivative of the
interpolating function. A typical choice can be the parabolic or cubic spline inter-
polation. The interpolating polynomial is usually of low order, since the derivative
can amplify the oscillations of the polynomial.
These methods are computationally more expensive than the ones described be-
fore but can be quite useful if the grid of points is not regular, with different spaces
between points.

102

Chapter 8 | NumericalOrdinaryDif-
ferential Equations

8.1 Introduction to Initial Value Problems

In science and egineering, the solution of differential equations is a very relevant
problem. In particular, many equations describing for example mechanical sys-
tems, are of the form

y′′ = f (x, y, y′) , (8.1)

where in concrete applications the variable x represents the time. The general
problem consists in finding a continuous function which solves Eq. 8.1 for a certain
x ≥ a and initial conditions y(a) = y0 and y′(a) = y′0. Without loss of generality,
it is often assumed a = 0, which is the “time-zero” point and y0 and y′0 can be
viewed in many physics applications as the initial position and initial velocity.
This initial value problem involving a second order differential equation can
be transformed in a first order differential equation with the transformation y′ = v
such that

y′′ = f (x, y, y′)
f (0) = y0
f ′(0) = y′0

⇒

v′ = f (x, y, v)
y(0) = y0
v(0) = v0

.

From a numerical point of view, no single version of the problem gives significant
advantages, although in certain cases it could be useful to avoid the calculation of
second derivatives.

103

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

8.2 Euler’s Method

This very simple method solves the first-order initial value problem{
y′ = f (x, y)
y(0) = y0

directly using the forward difference approximation for the derivative

yi+1 − yi

h
= f (xi, yi) ⇒ yi+1 = yi + h f (xi, yi) . (8.2)

The obtained iterative form can be directly implemented in a loop starting from a
value y0 and evolving the solution until the desired “time”.
The convergence of Euler’s method is described by the following

Theorem 8. If Y(x) is an exact solution of the initial value problem 8.2, Y is
continuous in [0, L], and ∂ f /∂y exists and is bounded and continuous in [0, L],
then there are constants M > 0, N > 0 independent from the grid size h such
that

|ei| ≤
(eLM − 1)Nh

2M
i = 1, 2, .., n , (8.3)

and
lim
h→0
|ei| = 0 , (8.4)

where ei = Y(xi)− yi is the error of the numerical approximation at each grid
point.

The theorem is useful in proving the convergence and its speed, but it does not
account for rounding errors which might accumulate along the solution.
We can assume that there is a number R equal to the maximum absolute rounding
error. For example, if we have to round yi to the fifth digit, R = 5 · 10−6. In the
presence of a rounding error bounded by R, we have the following relevant result

|ei| ≤ eLM
[
|r0|+

1
M

(
Nh
2

+
R
h

)]
, (8.5)

where r0 is the rounding error at the beginning of the algorithm on the initial con-
dition y0 → y0 + r0.

104

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Figure 8.1: Dependence of the error in the presence of round-off as a
function of the grid spacing h. The value hoptimal is the best trade-off
between discretization and round-off errors.

8.3 Runge-Kutta Method: RK2

This method includes Euler’s method as special case, but in general it is designed
for enhancing the precision of the solutions. The basic idea is to exploit the knowl-
edge of the function f at any point xi of the grid. To do this, consider the ansatz

yi+1 − yi

h
= e f (xi, yi) + b f (xi + ch, yi + dh) , (8.6)

where b, c, d, e are to be determined (e=1,b=0 corresponds to Euler’s method).
Considering the Taylor expansion for a function of two variables to second order,
the last term in the last equation becomes

f (xi + ch, yi + dh) = f (xi, yi) +
[
ch fx + dh fy

]
+

1
2

[
c2h2 fxx + 2cdh2 fxy + d2h2 fyy

]
, (8.7)

105

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

with the notation fx = ∂ f /∂x, fxy = ∂2 f /(∂x∂y) and so on. Substituting Eq. 8.7
in Eq. 8.6 and rearranging the terms yields

yi+1 = yi + h(e + b) f (xi, yi)+

h2

2
[
2bc fx(xi, yy) + 2bd fy(xi, yi)

]
+

h3

6

[
3bc2 fxx(xi, yi) + 6bcd fxy(xi, yi) + 3bd2 fyy(xi, yi)

]
+O(h4) . (8.8)

The reason why in the last equation we regrouped the coefficients (1/2) and (1/6)
is that now we have the form

yi+1 = yi + hF1 +
h2

2
F2 +

h3

6
F3 + ... , (8.9)

which looks like a Taylor expansion of a function of one variable.
Suppose now that Y(x) is the true solution of the initial value problem and we
expand it again in a Taylor series on our grid of spacing h

Yi+1 = Yi + hY′i +
1
2

h2Y′′i +
h3

6
Y(3) + (8.10)

Y satisfies the original differential equation Y′ = f (x, Y) and differentiating again
using the chain rule

Y′′ =
∂ f
∂x

+
∂ f
∂y

∂y
∂x

= fx + fy f

Y(3) =
d

dx
[

fx + fy f
]
= fxx + 2 f fxy + f 2 fyy + fx fy + f f 2

y ,

and substituting in Eq. 8.10 we obtain

Yi+1 = Yi + h f (xi, Yi)+

h2

2
[

fx(xi, Yy) + fy(xi, Yi) f (xi, Yi)
]
+

h3

6

[
fxx(xi, Yi) + 2 f (xi, Yi) fxy(xi, Yi) + fyy(xi, yi) f 2(x, Yi)+

fx(xi, Yi) fy(xi, Yi) + f (xi, Yi) f 2
y (xi, Yi)

]
+O(h4) . (8.11)

After these calculations we ended up with

106

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

• Eq. 8.8: An expansion of the numerical solution

• Eq. 8.11: An expansion of the exact solution

We have now to choose the coefficients b, c, d, e such that the two expansions agree
up to order h2 (agreement to order h would yield Euler’s formula):

(A)
(B)
(C)
(D)

b + e = 1
2bc fx + 2bd fy = fx + f fy
2bc = 1
2bd = f

⇒
{

b = e = 1/2 ; c = 1
2

d = f (xi, yi) .
.

In the previous system (left) of requirements, equations (A) and (B) are needed for
matching the Taylor series, but they are not sufficient to determine four parameters.
Without loss of generality, we can make the additional choices (C) and (D).
Still, the system has infinite solutions and the chosen one is a convenient choice.
Using these values in the initial ansatz Eq. 8.6 we obtain the Runge-Kutta for-
mula

yi+1 = yi +
h
2

f (xi, yi) +
h
2

f (xi+1, yi + h f (xi, yi)) . (8.12)

Numerical and exact solutions agree up to the O(h2) term and therefore RK2 is
more precise than Euler’s method, which is O(h).
Noting that the term K0 = h f (xi, yi) appears twice in the formula, defining
K1 = h f (xi+1, yi + K0) we can describe a 3-step algorithm for the Runge-Kutta
approximation

1. K0 = h f (xi, yi) ,

2. K1 = h f (xi+1, yi + K0) ,

3. yi+1 = yi +
1
2(K0 + K1).

107

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

8.4 Higher-order Runge Kutta Methods: RK4

The method described in the previous section can be generalized to an ansatz

yi+1 = yi + h [a1 f (p1, g1) + a2 f (p2, g2) + ...ak f (pk, gk)] , (8.13)

where xi ≤ pi ≤ xi+1 and g are the functions calculated at certain shifted points
on the grid.
The most widely used approximation scheme for the initial value problem because
if its computational simplicity and accuracy, is the fourth order Runge-Kutta
method, derived by W. Kutta in 1901.

1. K0 = h f (xi, yi) ,

2. K1 = h f (xi +
h
2 , yi +

K0
2) ,

3. K2 = h f (xi +
h
2 , yi +

K1
2),

4. K3 = h f (xi+1, yi + K2)

5. yi+1 = yi +
1
6(K0 + 2K1 + 2K2 + K3).

This scheme agrees with the Taylor expansion up to O(h4) terms and it is one of
the possible approximations given the choice of the free parameters available, as
done in the previous section.

8.5 Fouth-Order Runge-Kutta Method in two Di-
mensions

If we are dealing with the two-dimensional initial value problem{
y′ = F(x, y, v)
v′ = G(x, y, v) ,

{
y(0) = a
v(0) = b ,

also in this case a fourth-order Runge-Kutta approximation scheme can be derived.
The calculations are involved although along the same lines of Section 8.3 and

108

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

here we present only the result, which can be understood by analogy to the one-
dimensional case:

K0 = hF(xi, yi, vi) M0 = hG(xi, yi, vi)

K1 = hF(xi +
h
2 , yi +

K0
2 , vi +

M0
2) M1 = hG(xi +

h
2 , yi +

K0
2 , vi +

M0
2)

K2 = hF(xi +
h
2 , yi +

K1
2 , vi +

M1
2) M2 = hG(xi +

h
2 , yi +

K1
2 , vi +

M1
2)

K3 = hF(xx+1, yi + K2, vi + M2) M3 = hG(xx+1, yi + K2, vi + M2)

yi+1 = yi +
1
6)(K0 + 2K1 + 2K2 + K3)

vi+1 = vi +
1
6(M0 + 2M1 + 2M2 + M3)

(8.14)

8.6 Fourth-Order Runge-Kutta Method for Second-
order Differential Equations

If the initial value problem involves a second-order differential equation y′′ =
f (x, y), the problem can be turned in a system of two first-order equations as in
Eq. 8.1 definig y′ = v. At this point, we can take advantage of the result of the
last section with the identification F(x, y, v) = v and G(x, y, v) = f , from which
we have

K0 = hviK1 = h(vi + M0/2)K2 = h(vi + M1/2)K3 = h(v1 + M2) .

We can now substitute the Ki functions in the Mi obtaining the algorithm

109

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

M0 = h f (xi, yi, vi)

M1 = h f (xi +
h
2 , yi + h vi

2 , vi +
M0
2)

M2 = h f (xi +
h
2 , yi + h vi

2 + h M0
4 , vi +

M1
2)

M3 = h f (xx+1, yi + hvi + h Mi
2 , vi + M2)

yi+1 = yi + hvi +
1
6)(M0 + M1 + M2)

vi+1 = vi +
1
6(M0 + 2M1 + 2M2 + M3)

(8.15)

8.7 Taylor Expansion Methods

This class of methods is based on the direct Taylor expansion of f and therefore
they require the analytic calculation of the derivative. For example, in the second-
order initial value problem y′′ = f (x, y, y′), we need to calculate the function and
its first derivative and we can do it by direct Taylor expansion

yi+1 = yi + hy′i +
1
2

h2y′′i + ... (8.16)

y′i+1 = y′i + hy′′i +
1
2

h2y(3)i + ... (8.17)

The interesting observation is that the two equations above share most of the co-
efficients y, y′, .., and therefore these have to be calculated only once.

8.8 Stability Analysis

Integration methods for differential equations can accumulate an error at each iter-
ation and it should be made sure that this will not happen during the computation.
Unfortunately this task is not easy to solve in general and often the program itself
has to contain checks for helping pin down such situations. When the error am-
plifies during the computation, the algorithm is unstable. In order to see how an
instability might arise, we can analyze a simple case which illustrates the problem.

110

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Let’s consider the initial value problem

y′ = −λy ,
y(0) = a ,

with exact solution y(x) = ae−λx.
Applying Euler’s method y(x + h) = y(x) + hy′(x) we have

y(x + h) = (1− λh)y(x) . (8.18)

If |1− λh| > 1, the method is unstable, since |y| will simply increase at each
iteration. Therefore, the stability condition is

|1− λ| ≤ 1⇒ h ≤ 2
λ

. (8.19)

In the case of a system of differential equations ȳ′ = −A~y where A is a constant
matrix with positive eigenvalues, what drives the stability is the maximum eigen-
value of A, λmax and therefore h ≤ 2/λmax.
Given the simple results obtained, it seems that the step h has to be small enough
and therefore, a general rule of thumb if the algorithm displays instability, is to
reduce the value of h (with compatibility of rounding errors).
Another characteristics of linear systems of equations is stiffness: there is stiff-
ness, if one component of the vector ȳ varies much faster with a variation of x
with respect to the other components. The treatment of stiffness is complex and it
will not be presented here, but again an analysis of the eigenvalues of A can reveal
stiffness problems, for example if one eigenvalue is much larger than all the others.

8.9 Adaptive-Mesh Methods

In the previous section, we have seen that the grid, or mesh width must be appro-
priately chosen. In general, if the mesh is too coarse, we can have large truncation
errors, while a very fine mesh needs more computation. The optimal situation
would be to use a coarse mesh when the solution does not change rapidly, and a
finer one in the other case.
The main idea of this class of methods is to compare an algorithm at two consecu-
tive precision levels, for example fourth-order and fifth-order Runge-Kutta formu-
las and then compare their difference as estimate of the error we are making with
a certain step h

Ei(h) = yRK5(xi + h)− yRK4(xi + h) . (8.20)

111

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

We can now consider as measure of the error over an interval I e(h) = maxI Ei(h)
or the root mean square of the step errors Ei.
Since the truncation error of the fourth-order Runge-Kutta method isO(h5), if we
compare two errors for two choices of steps h1 and h2 we have

e(h1)

e(h2)
≈

h5
1

h5
2

, (8.21)

and if our tolerance with the choice h2 is ε, then e(h2) = ε and we have to choose

h2 = h1

(
ε

e(h1)

) 1
5

. (8.22)

After the computation of the last estimate, the algorithm has two choices, depend-
ing on the result:

1. h2 ≥ h1: The previous step width h1 was already good since the error was
below tolerance and we can keep the corresponding result.

2. h2 < h1: we discard the current result corresponding to a step h1 and repeat
it with step h2.

It is common to use a weaker form of Eq. 8.22

h2 = αh1

(
ε

e(h1)

) 1
5

, (8.23)

with α < 1 for being less aggressive in the decision to repeat the step and save
computational time.

8.10 Application: Predator-Prey Model

One of the first ecological mathematical models is the Lotka-Volterra model, or
predator-prey model 1. The model describes two competing populations X and Y
described by the number of their individuals x and y, respectively. Populatinon X
just naturally grows and dies because it is a “prey” (e.g. gazelles) of the “predator”
(lions) population Y, which in turns multiply eating elements of X and dies if X is

1Alfred James Lotka (1880-1949), Vito Volterra (1860-1940)

112

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

not enough. The situation can be modeled with a system of non-linear differential
equations:

{
ẋ = dx

dt = ax− bxy ,
ẏ = dy

dt = −cy + dxy ,
(8.24)

with positive parameters a, b, c, d. The first equation describes the change in time
of the population X, which growth is described by the parameter a, while it de-
creases with the interaction with population Y, as described by the non-linear term
bxy. Population Y naturally decreases (−cy), while it increases with the interac-
tion term (+dxy, or “lions eat gazelles”).
Setting ẋ = ẏ = 0 we can find the two equilibria of the system (where the popu-
lations do not change) {

x = 0
y = 0

{
x = a

b
y = c

d
(8.25)

From a stability analysis, it turns out that the x = y = 0 “extintion” solution is
a saddle point and thus unstable. The other solution corresponds to a stable state
where both populations oscillate but never reduce to zero.
We can investigate the dynamics of this system numerically integrating the differ-
ential equations. In Fig. 8.2 the RK4 method was used for solving the model and
thetypical oscillatory dynamics of the two populations is showed. Another point
of view for the dynamics of the system is the phase space representation, where
the x and y values are reported. The shape of the phase space can be derived in
this case dividing formally the two equations obtaining

dx
dy

=
x(a− by)

y(−c + d · x) ⇒
−c + d · x

x
dx =

a− by
y

dy . (8.26)

Integrating the two sides of the last equation (and setting the arbitrary constant to
zero) we obtain an explicit equation for the “orbits” in the phase space

d · x + by− c ln x− a ln y = 0 . (8.27)

This equation describes closed curves in the phase space followed by the two pop-
ulations. Since these curves are invariant (do not depend on time) the function
H(x, y) = d · x + by− c ln x− a ln y can be interpreted as the “energy”, or the

113

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Figure 8.2: Integration of the Lotka-Volterra model for a = b = c = d = 1
with the RK4 algorithm.

Hamiltonian of the system and it is straightforward to verify that the Poisson brack-
ets

ẋ = {x, H} (8.28)
ẏ = {y, H} (8.29)

reproduce the original Lotka-Volterra equations. It is also possible to derive the
original equations using the canonical hamiltonian equations but first we have to
recover canonical variables, since x and y are not (i.e. {x, y} 6= 1). This can
be done introducing the caonlically conjugated variables p = ln x and q = ln y.
Using now H=H(p,q), the canonical equations q̇ = ∂H/∂q and ṗ = −∂H/∂p
can be applied.
It is interesting to investigate the difference between integration schemes with dif-
ferent precision. To this aim, we integrate the Lotka-Volterra system with the RK2
and RK4 algorithms and check their difference at large integration times. The re-
sults are showed in Fig. 8.3. The left panes shows the relative percentage difference

114

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Figure 8.3: Left: Percentage difference between the RK2 and RK3 solu-
tion for the two populations. Right: Phase space (X vs Y) of the two
integration methods.

between the solutions of RK2 and RK4 as function of time and we can note that
the difference tends to grow. In the right panel the same effect is demonstrated
with the phase space portrait (X vs Y): while the RK4 solution remains along a
closed line, the RK2 solution changes its orbit over long times. The code used for
generating the figures is reported in Code 8.1.

115

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

1 import numpy as np
2

3 def LotkaVolterra(X, t, a, b, c, d):
4 x, y = X
5 dotx = a*x - b*x*y
6 doty = -c*y + d*x*y
7 return np.array([dotx , doty])
8

9 #2th order Runge -Kutta method
10 def RK2(f, X0, t, a, b, c, d):
11 dt = t[1] - t[0] ; N = len(t)
12 X = np.zeros ([N, len(X0)]) ; X[0] = X0
13 for i in range(N-1):
14 K0 = f(X[i], t[i],a,b,c,d)
15 K1 = f(X[i]+dt*K0 ,t[i]+dt,a,b,c,d)
16 X[i+1] = X[i] + dt/2.0 * (K0 + K1)
17 return X
18

19 #4th order Runge -Kutta method
20 def RK4(f, X0, t, a, b, c, d):
21 dt = t[1] - t[0] ; N = len(t)
22 X = np.zeros ([N, len(X0)]) ; X[0] = X0
23 for i in range(N-1):
24 K0 = f(X[i], t[i], a, b, c, d)
25 K1 = f(X[i]+dt /2.0* K0,t[i]+dt/2.0, a,b,c,d)
26 K2 = f(X[i]+dt /2.0* K1,t[i]+dt/2.0, a,b,c,d)
27 K3 = f(X[i]+dt * K2 ,t[i]+dt, a, b, c,d)
28 X[i+1] = X[i]+dt /6.0*(K0 +2.0*K1+2.0* K2+K3)
29 return X
30

31 #Model Parameters
32 a = 1.0 ; b = 1.0 ; c = 1.0 ; d = 1.0
33 x0 = 4. ; y0 = 2. ; N = 1000 ; tmax = 100.
34 t = np.linspace (0.,tmax , N) ; X0 = [x0 , y0]
35 Xrk2 = RK2(LotkaVolterra , X0 , t, a, b, c, d)
36 Xrk4 = RK4(LotkaVolterra , X0 , t, a, b, c, d)

Listing 8.1: RK2 and RK4 for the Predator-Prey Model

116

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

8.11 Boundary Value Problems

After the treatment of initial value problems, we consider now the following
y′′ = f (x, y, y′)
y(a) = α
y(b) = β

(8.30)

boundary value problem, where the two conditions are not anymore the “initial
time” values for the function and its derivative, but two known values of the func-
tion at the boundary of an interval for x. The conditions y(a) = α and y(b) = β
are called boundary conditions and physically they can be thought with a mechan-
ical analogy as initial and final positions.

8.12 Central Difference Method for Boundary Value
Problems

The generic second-order differential equation can be written as

y′′ + P(x)y′ + Q(x)y = R(x) , (8.31)

where P, Q, and R are continuous functions of x in an interval [a, b]where we know
the boudary values y(a) = α and y(b) = β. Such an equation rarely can be solved
analitically, and a numerical solution is required. A sufficient (but not necessary)
condition for an unique solution is Q(x) ≤ 0 over [a, b].
We can use directly the central difference approximations of the first and second
derivatives

yi+1 − 2yi + yi−1

h2 + P(xi)
yi+1 − yi−1

h
+ Q(xi)yi = R(xi) , (8.32)

and rearranging the terms

[2− hP(xi)]︸ ︷︷ ︸
Ai

yi−1 +
[
−4 + 2h2Q(xi)

]
︸ ︷︷ ︸

Bi

yi + [2 + hP(xi)]︸ ︷︷ ︸
Ci

yi+1 = 2h2R(xi)︸ ︷︷ ︸
Di

(8.33)
for i = 1, 2, .., n− 1. If we consider also the known values at i = 0 and i = n and
see the index i as the column-index of a matrix which is tridiagonal. Rewriting the

117

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

previous equation as Ayi−1 + Byi + Cyi+1 = 0, the system of equations to solve
is

A1 B1 C1 0 0 0 ...
0 A2 B2 C2 0 0 ...
0 0 A3 B3 C3 0 ...
0 0 0 A4 B4 C4 ...
..

 ·

y1
y2
y3
y4
...

 =

D1
D2
D3
D4
...

 , (8.34)

which is fast to solve for example with the LU decomposition algorithm.
An useful theorem about the convergence of the method is the following:

Theorem 9. Assume P, Q, R are continuous on an interval I = [a, b], Q(x) ≤ 0
on I, and M is a constant such that |P(x)| ≤ M on I.
If Mh = M(b− a)/N < 2, then the solution given by the central value approx-
imation exists and it is unique.

The result of the last theorem implies that the number of points N in which we
divide the interval is subject to the condition

N > M
(b− a)

2
, (8.35)

and although the central difference scheme is more precise than a forward/back-
ward scheme, if M is large, the number of equations might grow to the point to be
a too large numerical problem to treat on a computer efficiently.

8.13 Upwind Difference Method

In order to overcome the limitation given by the previous theorem, we develop a
new scheme which tries always to be consistent with Theorem 3 for a tridiagonal
system, in order to ensure the existence of a solution.
Since Theorem 3 requires negative diagonal elements and positive off-diagonal
elements, we will choose for each equation either backward or forward approxi-
mations for the first derivatives for enhancing these characteristics. The upwind
difference method is described by the following equations

118

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

yi+1 − 2yi + yi+1

h2 + Pi
yi+1 − yi

h
+ Qiyi = Ri , Pi ≥ 0 ,

yi+1 − 2yi + yi+1

h2 + Pi
yi − yi−1

h
+ Qiyi = Ri , Pi ≤ 0 .

which can be rewritten without an if condition as

yi+1 − 2yi + yi+1

h2 +

(|Pi|+ Pi)yi+1 − 2|Pi|yi + (|Pi| − Pi)yi−1

h
+ Qiyi = Ri ,

for i = 1, 2, ..., n− 1 and Pi = P(xi) (and analogously for Qi and Ri).
Adding to the results of this procedure the known boundary values, it yields the
solution. The procedure does not have restrictions on h like the central difference,
although it is less precise.
The following theorem is valid for the upwind difference scheme:

Theorem 10. If P, Q, and R are continuous and Q ≤ 0 in the interval [a, b], the
upwind difference method has a solution which is also unique.

8.14 Leapfrog method for second order differen-
tial equations

In many applications, equations of motion based on Newton’s law have to be
solved. The general form of such equations is

ẍ = F(x) , (8.36)

where ẍ = d2x/dt2 and F are physically interpreted as the acceleration and the
position-dependent force (divided by the mass), respectively. We also define the

119

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

“velocity” v = dx/dt.
A convenient method for the solution of Eq. 8.36 is the Leapfrog method, which
has the following advantages:

• it is a second-order method

• it obeys time-reversal.

The idea of the method is to evaluate the space evolution on a grid with time spac-
ings h, 2h, 3h, ... and the velocity evolution on a “staggered” grid h/2, 3/2h, 5/2h,
Considering the finite difference approximation for the velocity:

vi+1/2 =
xi+1 − xi

h
. (8.37)

Since we would like to evaluate the function F (the “force”) at the space point x,
we can discretize the second derivative using the velocity

F(xi+1) =
vi+3/2 − vi+1/2

h
. (8.38)

The last two equations lead to the leapfrog integration scheme

xi+1 = xi + hvi+1/2
vi+3/2 = vi+1/2 + hF(xi+1)

(8.39)

The starting position and velocity x0 and v0 must be provided, and v1/2 = v0 +
F(x0)h/2. The last system of equations can be conveniently re-written without
half-indices in the following way. In the first equation for xn+1, we can eliminate
vn+1/2 with the derivative

F(xi) =
vi+1/2 − vi

h/2
⇒ vi+1/2 = vi + F(xi)/2 . (8.40)

Shifting the second equation back by 1/2:

vi+1 = vi + hF(xi+1/2) = vi + h
F(xi)− F(xi+1)

2
. (8.41)

120

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

where we replaced F(xi+1/2) with its average over the two neighboring points.
Substituting Eq. 8.40 and 8.41 in the equations 8.39:

xi+1 = xi + hvi +
h2

2 F(xi)

vi+1 = vi +
h
2 (F(xi+1) + F(xi))

(8.42)

It looks like the method requires two evaluations of F, but actually storing the force
value at the previous step allows a single evaluation/step.

8.15 Leapfrog Method: Application to the Damped
Oscillator

The Leapfrog method can be applied quite straightforwardly to many equations
of motion. Here we present a slightly more difficult case: the damped harmonic
oscillator described by the equation

ẍ + γẋ + ω2
0x =

f
m

, (8.43)

where γ is a damping term, ω0 the harmonic frequency, f a force, and m the mass.
Rewriting the last equation in the form studied in the previous section

ẍ = F(x, ẍ)− γẋ−ω2
0x +

f
m

, (8.44)

with the key difference that now F is not only a function of x, but also of the velocity
ẋ = v. The first Leapfrog equation in 8.42 does not present problems, while the
force is evaluated at xi. The second equation requires F(xi+1, vi+1) and therefore
it cannot be calculated directly. What we can do is to calculate the sum of forces
in the second leapfrog equation

vi+1 = vi +
h
2

[
fi + fi+1

m
−ω2

0(xi + xi+1)− γ(vi + vi+1)

]
. (8.45)

Rearranging the terms and collecting all the vi+1 factors on the left

vi+1 = vi

(
2− γh
2 + γh

)
+

h
2 + hγ

[
fi + fi+1

m
−ω2

0(xi + xi+1)

]
. (8.46)

121

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Figure 8.4: Damped harmonic oscillator for 3 values of γ (see legend) and
ω2

0 = 1.

The last equation can be now used as second Leapfrog equation together with the
first xi+1 = xi + hvi +

h2

2 F(xi).
An example result with f = 0 (no forcing) is showed in Fig. 8.15 and the corre-
ponding code in Code 8.2.

122

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 def LeapFrog(x0,v0 ,h,N,gamma ,omega):
5

6 x = np.zeros(N)
7 v = np.zeros(N)
8 x[0] = x0 ; v[0] = v0
9

10 for i in range(0,N-1):
11 F = -gamma*v[i] - omega*x[i]
12 x[i+1] = x[i] + v[i]*h + 0.5*F*h*h
13 g1 = 2-h*gamma ; g2 = 2+h*gamma
14 v[i+1] = v[i]*g1/g2 + (h/g2) * (-omega*(x[i]+x[i

+1]))
15

16 return x,v
17

18 N = 100000
19

20 gamma = 0.0 ; omega = 1
21 x,v = LeapFrog (1,1,0.001,N,gamma ,omega)

Listing 8.2: Leapfrog Algorithm for the Damped Harmonic
Oscillator

8.16 The Numerov Method

This method, precise at O(h6)2 is due to B.V. Numerov (1891—1941) and can
solve second order differential equations without a first-order term

d2y
dx2 = −g(x)y(x) + s(x) . (8.47)

In the following, we will use the notation f (xi) = fi for the various functions
defined on a discrete set of points. Considering an equally-spaced set of points xi

2More precisely, the method should be O(h5), since the error grows like h at each
step. Usually O(h6) is quoted since functions are Taylor-expanded up to sixth order.
A careful analysis reveals that Numerov’s method is as precise as fourth-order Runge-
Kutta.

123

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

on the x-axis with xi − xi+1 = h, we can expand the functions yi+1 and yi−1

yi+1 = yi + hy′n +
h2

2! y′′n + h3

3! y′′′n + h4

4! y(iv)n + h5

5! y(v)n + O(h6)

yi−1 = yi − hy′n +
h2

2! y′′n − h3

3! y′′′n + h4

4! y(iv)n − h5

5! y(v)n + O(h6)

(8.48)

Summing the last two expansions:

yi+1 − 2yi + yi−1 = h2y′′n +
h4

12
y(iv)n . (8.49)

In the last equation, we can substitute y′′i with Eq. 8.47. The term y(iv)n can be
calculated using the central difference method for the second derivative (which
can be obtained also subtracting the Taylor expansions up to the second order)
applied to the second derivative

dy4

dx4 =
y′′i+1 − 2y′′i + yi−1

h2 , (8.50)

where again we can insert Eq. 8.47 with the correct indices.
After substituting in Eq. 8.49 the expressions for the second and fourth derivatives

yi+1 − 2yi + yi−1 = h2(−giyi + si)+

+ h2

12 ((−gi+1yi+1 + si+1 + 2giyi − 2si − gi−1yi−1 + si−1)

(8.51)

Rearranging the terms bringing all the y on the left we obtain Numerov’s algo-
rithm:

(
1 + h2

12 gi+1

)
yi+1 − 2

(
1− 5h2

12 gi

)
yi +

(
1 + h2

12 gi−1

)
yi−1 =

= h2

12(si+1 + 10si + si−1)

(8.52)

The last formula can be slighly rewritten noticing that

2
(

1− 5h2

12
gi

)
= 12− 10

(
1 +

h2

12
gi

)
.

124

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

This allows to define in a numerical code the function G(i) = 1 + h2

12 gi reducing
the Numerov equation to

G(i + 1)yi+1 − [12− 10G(i)] yi + G(i− 1)yi−1 =

= h2

12(si+1 + 10si + si−1)

(8.53)

8.17 Application to the Schrödinger Equation:
Particle in a Box Potential

The one-dimensional Schrödinger equation of a particle in a potential V(x) is[
− h̄2

2m
d

dx
+ V(x)

]
ψ(x) = Eψ(x) . (8.54)

Defining
k2(x) =

2m
h̄

[E−V(x)] , (8.55)

the Schrödinger equation becomes

ψ′′(x) = −k2(x)ψ(x) , (8.56)

which is in the Numerov’s form with g(x) = k2(x) and s(x) = 0. Eq. 8.52
specifying theNumerov’s procedure becomes (with the usual notationψi = ψ(xi))

ψi+1 =
1

1− h2

12 k2
i+1

[
ψi

(
2 +

10h2

12
k2

i

)
− ψi−1

(
1− h2

12
k2

i−1

)]
(8.57)

Let’s test the algorithm in a case where the analytic solutions are known. We
consider the simple potential given by the “square well”

V(x) =
{

0 if 0 < x < L
∞ otherwise (8.58)

with boundary conditions ψ(0) = ψ(L) = 0.
In this case, the potential is constant and the Schrödinger equation to solve is

ψ′′(x) + k2ψ(x) = 0 , (8.59)

125

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

which has general solutions ψ(x) = A sin(kx) + B cos(kx). Taking into account
the boundary conditions, the solutions are

ψ(x)n = A sin(nπx) , (8.60)

where we introduced the subscript n which labels the different solutions. The
constant A can be fixed with the normalization condition

∫
|ψ|dx = 1 which

results in A =
√

2. Since k2 = nπ, we find the energies associated to the different
wave functions (the eigenvalues):

En =
nπh̄
2m

. (8.61)

8.18 Application to the Schrödinger Equation:
The Hydrogen Atom

We apply now Numerov’s algorithm to the classical quantum mechanical problem
of a particle in a central potential. This case is interesting since it shows different
numerical problems to tackle, from numerical stability to the functional eigenvalue
problem.
The Schrödinger equation for the hydrogen atom (an electron in a central Coulomb
potential) is [

− h̄2

2m
∇2 − Ze2

4πε0r

]
ψ(r̄) = Eψ(r̄) . (8.62)

Using spherical coordinates3 (r, θ, phi), the wavefunction ψ can be rewritten as
the product of one radial and one angular function: ψ(r̄) = R(r) ·Y(θ, φ). More-
over, we define a new function u(r) = R(r)/r. We consider here only the radial
function u(r) introducing the variables

x = r/ao ; a0 =
4πε0h̄2

me2 ≈ 0.529 Å , (8.63)

where a0 is the Bohr radius. We introduce also the Rydberg energy E0 (the energy
of the ground state) and the corresponding normalized energy E

E0 =
h̄2

2ma0
≈ 13.605 eV ; E =

E
E0

. (8.64)

3Also the Laplacian ∇2 should be written in spherical coordinates.

126

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

Substituting Eq. 8.63 and Eq. 8.64 in Eq. 8.62 and considering only the function
u(r) we obtain 4

d2u(x)
dx2 −

[
l(l + 1)

x2 − 2Z
x
− E

]
u(x) = 0 , (8.65)

which is in the Numerov form with s = 0. The integer number l labels the quatum
state’s angular momentum.
The boundary conditions are u(0) = 0 and u(∞) = 0.
The problem defined in Eq. 8.65 is of a new kind with respect to what we analyzed
until now: we have to find at the same time the wavefunction u(r) and the value
for the constant E . This is actually an eigenvalue problem where u(r) are the
eigenfunctions and E the eigenvalues.
First, we are going to solve Eq. 8.65 with the Numerov’s method, given a value of
E :

un+1 =
[12− 10Gn] un − Gn−1un−1

Gn+1
, (8.66)

where Gn = (1 + h2/12)gn (see Eq. 8.53). An important numerical observation
at this point is related to the boundary conditions. Since at large x the function
must approach zero and at the finite x value u(0) = 0, it is better to apply Eq. 8.66
backwards, starting from a large value of x and then going towards x = 0: this
procedure will be numerically more stable. In fact, starting from x = 0 the nu-
merical error might accumulate and u(∞) = 0 could be difficult to reach.
Having now a (stable)procedure for integrating the Schrödinger equation, we have
to find the correct value of E corresponding to a given function u(x).
The idea is to start from a guess value E0, calculate the wavefunction u(x) and
check if it crosses the x-axis at x = 0 (i.e. respects the boudary condition u(0)=0).
If it is not the case, another E1 = E0 + δE is chosen and u recalculated.
Since the solution is found on a discrete mesh of points, it is not easy to check
with precision if u(0) = 0. In order to improve the check, a linear extrapolation
to zero using the last two (backwards) calculated points u0 and u1 can be used:

u(0) = u0 +
u1 − u0

h
(0− x0) . (8.67)

In summary, the algorithm is the following:
4For obtaining the final radial equation, the method of separation of variables should

be used. The complete treatment of the hydrogen atom can be found in most quantum
mechanics books and here we just quote the result for concentrating on the numerical
algorithm.

127

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

1. Start with a guess energy E0. The guess energy should be smaller than the
smallest potential energy. In the variables we choose, this means E < −Z2

2. Integrate with Numerov’s method the Schrödinger radial equation with E =
E0 obtaining u1(x).

3. Extrapolate the solution and obtain u1(0).

4. Increase the energy E1 = E0 + δE and recalculate u(x) again, extrapolate
and obtain u2(0).

5. If u1(0) · u2(0) > 0 go back and repeat the previous step. If u1(0) ·u2(0) ≤
0, continue.

6. Now we are sure that our solution is in the interval E1 < E < E2, we can
use a root finding algorithm to find E with good precision.

The previous algorithm is implemented in Code 8.3/8.4.

128

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

1 import numpy as np
2 from scipy.integrate import simps
3 from scipy.optimize import brentq
4 import matplotlib.pyplot as plt
5

6 #Numerov ’s algorithm (backwards for better stability)
7 def WaveFunctionZero(E, r0, n=1, l=0, Z=1, du =0.01):
8

9 ur = np.zeros(len(r0))
10 ur[-1] = 0.0 ; ur[-2] = du
11

12 h = r0[1] - r0[0]
13 h12 = h**2 / 12.0
14 gn = E + 2.0*Z/r0 - l*(l+1)/r0**2
15 fn = 1. + h12 * gn
16

17 for i in range(gn.size -3, -1, -1):
18 ur[i] = ((12 - 10*fn[i+1]) * ur[i+1] - ur[i+2] *

fn[i+2])/fn[i]
19

20 # normalization
21 ur /= np.sqrt(simps(ur**2, x=r0))
22

23 # Linear extrapolation to u(r=0)
24 u0 = ur[0] + (ur[1] - ur[0]) * (0 - r0[0]) / h
25

26 return u0

Listing 8.3: Energy Eigenvalues of the Hydrogen Atom (1/2).

129

CHAPTER 8. NUMERICAL ORDINARY DIFFERENTIAL EQUATIONS

1 r0 = np.linspace (1e-6, 50, 5000) #Radius mesh
2

3 #Quantum numbers
4 N=1 #Principal quantum number (not used here)
5 L=0 #Angular quantum number
6

7 E_low = E_up = -1.0
8 dE = 0.10
9 u1 = WaveFunctionZero(E_low , r0 , n=N,l=L)

10

11 #Increase E until crossing the x-axis
12 while True:
13 E_up += dE
14 u2 = WaveFunctionZero(E_up , r0 , n=N,l=L)
15 if u1 * u2 < 0: break
16

17 #Find the root of the wavefunction between E_low and
E_up using Brent’s algorithm

18 E = brentq(WaveFunctionZero , E_low , E_up , args=(r0, N, L
, 1, 0.001))

19 print("Energy = ",E*13.605 , " eV")

Listing 8.4: Energy Eigenvalues of the Hydrogen Atom (2/2).

The function WaveFunctionZero applies Numerov’s algorithm, calculates the
wavefunction, and extrapolates to u(0). The main part of the code starts from a
value for the energy and then increases it until u1(0) · u2(0) > 0. Finally, Brent’s
algorithm (in its scipy library implementation) is used for calculating the precise
final result.

130

Chapter 9 | Elliptic Equations

9.1 Introduction

Many phenomena are described by second order partial differential equations. In-
troducing the notation ∂ f /∂x = fx, a general form of such equations is

a(x, y, f , fx, fy) fxx+

2b(x, y, f , fx, fy) fxy+

c(x, y, f , fx, fy) fyy+

f (x, y, f , fx, fy) = 0 . (9.1)

It is generally assumed that fxy = fyx and

a2 + b2 + c2 6= 0 , (9.2)

such that a second order derivative will always be present.
A basic classification of the possible forms of Eq. 9.1 is given by the evaluation of
the discriminant ∆ = b2 − ac

• ∆ < 0 Elliptic Equations: In this class of equations we have for example
Laplace’s Equation

∇2 f = fxx + fyy = 0 , (9.3)

where f is a potential function in many physics applications. In particular,
the functions solving this equations are called harmonic.

• ∆ = 0 Parabolic Equations: The most important example of this class of
equations is the diffusion equation

fxx − fy = 0 . (9.4)

131

CHAPTER 9. ELLIPTIC EQUATIONS

• ∆ > 0 Hyperbolic Equations: Typical hyperbolic equations are the wave
equations

fxx − fyy = 0 . (9.5)

We will start the discussion of partial differential equations from the elliptic ones.

9.2 Boundary Value Problems for Elliptic Equa-
tions

Wewill concentrate on the solution of the Laplace problem in a boundary given its
relevance in applications such as finding the electric potential in a given region of
space. This problem is commonly known as Dirichlet Problem and is defined
as finding a function f (x, y) with the following conditions

1. Ω is an open bounded simply connected set

2. Γ is the boundary of Ω and it is piecewise continuously differentiable

3. f is harmonic: ∇2 f (x, y) = 0

4. f continuous on Ω ∪ Γ

5. g(x, y) is a continuous function on Γ

6. f identical to g on Γ

In can be proven, that the Dirichlet problem has one single solution, although only
in very simple cases it can be constructed analitically: most of the times, a numer-
ical treatment is needed.

9.3 Dirichlet Problem on a Rectangle

This is one of the simplest cases we can consider, where Γ describes the perimeter
of a rectangle and Ω is the set of points contained in the rectangle. Let’s define
the sides of the rectangle as the sets [a1, b1] and [a2, b2]. Inside these sets, we can
define the grids of n and m points equispaced by h in one direction and k in the
other

xi = a1 + ih , h = (b1 − a1)/n
yi = a2 + ik , k = (b2 − a2)/m

132

CHAPTER 9. ELLIPTIC EQUATIONS

Figure 9.1: Visualization of the two-dimensional Dirichlet problem: the
function f (x, y) = −x2 − y2 is defined on a set Ω and the border Γ is
a square. On this square, a function g(x, y) = 0 defines the boundary
values of the problem.

We can also introduce the following nomenclature

• The points (x0, yj), (xn, yj) with j = 1, 2., ..m − 1 and (xi, y0), (xi, ym)
with i=1,2,..,n-1 are the boundary points.

• The points (xi, yj) with i=1,2,..n-1, j=1,2,..,m-1 are called interior points.

• The points D = (x0, y0), E = (xn, y0), F(xn, ym), G(x0, yn) are the corner
points.

• Every sub-rectangle delimited by the points (xi, yj), (xi+1, yi), (xi, yj+1),
(xi+i, yj+1) is called a cell.

• For a function defined on such a grid, we define the shorter notation f (xi, yj) =
fi,j.

The Laplace equation can be directly approximated on the previously defined grid
applying the central difference scheme for second order derivatives

fi+1,j − 2 fi,j + fi−1,j

h2 +
fi,j+1 − 2 fi,j + fi,j−1

k2 = 0 . (9.6)

133

CHAPTER 9. ELLIPTIC EQUATIONS

Figure 9.2: Stencil diagram of the Jacobi iterations method for the elliptic
equation.

Very often, in this kind of problems h = k: eliminating the grid spacing and
rearranging the terms we can see how a single grid point fi,j depends from the
neighboring ones

fi,j =
1
4
(

fi+1,j + fi−1,j + fi,j+1 + fi,j−1
)

. (9.7)

This last equation suggests an iterative updating procedure for approximating the
solution: given the values on the grid (which are the initial boundary values and
guess values for the interior points) at a step k, we can find new values at the next
step k + 1 with what is sometimes called Jacobi iteration, relaxation method, or
“5-point scheme formula”:

f (k+1)
i,j =

1
4

(
f (k)i+1,j + f (k)i−1,j + f (k)i,j+1 + f (k)i,j−1

)
. (9.8)

The formula says that the new value at a point is equal to the average of the values
in the surrounding points.
The following code 9.1 implements the solution of the Dirichlet problem with
Jacobi iterations and the stencil diagram of the numerical scheme is showed in
Fig. 9.2.

134

CHAPTER 9. ELLIPTIC EQUATIONS

1 import numpy as np
2

3 def LaplaceIterative(g,Tinitial ,\
4 lenX ,lenY ,delta ,maxIter):
5

6 # Set meshgrid
7 X, Y = np.meshgrid(np.arange(0, lenX), np.arange(0,

lenY))
8

9 # Set initial matrix
10 T = np.zeros ((lenX , lenY))
11 T.fill(Tinitial)
12

13 # Set Boundary condition
14 for i in X[0,:]: T[i,0] = g(i,0)
15 for i in X[0,:]: T[i,lenY -1] = g(i,lenY -1)
16 for i in Y[:,0]: T[0,i] = g(0,i)
17 for i in Y[:,0]: T[lenX -1,i] = g(lenX -1,i)
18

19 #Jacobi Iteration
20 for iteration in range(0, maxIter):
21 for i in range(1, lenX -1, delta):
22 for j in range(1, lenY -1, delta):
23 T[i, j] = 0.25 * \
24 (T[i+1][j] + T[i-1][j] + \
25 T[i][j+1] + T[i][j-1])
26

27 return T
28

29 #Example Boundary condition function
30 def g(x,y): return (x-1) **2 - (y-2)**2
31

32 Tinitial = 30 #Starting guess value
33 lenX = 50; lenY = 100 #Grid dimensions
34 delta = 1 #Grid width
35 maxIter = 500 #Maximum number of iterations
36

37 #Iterative solution
38 T = LaplaceIterative(g,Tinitial ,lenX ,lenY ,delta ,maxIter)

Listing 9.1: Dirichlet Problem

135

CHAPTER 9. ELLIPTIC EQUATIONS

Figure 9.3: Graphical representation of the output matrix from code 9.1.

In Fig 9.3, the output of the code 9.1 is showed. The output of the code is
a matrix T, which is the solution of the Dirichlet problem on a rectangle. The
boundary condition is described by the function g(x, y) = (x− 1)2 − (y− 1)2:
this equation is used only for fixing the initial values on the grid points which
belong to the border of the rectangle. The interior points can be initialized with an
initial guess.
The same problem can be also solved in principle with matrix algorithms. Eq. 9.6,
in the simplified case where h = k, can be viewed as a linear system of equations.
For example, considering n = 3 and m = 4

f21 − 2 f11 + f01 + f12 − 2 f11 + f10=0
f31 − 2 f21 + f11 + f22 − 2 f21 + f20=0
f22 − 2 f12 + f02 + f13 − 2 f12 + f11=0
f32 − 2 f22 + f12 + f23 − 2 f22 + f21=0
f23 − 2 f13 + f03 + f14 − 2 f13 + f12=0
f33 − 2 f23 + f13 + f24 − 2 f23 + f22=0

(9.9)

which reduces to

−4 f11 + f21 + f12 = − f01 − f10
f11 −4 f21 + f22 = − f20 − f31
f11 −4 f12 + f22 + f13 = − f02

f21 f12 −4 f22 + f23 = − f32
f12 −4 f13 + f23 = − f14 − f03

f22 + f13 −4 f23 = − f33 − f24

(9.10)

136

CHAPTER 9. ELLIPTIC EQUATIONS

The numbers on the right-hand of the equations are known since they correspond
to the boudary of Ω and are fixed by calculating the function g(x, y). In matrix
form Ax = b, the problem is block-diagonal

A =

−4 1 1 0 0 0
1 −4 0 1 0 0
1 0 −4 1 1 0
0 1 1 −4 0 1
0 0 1 0 −4 1
0 0 0 1 1 −4

 , (9.11)

and can be solved with methods described in Chap. 3.

137

CHAPTER 9. ELLIPTIC EQUATIONS

138

Chapter 10 | Parabolic Equations

10.1 Definition of the problem

The typical parabolic equation is the heat equation

∂2φ

∂x2 −
∂φ

∂y
= 0 , (10.1)

or in a more compact form φxx − φy = 0. In common applications, y has the
physical meaning of time and the equation is written as φxx − φt = 0.
Two problems can be defined for this differential equation

• Initial Value Problem: Find φ satisfying Eq. 10.1with -−∞ < x < +∞,
t ≥ 0
- φ(x, 0) = f (x) at t = 0 for −∞ < x < +∞.

• Initial-Boundary Value Problem: Given a > 0, g1(0) = f (0), g2(0) =
f (a),
Find φ satisfying Eq. 10.1 with
- t ≥ 0, 0 ≤ x ≤ a
- satisfies Eq. 10.1 in 0 < x < a, t > 0. - satisfies the initial condition:
φ(x, 0) = f (x), 0 ≤ x ≤ a
- satisfies the boundary condition: φ(0, t) = g1(t), φ(a, t) = g2(t), t ≥ 0.

10.2 Explicit Method for the Initial-Boundary Prob-
lem for the Heat Equation

Solutions of the heat equation have the min-max property.
Using a formalism similar to that used for elliptic equations, we can directly dis-

139

CHAPTER 10. PARABOLIC EQUATIONS

Figure 10.1: Stencil diagram of the explicit method (with forward time
derivative) for the parabolic equation.

cretize the (x,t) space and rewrite the parabolic equation as

φi,j+1 − φi,j

k
=

φi+1,j − 2φi,j + φi−1,j

h2 , (10.2)

which can be rewritten as

φi,j+1 = φi,j +
k
h2 (φi+1,j − 2φi,j + φi−1,j) , (10.3)

and setting α = k/h2 we have

φi,j+1 = αφi+1,j + (1− 2α)φi,j + αφi−1,j . (10.4)

The last equation can be solved applying the following algorithm:

1. Setting j = 0, calculate φi,1 for each i = 1, 2, .., n− 1

2. Use the results of step 1. and set j = 1, solving for φi,2.

3. Continue the procedure for j = 2, 3, .., m− 1 using the boundary conditions
for the boundary grid points.

The obtained set of values φi,j at each grid point represent the numerical solution
of the parabolic equation. The numerical scheme is graphically represented in the
stencil diagram of Fig. 10.1.

140

CHAPTER 10. PARABOLIC EQUATIONS

10.3 Explicit Method for the General Parabolic
Equation

The Initial-Boundary Problem for the general Parabolic Equation consists in find-
ing the solution of

φt = P(x, t)φxx + Q(x, t)φx + R(x, y)φ + S(x, y) , (10.5)

in the region 0 < x < a, t > 0 with:

• For a > 0 the functions P(x,u), Q(x,t), R(x,t), S(x,t) are bounded and con-
tinuous functions in 0 ≤ x ≤ a, t > 0,

• φ(x, 0) = f (x), 0 ≤ x ≤ a

• φ(0, t) = g1(t), φ(a, t) = g2(t), t ≥ 0.

• g1(0) = f (0), g2(0) = f (a)

The explicit method of discretization for finding the values of the function φ in the
inner grid points is the following

φi,j+1 − φi,j

k
= Pij

φi+1,j − 2φi,j + φi−1,j

h2 + Qij
φi+1,j − φi−1,j

2h
+ Rijφi,j + Sij ,

(10.6)
where we used a forward derivative in time and a central derivative in space. Defin-
ing α = k/h2 and β = k/2h, the last equation can be rewritten as

φi,j+1 =

(αPij − βQij)φi−1,j + (1 + kRij − 2αPij)φi,j+

(αPij + βQij)φi+1,j + kSij .

The last equation can be used to explicitly generate new values of φ at increasing
time values. This method is known as explicit central difference method.

141

CHAPTER 10. PARABOLIC EQUATIONS

10.4 Implicit Central Difference Method

This method uses a backward derivarive in time

φt =
φi,j − φi,j−1

k
, (10.7)

and the central first and second derivatives

φx =
φi+1,j − φi−1,j

2h
, (10.8)

φxx =
φi+1,j − 2φi,j + φi−1,j

h2 . (10.9)

We condider now a “mildly” non-linear parabolic equation of the form

φt = P(x, t)φxx + Q(x, t)φx + F(x, t, φ) , (10.10)

to arrive to the form (see previous section for an analogue calculation)

(αPij − βQij)φi−1,j − (1 + 2αPij)φi,j+ (10.11)

(αPij + βQij)φi+1,j + kF(xi, tj, φi,j) = 0 .

The previous result can be used for generating a numerical solution at each grid
point. Defining

f1(φ1,j) = φ1,j−1 + kF(x1, tj, φ1,j) + (αP1j − βQ1j)φ0,j , (10.12)

fi(φi,j) = φi,j−1 + kF(x1, tj, φ1,j) , i = 2, 3, 4, .., n− 2 ,

fn−1(φn−1,j) = φn−1,j−1 + kF(xn−1, tj, φn−1,j) + (αPn−1,j − βQn−1,j)φn,j ,

we can write consecutively Eq. 10.11 for i=1,2,..,n-1 :

−(1 + 2αP1j)φ1,j + (αP1j + βQ1j)φ2,j + f1(φ1,j) = 0

(αP2j − βQ2j)φ1,j − (1 + 2αP2j)φ2,j + (αP2j + βQ2j)φ3,j + f1(φ2,j) = 0

...

...
(αPn−1,j − βQn−1,j)φn−2,j − (1 + 2αPn−1,j)φn−1,,j + fn−1(φn−1,j) = 0

142

CHAPTER 10. PARABOLIC EQUATIONS

Figure 10.2: Stencil diagram for the Crank-Nicolson scheme.

The previous system has one equation for each “space” point. Starting with the
“time” j = 1 and inserting the known boundary values in Eqs. 10.12, the system
can be solved obtaining φ1,1, φ2,1, φ3,1, ..., φn−1,1. The solution at j = 1 can be
used to find the j = 2 solution adn so on. This procedure is known as implicit
central difference method.

10.5 The Crank-Nicolson Method

The mathod outlined before has rather good accuracy in the space variable. We
describe now a method for increasing also the accuracy in the time variable. Since
in general symmetric discrete derivatives achieve a higher accuracy, we consider a
time derivative defined at the point C = (i, j− 1/2) which is between A = (i, j)
and B = (i, j− 1) (see the stencil diagram in Fig. 10.2)

φt(xi, tj−1/2) =
φi,j − φi,j−1

k
. (10.13)

Considering then the central second derivatives in A and B

φxx(xi, tj) =
φi+1,j − 2φi,j + φi−1,j

h2 ,

φxx(xi, tj−1) =
φi+1,j−1 − 2φi,j−1 + φi−1,j−1

h2 ,

we can assume as second derivative at the point C the average of the second deriva-
tives in A and B:

φxx(xi, tj−1/2) ≈
1
2
[
φxx(xi, tj) + φxx(xi, tj−1)

]
. (10.14)

143

CHAPTER 10. PARABOLIC EQUATIONS

Following the same idea for the first derivative φx we have

φx(xi, tj−1/2) =
1
2

[
φi+1,j − φi−1,j

2h
+

φi+1,j−1 − φi−1,j−1

2h

]
. (10.15)

Substituting the discrete approximations of the first and second derivatives in Eq. 10.10

φi,j − φi,j−1

k
=

Pi,j−1/2

[
φi+1,j − 2φi,j + φi−1,j

2h2 +
φi+1,j − 2φi,j−1 + φi−1,j−1

2h2

]
+Qi,j−1/2

[
φi+1,j − φi−1,j

4h
+

φi+1,j−1 − φi−1,j−1

4h

]
+F

(
xi, tj−1/2,

φi,j − φi,j−1

2h

)
. (10.16)

Eq. 10.16 is known as the Crank-Nicolson method. This method has higher
accuracy as the explicit and implicit methods.

10.6 Reaction-Diffusion Systems

Many interesting physical and chemical systems can be modeled with the so-called
reaction-diffusion equation, which is a parabolic equation of the form

∂n
∂t
− D

∂2n
∂x2︸ ︷︷ ︸

Diffusion

+ nL(n) = G(n)︸ ︷︷ ︸
Reaction

, (10.17)

where we are considering here the simplest one spacial dimension case and a sin-
gle concentration n. The function n(x, t) might describe the concentration of a
chemical reactant or some other physical quantity. The term containing the second
spacial derivative is the diffusion term and D is called diffusion constant. The dif-
fusion term accounts for the diffusion of the species, while the loss term L(n) and

144

CHAPTER 10. PARABOLIC EQUATIONS

the gain term G(n) model the “reaction” part of the system. In summary, the equa-
tion describes the time and spacial evolution of a certain species which diffuese in
an environment which can “react” to the diffusion reinforcing or diminishing the
local population of the diffusing species.
A system can be composed from more species ni, leading to a system of reaction-
diffusion equations and also the number of dimensions can be higher than one. For
example, in more spacial dimensions, the second derivative becomes the Laplacian
∂2

∂x2 −→ ∂2

∂x2 +
∂2

∂y2 +

10.7 Bidimensional Systems: Turing Instability

We introduce now a class of reaction-diffusion systems which was proposed by
A. Turing for explaining morphogenesis: the pattern creation in various biological
systems.
In order to understand in simple terms this phaenomenon, we first consider the
linear system of ordinary differential equations{ du

dt = au + bv
dv
dt = cu + dv ,

(10.18)

for the two functions u = u(t) and v = v(t), while a, b, c, d are real constant
parameters. If we assume

T = a + d < 0 , D = ad− bc > 0 , (10.19)

we have (0,0) as an attractive stable point for the system. An equivalent statement
is that the matrix of the parameters has two eigenvalues λ1/2 with negative real
parts. This can be checked directly calculating the characteristic polynomial which
results in

λ2 − λT + D = 0 ⇒ λ1/2 =
1
2
(T ±

√
T2 − 4D) . (10.20)

If we now promote the system 10.18 to a reaction-diffusion system{ du
dt − σu∆u = au + bv
dv
dt − σv∆v = cu + dv ,

(10.21)

what we expect is that the friction caused by diffusion will strenghten the stability
of (0,0) even more. Surprisingly, this might not happen, as explained by the

145

CHAPTER 10. PARABOLIC EQUATIONS

Figure 10.3: Turing instability patterns from the FitzHugh–Nagumo
model.

Theorem 11 (Turing Instability Theorem). Consider the system 10.21 within
a domain Ω of Rd and the coefficients a, b, c, d following the conditions in Eq. 10.19
and a > 0 , d < 0, σv > 0. Then, for sufficiently small values of σu, the station-
ary state (0,0) is linearly unstable and only a finite number of eigenmodes of the
system are unstable.

Since a > 0, the component u is called the activator, while since d < 0, v is
called the inhibitor. The competition between these two components in the partic-
ular settings of the latter theorem give rise to an instability which forms interest-
ing spatial patterns with applications to biology problems. Another phaenomenon
happening in reaction-diffusion systems is the formation of waves. The relation-
ship with Turing instability can be traced to the following observations:

• Turing instability: short range activator, long range inhibitor

• Travelling waves: long range activator, short range inhibitor.

The smaller diffusion coefficient of the inhibitor makes it a long-range degree of
freedom, preventing the formation of waves, but allowing Turing instability.

146

CHAPTER 10. PARABOLIC EQUATIONS

10.8 A non-linear Turing Instability Example

As example for a non-linearmodel displaying Turing instability, we use the FitzHugh–Nagumo
model, which is a bi-dimensional version of the one-dimensional Hodgkin–Huxley
model for the neuronal activity. The model is defined by{ du

dt − σu∆u = u(1− u2)− v + α
dv
dt − σv∆v = β(u− v) ,

(10.22)

where α and β are parameters of the model. A result of the spatial patterns re-
sulting from the model are showed in Fig. 10.3. The choice of the parameters is
α = −0.005, β = 10, and σu = 1, σv = 100 and the code 10.1 implements an
explicit finite-difference scheme in two dimensions.
Note how the 2-dimensional Laplacian (∆ = ∂xx + ∂yy) is implemented in the
code using the np.roll vector with automatic periodic boundary conditions.
In two spacial dimensions, the finite difference scheme for the Laplacian is (com-
pare with the code 10.1)

∆ f = ∂xx f + ∂yy f ≈
fi+1,j − 2 fi,j + fi−1,j

dx2 +
fi,j+1 − 2 fi,j + fi,j−i

dy2 =

1
h2

(
−4 fi,j + fi+1,j + fi−1,j + fi,j+1 + fi,j−i

)
.

where we choose the same grid spacing in both spatial directions (dx=dy=h).

147

CHAPTER 10. PARABOLIC EQUATIONS

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 #2D Laplacian with periodic boundary conditions
5 def laplacian2D(a, dx):
6 return (
7 - 4 * a
8 + np.roll(a,1,axis =0) + np.roll(a,-1,axis =0)
9 + np.roll(a,+1,axis =1)+ np.roll(a,-1,axis =1)

10) / (dx ** 2)
11

12 #Diffusion coefficients and parameters
13 Da , Db , alpha , beta = 1, 100, -0.005 , 10
14 #Reaction terms (FitzHugh -Nagumo model)
15 def Ra(a,b): return a - a ** 3 - b + alpha
16 def Rb(a,b): return (a - b) * beta
17 #Discretization and steps
18 X, Y = 100 , 100
19 dx , dt , steps = 1, 0.001, 1000
20 #Random initialization
21 a , b = np.random.random ((X,Y)),np.random.random ((X,Y))
22

23 t=0
24 for i in range(steps):
25 t = t + dt
26 La , Lb = laplacian2D(a, dx), laplacian2D(b, dx)
27

28 #Reaction -Diffusion System
29 delta_a = dt * (Da * La + Ra(a,b))
30 delta_b = dt * (Db * Lb + Rb(a,b))
31

32 a,b = a + delta_a , b + delta_b
33

34 fig , ax = plt.subplots(nrows=1, ncols=2, figsize =(12 ,6))
35 ax[0]. imshow(a, cmap=’jet’);ax[1]. imshow(b, cmap=’brg’)
36 ax[0]. set_title("Reactant A");ax[1]. set_title("Reactant

B")
37 ax[0]. set_xlabel("X");ax[0]. set_ylabel("Y")
38 ax[1]. set_xlabel("X");ax[1]. set_ylabel("Y")
39 plt.show()

Listing 10.1: Turing Instability

148

Chapter 11 | Financial Applications

11.1 Introduction: the Ito Formula

A fundamental result in the theory of stochastic processes is the Ito Formula in
the framework of Ito calculus which states how to differentiate a function Y which
depends from a stochastic process X and the time variable t.
We consider the stochastic process defined in the interval [0,T] by the stochastic
differential equation

dXt = F(t, Xt)dt︸ ︷︷ ︸
Drift

+ G(t, Xt)dWt︸ ︷︷ ︸
Diffusion

, (11.1)

which is a formal way for expressing the integral

Xt = X0 +
∫ t

0
F(t′)dt′ +

∫ t

0
G(t)dWt′ (11.2)

Ito’s formula gives an expression for the differential of Yt = Yt(t, Xt):

dYt =

[
∂tYt + F(t)∂xYt +

1
2

G2(t)∂xxYt

]
dt + G(t)∂xYtdWt . (11.3)

It is interesting to note the presence of the second derivative. Intuitively, such term
must be present since if we do not expand up to second order, we do not take into
account the “variance” of the stochastic process but only the “drift”.
Another useful form of Ito’s formula is

149

CHAPTER 11. FINANCIAL APPLICATIONS

dYt = ∂tdt + ∂xYdXt +
1
2

∂xxY(dXt)
2 , (11.4)

taking into account the commutative multiplication rules dWt · dWt = dt, dt ·
dWt = 0, and dt · dt = 0.
For the D-dimensional case where there are Xi

t (i=1,..,D) stochastic processes we
have

dYt =

[
∂tY + ∑

i
Fi∂xiYt +

1
2 ∑

i,j
GiGj∂

2
xixj

Yt

]
dt +

[
∑

i
Gi∂xiYt

]
dWt (11.5)

As example for the application of Ito’s formula, we choose the geometric stochastic
process

dS = µSdt + σSdW , (11.6)

whichwill play an important role in the following sections. In this process, F = µS
and G = σS. The equation can be rewritten as

d(ln S) = µdt + σdW , (11.7)

and applying Ito’s formula to Y = ln S

dY =

[
µ

1
S

S− 1
S2 σ2S2

]
dt + σ

1
S

SdW =

(
µ− σ2

2

)
dt + σdW . (11.8)

The last equation can be directly integrated

ln St − ln S0 =

(
µ− σ2

2

)
t + σW , (11.9)

and therefore the solution of the stochastic differential equation for the geometric
process is

St = S0e
(

µ− σ2
2

)
t+σW , (11.10)

where W ∼ N(0, t) =
√

tN(0, 1) with N(α, β) the normal distribution with
mean α and root mean square β.

150

CHAPTER 11. FINANCIAL APPLICATIONS

11.2 The Black-Scholes Equation

The option pricing formula was derived by F. Black and M. Scholes in 1973 and
independently by R.C. Merton in the same year. The formula solves the problem
of pricing an European (put or call) option. The hypotheses under the derivation
of the formula are

1. The short-term interest rate is constant and equal to r. It is possible to borrow
at that rate.

2. The strike price X is known and constant in time.

3. The stock price S follows the geometric process

dS
S

= µdt + σdW , (11.11)

where W is a Wiener process, µ the (constant) expected yield, and σ the
(constant) volatility.

4. The stock does not pay dividends.

5. The marked has no transaction costs and there are no limits to short selling.

6. There is no arbitrage opportunities.

Let us consider a call option with price c = c(S, t). The call gives the owner the
right (but not the obligation) to buy the underlying financial product (e.g. a stock)
at a certain price (the strike price) within or at a certain date. (A put option is
similar but gives the right to sell).
The intrinsic value of a option is the maximum between zero and the option value
if would be used right away. For a call option

c = max(S− X, 0) . (11.12)

The last equation shows that the value is not zero only if the underlying asset has
a value higher than the strike price. This means also that the option owner will
exercise his right to buy only if S > X. For a put option

c = max(X− S, 0) . (11.13)

Going back to the Black-Scholes equation, the main idea behind its derivation is
the construction of a portfolio where stocks and the option are combined in a way

151

CHAPTER 11. FINANCIAL APPLICATIONS

to eliminate the risk. No risk means constantly compensating for the variation of
the stock price. The value V of such a portfolio is

V = S− 1
∆

c , (11.14)

where S is the stock price and c is the option price. 1/∆ is fraction of options
bought with respect to the stocks. A variation of the value can be expressed differ-
entiating

dV = dS− 1
∆

dc . (11.15)

Since the differential dc(t,S) depends from the stochastic variable S following a
geometric process, from Ito’s Lemma we have

dc =
[

∂c
∂t

+
1
2

σ2S2 ∂2c
∂S2

]
dt +

∂c
∂S

dS . (11.16)

Substituting the last result in Eq. 11.15 and noticing that ∂c
∂S = ∆ we have

dV = − 1
∆

[
∂c
∂t

+
1
2

σ2S2 ∂2c
∂S2

]
dt . (11.17)

If the portfolio is really risk-free, its yield must be equal to the fixed interest rate r
(yield = V · r · t) and thus its instantaneous change is V · r · dt:

− 1
∆

[
∂c
∂t

+
1
2

σ2S2 ∂2c
∂S2

]
dt =

(
S− 1

∆
c
)

r · dt . (11.18)

Simplifying dt and rearranging the terms with the definition of ∆ we obtain the
Black-Scholes equation

∂c
∂t

= rc− rS
∂c
∂S
− 1

2
σ2S2 ∂2c

∂S2 . (11.19)

which is a parabolic equation. The equation can be solved analytically or with
a numerical scheme. In more complex cases, where volatility or other parameters
are not constant (and maybe even follow a different stochastic process), Monte
Carlo methods can be used.

152

CHAPTER 11. FINANCIAL APPLICATIONS

11.3 Analytic Solution

The Black-Scholes equation has an analytic solution which can be derived in dif-
ferent ways. One possibility is to reduce it to a parabolic equation form where the
solution is known. Introducing the substitution

c(S, t) = er(t−T)Y , (11.20)

where the new function Y has the following dependency

Y(x, y) = (11.21)

Y
[

2
σ2 (r−

σ2

2
)(ln

S
X
− (r− σ2

2
)(t− T)) , − 2

σ2 (r−
σ2

2
)2(1− T)

]
With this substitution, dividing by er(t−T) and then by 2 r

σ2 − 1 and −r + σ2/2,
the Black-Scholes equation becomes

∂Y
∂y

=
∂2Y
∂x2 , (11.22)

which is the diffusion equation with unitary diffusion coefficient and it has a known
Gaussian solution. With the used substitution, the value of the option becomes

Y(u, 0) =
{

X(eu/(2r/σ2) − 1) u ≥ 0
0 u < 0

(11.23)

where u = (2r
−1) ln S

X .
Rewriting the parabolic equation problem with the new variable u and calling z
the other one we have

Y(u, 0) =

{
∂Y
∂z = ∂2Y

∂u2

Y(u, 0) = g(u) .
(11.24)

which has the Gaussian solution

Y(u, z) =
∫ +∞

−∞

1√
4πz

e−(u−ξ)2/4zg(ξ)dξ . (11.25)

Setting q = (ξ − u)/
√

2z and using Eq. 11.24, the solution becomes

Y(u, z) =
∫ +∞

−u/
√

2z
e−q2/2X

(
e(
√

2zq+u)/(2r/σ2−1) − 1
)

dq . (11.26)

153

CHAPTER 11. FINANCIAL APPLICATIONS

Substituting into the first variable redefinition (Eq. 11.20) we obtain

c(S, t) = SN(d1)− Xe−r(T−t)N(d2) , (11.27)

with

d1 =
ln S

X + (r + 1
2 σ2)(T − t)

σ
√

T − t
(11.28)

d2 = d1 − σ
√

T − t . (11.29)

The function N is the distribution function of a standard normal distribution

N(y) =
1√
2π

∫ y

−∞
e−

1
2 x2

dx . (11.30)

The code 11.1 implements the analytic solution of the Black-Scholes equation for
the european call and put options and plots their value as function of the underlying
stock. From this point on, many similar finantcial instruments can be modeled
along similar lines. One example are american options, where the option can be
used at any time point before the expiry date. Other finantial instruments can be
reduced to the option case and other variables like volatility and interest rate can
be made stochastic. Most cases cannot be treated analitycally and a simulation or
numeric approach must be followed.

154

CHAPTER 11. FINANCIAL APPLICATIONS

1 import numpy as np
2 from scipy.stats import norm
3 import matplotlib.pyplot as plt
4

5 N = norm.cdf
6

7 def BS_call(S, X, T, r, sigma):
8 d1 = (np.log(S/X) + (r + sigma **2/2)*T) / (sigma*np.

sqrt(T))
9 d2 = d1 - sigma * np.sqrt(T)

10 return S * N(d1) - X * np.exp(-r*T)* N(d2)
11

12 def BS_put(S, X, T, r, sigma):
13 d1 = (np.log(S/X) + (r + sigma **2/2)*T) / (sigma*np.

sqrt(T))
14 d2 = d1 - sigma* np.sqrt(T)
15 return X*np.exp(-r*T)*N(-d2) - S*N(-d1)
16

17 X = 100 #strike price
18 r = 0.1 #interest rate
19 T = 1 #maturity
20 sigma = 0.3 #volatility
21

22 S = np.arange (60 ,140 ,0.1)
23

24 calls = [BS_call(s, X, T, r, sigma) for s in S]
25 puts = [BS_put(s, X, T, r, sigma) for s in S]
26

27 plt.plot(S, calls , label=’European Call Value ’)
28 plt.plot(S, puts , label=’European Put Value ’)
29

30 plt.xlabel(’S_0 ’)
31 plt.ylabel(’Option Value’)
32 plt.legend ()
33 plt.show()

Listing 11.1: Analytic Solution of the BS Equation

155

CHAPTER 11. FINANCIAL APPLICATIONS

11.4 Numerical schemes for the Black-Scholes
Equation

We would like to find a numercal scheme for solving the Black-Scholes (or sim-
ilar) equation. The stock value S will be equivalent to the x variable treated in
the section before. Defining a discretized grid, Si = ih (i=0,..,N) and tj = jk
(j=0,..,M), we would like to find a solution to Eq. 11.19. Since at this point we
do not differentiate between call or put options, we will call the generic option
price v = v(S, t). Rearranging the terms, and using the usual notation for the
derivatives, the equation to solve is

∂t + rS∂Sv +
1
2

σ2S2∂SSv = rv . (11.31)

The time derivative can be approximated as

∂tv =
vi,j+1 − vi,j

k
, (11.32)

while for the first derivative with respect to S we use the central scheme

∂Sv =
vi+1,j − vi−1,j

2h
. (11.33)

The second derivative is as usual

∂SSv =
vi+1,j − 2vi,j + vi−1,j

2h
. (11.34)

We remark again that for central differences (first and second derivatives) the error
is of order O(h2) while for forward/backward differences it is O(h).
Defining

αi =

(
r
2
+

σ2

2
i2
)

k , (11.35)

βi = (r + σ2i2)k , (11.36)

γi =

(
σ2

2
i2 − r

2
i
)

k , (11.37)

and substituting the discretizations in Eq. 11.31 we obtain the finite difference
equation

− αivi+1,j + (1 + βi)vi,j − γivi−1,j = vi,j+1 . (11.38)

156

CHAPTER 11. FINANCIAL APPLICATIONS

This is an implicit method, since knowing the boundary values of vi,M for each
i and vN,j for each j, it is possible to calculate the interior grid points. In order to
solve the implicit scheme the whole system of equations must be solved for each
time step.
It is also possible to derive an explicit method approximating the first derivative
with a central scheme centered on the time step j + 1:

∂Sv =
vi+1,j+1 − vi−1,j+1

2h
. (11.39)

The corresponding numerical scheme is

αivi+1,j+1 + (1 + βi)vi,j+1 + γivi−1,j+1 = vi,j . (11.40)

In this method, the values of v at the time j depend to the values at time j + 1.
Since the value of v is known at the final times, all the values can be calculated
with a procedure which goes backwards in time.
When we explained the Crank-Nicolson scheme, we considered a point between
two time steps for improving the time accuracy. A similar procedure can be done
here taking the weighted average of the implicit and explicit schemes. Taking
θ ∈ [0, 1] as the weight we obtain

(1− θ)αivi+1,j+1 + [1− (1− θ)βi] vi,j+1 + (1− θ)γivi−1,j+1 =

−θαivi+1,j + (1 + θβi)vi,j − θγivi−1,j . (11.41)

For θ = 0 and θ = 1 we recover the explicit and the implicit method, respectively.
The choice θ = 1/2 corresponds to the Crank-Nicolson method, where also the
error in the time discretization is reduced to O(k2).

Code 11.2 implements the explicit finite difference scheme for solving the
Black-Scholes equation in the case of a european call option. For too large time
steps, the explicit scheme becomes unstable. The stability condition is

σ2S2k
h2 ≤ 1 . (11.42)

157

CHAPTER 11. FINANCIAL APPLICATIONS

1 import numpy
2 import matplotlib.pyplot as plt
3

4 #Forward -time , central -space EXPLICIT scheme
5 def FTCS_European_Call(C, N, M, dt , r, sigma):
6

7 i = numpy.arange(1,M)
8 for n in range(N): #Loop over time steps
9 #[1: -1]: all elements but first and last

10 C[1: -1]=\
11 0.5*(sigma **2 * i**2 * dt - r*i*dt)*C[0: -2] \
12 + (1 - sigma **2* i**2 *dt - r*dt)*C[1: -1] \
13 + 0.5*(sigma **2 * i**2 * dt + r*i*dt)*C[2:]
14 return C
15

16 #Call option features
17 T = 0.25 # expiry time
18 r = 0.1 # interest rate
19 sigma = 0.4 # volatility
20 X = 10. # strike price
21 S_max = 4*X # upper bound of the stock price
22

23 #Numerical scheme
24 N = 2000 # number of time steps
25 M = 200 # number of space grids
26 dt = T/N # time step
27 s = numpy.linspace(0, S_max , M+1) # grid for S
28

29 # Initial condition
30 C = s - X
31

32 #Boundary condition , clip to zero outside range
33 C = numpy.clip(C, 0, S_max -X)
34 C0 = FTCS_European_Call(C, N, M, dt, r, sigma)
35

36 plt.plot(C)
37 plt.xlabel("Stock Price S"); plt.ylabel("Option Price C"

)
38 plt.show()

Listing 11.2: Explicit Scheme for the Black-Scholes Equation

158

CHAPTER 11. FINANCIAL APPLICATIONS

11.5 Monte Carlo Approach

The stochastic differential equation for the geometric stochastic process can be
solved analytically, yielding the solution

S(t) = S(0)e(r−
σ2
2)t+σ

√
tZ , (11.43)

where Z is a random number sampled from a Gaussian distribution with zero mean
and unit root mean square (N (0, 1)). For calculating the value of the option (let’s
consider an European call) at the initial time, we can discount back the final value
with the interest rate

S(0) = e−rTS(T) . (11.44)

We can simulate different realizations of S(T) using Eq. 11.43 generating N ran-
dom numbers from N (0, 1) and then calculate the initial prices Si(0) (i=1,..,N)
with Eq. 11.44.
The Monte Carlo value VMC of the option price is thus the average

VMC =
1
N

N

∑
i=1

Si(0) , (11.45)

and the error on the estimate can be evaluated with the variance

σ =

√
1
N ∑i(Si −VMC)2

√
N

. (11.46)

Fig. 11.1 shows the results of the Monte Carlo calculation (blue markers). Every
marker is the result of a calculation with a fixed number of samples N. The red
lines represent the estimate of the variance. The lines are calculated adding and
subtracting the result of Eq. 11.46 multiplied by a factor of 3 in order to obtain the
so-called 3σ belt around the data. The lines show the expected 1/

√
N evolution

of the Monte Carlo error.
This method can be extended to situations where the parameters of the Black-
Scholes model are not constant or following a stochastic process themselves. An-
other modification is the adoption of a stochastic process different than the geo-
metric one. In these cases, an analytic solution of the stochastic equation might not
be available, and the stochastic process has to be fully simulated, for example with
an Euler-like procedure. For example, a simple numerical scheme for simulating
a stochastic process is the Euler-Maruyama method

Si+1 = a(Si, ti)∆t + b(Si, ti)σ
√

tizi , (11.47)

159

CHAPTER 11. FINANCIAL APPLICATIONS

Figure 11.1: Monte Carlo estimation of an European call with an increas-
ing number of samples (blue markers). The red lines represent the 3σ
contours calculated with Eq. 11.46 and the orange horizontal line the an-
alytic calculation.

where zi ∼ N (0, 1). More precise schemes exist if higher order expansions of the
derivatives are used. For example, in the Milstein method, an expansion up to
second order is used.

160

CHAPTER 11. FINANCIAL APPLICATIONS

1 import numpy as np
2 from scipy.stats import norm
3 import matplotlib.pyplot as plt
4

5 r = 0.1 #risk -free interest rate
6 S0 = 100 #starting stock value
7 sigma = 0.3 ; X=110 #volatility;strike
8 T = 1 ; t = 0 #duration ; current time
9 np.random.seed (1) #set the random seed

10 N = 1000000 #MC samples
11

12 def EuropeanCallValue(S0 , X, r, sigma , Z, T):
13 ST = S0*np.exp((r-sigma **2/2)*T+sigma*np.sqrt(T)*Z)
14 return np.exp(-r*T)*np.maximum(ST-X, 0)
15

16 def EuropeanCallMC(S0 , X, r, sigma , T, N):
17 V = np.zeros(N) ; Z = norm.rvs(size=N)
18 V = EuropeanCallValue(S0 ,X,r,sigma ,Z,T)
19 Vmean = np.mean(V); Verr = np.std(V)/np.sqrt(N)
20 return Vmean ,Verr
21

22 #Analytic Solution
23 d_1 = (np.log(S0/X)+(r+sigma **2/2) *(T-t))/(sigma*np.sqrt

(T-t))
24 d_2 = d_1 - sigma*np.sqrt(T-t)
25 analytic=S0*norm.cdf(d_1)-X*np.exp(-r*(T-t))*norm.cdf(

d_2)
26

27 #Plotting MC solution vs number of samples
28 Nmax = 10000 ; step = 20
29 Vmean = np.zeros ((int)(Nmax/step))
30 Verr = np.zeros((int)(Nmax/step))
31 n = np.zeros ((int)(Nmax/step)) ; i=0
32 for N in range(1,Nmax ,step):
33 Vmean[i],Verr[i] = EuropeanCallMC(S0,X,r,sigma ,T,N)
34 n[i] = N ; i += 1
35

36 plt.plot(n,Vmean ,marker=’o’,linestyle=’none’)
37 plt.plot(n,analytic+Verr*3,’r-’,marker=’’)
38 plt.plot(n,analytic -Verr*3,’r-’,marker=’’)
39 plt.plot(n,(np.zeros((int)(Nmax/step)) + 1)*analytic)
40 plt.xlabel(’Monte Carlo Samples ’)
41 plt.ylabel(’European Call Value ’)
42 plt.show()

Listing 11.3: Black-Scholes Monte Carlo

161

CHAPTER 11. FINANCIAL APPLICATIONS

162

Chapter 12 | Hyperbolic Equations

12.1 Introduction

Hyperbolic equations are also known as wave equations, since they describe var-
ious types of waves, including electromagnetic waves. The simplest hyperbolic
equation is

φxx − φyy = 0 , (12.1)
where in many applications the variable y is identified with the time t. Similarly
to the parabolic (heat) equation, there are two studied problems for the hyperbolic
equation: the initial value problem (or Cauchy problem) and the initial
boundary problem.

12.1.1 The Cauchy Problem

The initial value or Cauchy problem consists in finding the function φ(x, t) sat-
isfying the hyperbolic equation which is defined and continuous in (−∞, ∞) and
t > 0 and satisfying the initial conditions{

φ(x, 0) = f1(x) , −∞ < x < ∞
dφ/dt(x, 0) = f2(x) , −∞ < x < ∞ . (12.2)

The Cauchy problem is defined on a semi-infinite strip of the (x,t) plane and it is
possible to solve it with an analytic formula due to D’Alembert. Introducing the
rotation of axes {

ξ = x + t ,
ψ = x− t , (12.3)

the wave equation transforms to
d2φ

dξdψ
= 0 . (12.4)

163

CHAPTER 12. HYPERBOLIC EQUATIONS

Integrating the last equation with respect to ψ,

dφ

dξ
= F1(ξ) , (12.5)

where F1 is some differentiable function. Integrating now with respect to ξ,

φ =
∫ ξ

0
F1(z)dz + G2(ψ) . (12.6)

If we now define
G1(ξ) =

∫ ξ

0
F1(z)dz , (12.7)

we have that the solution must be of the general form

φ = G1(ξ) + G2(ψ) = G1(x + t) + G2(x− t) . (12.8)

Since the functions G1 and G2 are differentiable, from the last formwe can compute

dφ

dy
=

∂G1

∂ξ

∂ξ

∂t
+

∂G2

∂ψ

∂ψ

∂t
=

∂G1

∂ξ
− ∂G2

∂ψ
. (12.9)

From Eq. 12.8 and Eq. 12.9 and remembering the initial conditions, we have

φ(x, 0) = G1(x) + G2(x) = f1(x)⇒ G′1(x) + G′2(x) = f ′1(x) ,
dφ
dt = G′1(x)− G2(x) = f2(x) ,

(12.10)

where the “prime” indicated a derivative with respect of the only dependent vari-
able. Solving the last equations for G′1/2:

G′1(x) = 1
2 [f ′1(x) + f2(x)]

G′2(x) = 1
2 [f ′1(x)− f2(x)] ,

(12.11)

and integrating we have

G1(x) = 1
2

[
f1(x) +

∫ x
0 f2(z)dz

]
G′2(x) = 1

2

[
f ′1(x)−

∫ x
0 f2(z)dz

]
.

(12.12)

Remembering the general form Eq. 12.8, we can combine the last equations in

φ(x, t) =
1
2

[
f1(x + y) +

∫ x+y

0
f2(z)dz

]
+

[
f1(x− y) +

∫ x−y

0
f2(z)dz

]
.

(12.13)

164

CHAPTER 12. HYPERBOLIC EQUATIONS

The last equation can be rewritten as

φ(x, t) =
1
2

[
f1(x + y) + f1(x− y) +

∫ x+y

x−y
f2(z)dz

]
, (12.14)

which is the D’Alembert solution. While the solution looks simple, the integral
might not be analytical, but in that case it can be solved numerically. Given the
existence of this solution, a numerical treatment of the Cauchy case will not be
pursued.

12.1.2 The Initial Boundary Problem

In this case, a parameter a > 0 is specified, together with the continuous functions
g1(t) , t ≥ 0
g2(t) , t ≥ 0
f1(x) ,−∞ ≤ x ≤ ∞
f2(x) ,−∞ < x < ∞

(12.15)

The problem consists in finding a function φ(x, t) satisfying the hyperbolic equa-
tion and which is continuous in t ≥ 0 and 0 ≤ x ≤ a and the initial and boudary
conditions

Initial Conditions:
{

φ(x, 0) = f1(x) , 0 ≤ x ≤ a
dφ/dt(x, 0) = f2(x) , 0 < x < a (12.16)

Boundary Conditions
{

φ(0, t) = g1(t) , t ≥ 0
φ(a, t) = g2(t) , t ≥ 0 (12.17)

In order to avoid “corner” discontinuities, it is assumed{
g1(0) = f1(0) ,
g2(0) = f1(a) . (12.18)

The solution to boundary conditions problems can be given as series of func-
tions. Most of the times, non-linear cases have to be treated numerically. In the
next sections, we will look at some algorithms for the solution of this problem.

165

CHAPTER 12. HYPERBOLIC EQUATIONS

12.2 Explicit Method for the Initial Boundary Prob-
lem

Considering a grid of points with width h = a/n for the space coordinate x and
k = b/m for the “time” coordinate t (we are assuming 0 ≤ x <≤ a and 0 ≤
t <≤ b), where n and m are choosen number of points in the two directions, we
can discretize the hyperbolic equation with central differences

φxx = φtt ⇒
φi+1,j − 2φi,j + φi−1,j

h2 =
φi,j+1 − 2φi,j + φi,j−1

k2 . (12.19)

Rearraging the terms

φi,j+1 = 2φi,j − φi,j−1 +
k2

h2

(
φi+1,j − φi,j + φi−1,j

)
. (12.20)

The last equation represents an explicit formula for φi,j+1, but there is still a prob-
lem. It is possible to generate φi,j+1 knowing (fixing a “space” i) the function at
the two previous “times” j and j− 1. This means that we cannot apply the equa-
tion to the first time value, but only starting from the second. We solve this issue
approximating the first time value with a Taylor series

φi,1 ≈ φi,0 + kφt(xi, 0) +
k2

2
φtt(xi, 0) , (12.21)

which can be rewritten as

φi,1 ≈ φi,0 + kφt(xi, 0) +
k2

2
φxx(xi, 0) , (12.22)

using the wave equation. Introducing now a finite difference scheme, and remem-
bering the boudary conditions φ(x, 0) = f1(x), φt(x, 0) = f2(x) the last equation
becomes

φi,1 ≈ f1(xi) + k f2(xi) +
k2

2
f1(xi+1)− 2 f1(xi) + f1(xi−1)

h2 . (12.23)

166

CHAPTER 12. HYPERBOLIC EQUATIONS

Equations 12.20 and 12.23 define an explicit finite difference approximation scheme
for the hyperbolic equation with initial boundary conditions.
A general condition for the stability of themethod is given by theCourant-Friedrichs-
Lewy stability condition, which results in

k ≤ h , (12.24)

thus “temporal” steps should be smaller or equal to spatial steps.

12.3 Implicit Method for the Initial Boundary
Problem

The following implicit method results stable for any choice of the steps h and k,
but it is implicit and thus requires the solution of a linear system, which in this
specific case is tri-diagonal.
The idea is to discretize the “spatial” second derivative of the hyperbolic equation
with the average of two second derivatives at two symmetric times around the
reference point (xi, tj)

φxx ≈
1
2

[
φi+1,j+1 − 2φi,j+1 + φi−1,j+1

h2 +
φi+1,j−1 − 2φi,j−1 + φi−1,j−1

h2

]
.

(12.25)
The “time” second derivative keeps the usual discretization

φyy ≈
φi,j+1 − 2φi,j + φi,j−1

k2 . (12.26)

Substituting the last two discretizations into the wave equation φxx − φtt = 0
yields

φi−1,j+1 − 2
(

1 +
h2

k2

)
φi,j+1 + φi+1,j+1 =

−φi−1,j−1 − φi+1,j−1 − 4
h2

k2 φi,j + 2
(

1 +
h2

k2

)
φi,j−1 . (12.27)

167

CHAPTER 12. HYPERBOLIC EQUATIONS

The last equation represens a linear system of n − 1 equations with the n − 1
unknowns φi,j+1 (i = 1, 2, .., n− 1), if the boundary conditions are taken into ac-
count. This system is tri-diagonal and diagonally dominant with negative diagonal
elements and non-negative off-diagonal elements, thus it is always possible to find
an unique solution.
The solution algorithm proceeds as follows:

1. Choose values for h and k

2. Use the boundary and initial conditions: φi,0 = f1(x1), φ0,j = g1(t), φn,j =
g2(t) with i = 0, 1, 2, .., n, and j = 1, 2, .., m.

3. At the point t1 = k, compute φi,1 (i = 1, 2, .., n − 1) with the expansion
formula of Eq. 12.23.

4. At each time tj (j = 1, 2, .., m − 1) solve the tri-diagonal system 12.27
finding the values φi,j+1 (i = 1, 2, .., n− 1).

12.4 The Lax-Wendroff Method

We describe here an explicit solution method for a particular hyperbolic equation
(or systems of equations) which often appears in physical problems related to gases
and which is relevant in applications The system we consider is in conservative
form

∂φ

∂t
+

∂F(φ)
∂x

= 0 , (12.28)

since the function F represents conseved quantities (like mass or energy).
The problem is to determine the functions v and u at every point (x,t).
We consider the Taylor expansion around the time point j + 1/2 fixing the space
point i + 1/2

φi+1/2,j+1/2 ≈ φi+1/2,j + k
∂φ(xi+1/2, tj)

∂t
. (12.29)

Substituting the hyperbolic equation

φi+1/2,j+1/2 ≈ φi+1/2,j − k
∂F
∂x
|i+1/2,j . (12.30)

168

CHAPTER 12. HYPERBOLIC EQUATIONS

If we now introduce a finite difference scheme for the spatial derivative of F sym-
metric around xi+1/2 and replace φi+1/2,j with the average of the function again
between two symmetric points around xi+1/2 we obtain the first step of the Lax-
Wendroff scheme

φi+1/2,j+1/2 =
φi+1,j + φi,j

2
− k

2h
(

F(φi+1,j)− F(φi,j)
)

. (12.31)

An interesting observation is that rearranging the terms involving φ, a difference
scheme of the second spatial derivative can be constructed: this physically means
introducing a diffusion (or friction) term into the system which might explain the
stability of the method.
The second and last step, is to determine φ on a grid of points of the form xi, tj+1
obtaining

φi,j+1 = φi,j −
k
h
(

F(φi+1/2,j+1/2)− F(φi−1/2,j+1/2)
)

. (12.32)

The Lax-Wendroff method is (Neumann) stable if |k/h| ≤ 1.

169

CHAPTER 12. HYPERBOLIC EQUATIONS

170

Chapter 13 | TheNavier-Stokes Equa-
tions

13.1 Introduction

The Navier-Stokes Equations govern the motion of all the fluids in the hydrody-
namical approximation. These equation are particularly complex since they are
non-linear and there are not existence and uniqueness theorems availavble in gen-
eral for characterizing the solutions. The numerical treatment of these complicated
equations is thus central in many applications.
The Navier-Stokes equation for a Newtonian incompressible fluid of density ρ and
viscosity ν is

ρ

(
∂

∂t
+~v · ~∇

)
= −∇~P + ν∇2~v , (13.1)

where~v is the velocity, and P the pressure. Physically, the last equation represents
momentum conservation.
Mass conservation requires

∂ρ

∂t
= −∇ ·~v . (13.2)

and incompressibility results in ∇ ·~v = 0. Newtonian fluids are fluids for which
the viscous stresses arising from its flow are at every point linearly correlated to
the local strain rate. In other words, the viscosity ν is a constant and this simplifies
the stress tensor of the fluid. The equation is already complicated with the latter
approximations andwewill use them in the following numerical treatments. More-
over, the Navier-Stokes equations cannot be classified into the three categories (el-
liptic, parabolic, hyperbolic) which we discussed in the previous chapters.

171

CHAPTER 13. THE NAVIER-STOKES EQUATIONS

13.2 2-Dimensional Flow

For simplicity, here we will consider only the Navier-Stokes equations in two di-
mensions, which is already a challenging problem. Still, the two-dimensional
treatment has many applications, for example in the dynamics of shallow waters.
Writing Eq. 13.1 explicitly in two dimensions we have

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −∂P
∂x

+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −∂P
∂y

+ ν

(
∂2u
∂x2 +

∂2u
∂y2

)
, (13.3)

where v and u are the velocity components along x and y, respectively.
If the fluid is incompressible, mass conservation (Eq. 13.2) implies the additional
constraint for the velocity components

∂u
∂x

+
∂v
∂y

= 0 . (13.4)

The three latter equations form a system where the unknowns are the functions
u(x, y, t), v(x, y, t), P(x, y, t). The initial-boundary condition problem for
the 2-dimensional Navier-Stokes flow is defined as follows.

• Find u(x, y, t), v(x, y, t), P(x, y, t) on a domain Ω with border Γ

• with initial conditions: u(x, y, 0) = u0(x, y),v(x, y, 0) = v0(x, y) contin-
uous with (x, y) ∈ Ω,

• boundary conditions: u(x, y, t) = uγ(x, y, t), v(x, y, t) = vγ(x, y, t), con-
tinuous with (x, y) ∈ Γ and t ≥ 0.

13.3 A general Finitie-Difference Scheme

We indicate with indices i, j the discrete spatial coordinates of the finite difference
scheme, and with the index k the time, adopting the notation vk

i,j (i = 1, 2, ..n,
j = 1, 2, .., m) for the value of the velocity v (u,v in the two dimensional case).
The pressure follows the same notation: Pk

i,j. The space grid has steps ∆x, while
the time grid has steps ∆t, so that tk = k∆t.

172

CHAPTER 13. THE NAVIER-STOKES EQUATIONS

13.3.1 Boundary conditions
The velocities are defined at the middle point of the border of a “cell”, while the
pressure is defined at its centre.
The initial conditions at t0 = 0 are

u0
i+1/2,j = u0(xi, yj−1/2) , i = 0, 1, .., n , j = 1, 2, .., m

v0
i,j+1/2 = v0(xi−1/2, yj) , i = 1, 2, .., n , j = 0, 1, .., m , (13.5)

In this way, we know the tangential (u component) and the normal (v component)
valocities at time zero at each point of the cell.
Note that there are no initial conditions for the pressure and they have to be derived
later.
Now we can make use of the boundary conditions and we start with the top and
bottom boundaries for the tangential velocities. Since we decided to define
the velocity components on the “half points” of the grid (i+1/2, j+1/2, ...) and the
boundary conditions are instead known on the borders (i=0, j=0, i=a, j=b), we can
consider the averages

uk
i+1/2,0 + uk

i+1/2,1

2
= uΓ(xi, 0, tk) , i = 1, 2, .., n− 1 ,

uk
i+1/2,m + uk

i+1/2,m+1

2
= uΓ(xi, b, tk) , i = 1, 2, .., n− 1 , (13.6)

from which we have

uk
i+1/2,0 = 2uΓ(xi, 0, tk)− uk

i+1/2,1 , (13.7)

uk
i+1/2,m+1 = 2uΓ(xi, b, tk)− uk

i+1/2,m . (13.8)

The last formulas define also the initial conditions which in Eq. 13.5 were not fully
determined. For the left and right boundaries for the tangential components
we have

vk
0,j+1/2 = 2vΓ(0, yj, tk)− vk

1,j+1/2 , (13.9)

vk
n+1,j+1/2 = 2vΓ(a, yj, tk)− vk

n,j+1/2 . (13.10)

For the normal velocity boundary conditions at time tk+1 we take

uk+1
1/2,j = uΓ(0, yj−1/2, tk+1) , uk+1

n+1,j = uΓ(a, yj−1/2, tk+1) , j = 1, 2, .., m

vk+1
i,1/2 = vΓ(0, xi−1/2, tk+1) , vk+1

i,m+1/2 = vΓ(xi−1/2, b, tk+1) i = 1, 2, .., n
(13.11)

173

CHAPTER 13. THE NAVIER-STOKES EQUATIONS

13.3.2 Numerical approximation scheme

We now introduce an approximation scheme for Eq. 13.3 starting with the first one

uk+1
i+1/2,j − uk

i+1,j

∆t
+ uk

i+1/2,j

uk
i+3/2,j − uk

i−1,j

2∆x
+ v̄k

i+1/2,j

uk
i+1/2,j+1 − uk

i+1/2,j−1

2∆y
=

−
Pk

i+1,j − Pk
i,j

∆x
+

ν

(
uk

i+3/2,j − 2uk
i+1/2,j + uk

i−1/2,j

(∆x)2 +
uk

i+1/2,j+1 − 2uk
i+1/2,j + uk

i+1/2,j−1

(∆y)2 +

)
.

(13.12)

The approximation scheme expresses velocities at time tk+1 and pressures at times
tk. Rearranging the terms and introducing the finite difference operator F, the last
equation can be compactly rewritten as

uk+1
i+1/2,j = Fuk

i+1/2,j − ∆t
Pk

i+1,j − Pk
i,j

∆x
, (13.13)

with i = 1, 2, .., n− 1, j = 1, 2, .., m.
The same can be done with the second Navier-Stokes equation

vk+1
i,j+1/2 = Gvk

i,j+1/2 − ∆t
Pk

i,j+1 − Pk
i,j

∆y
, (13.14)

174

CHAPTER 13. THE NAVIER-STOKES EQUATIONS

with another operator G. Explicitly, the two operators are

Fuk
i+1/2,j = uk

i+1/2,j−

∆t

[
uk

i+1/2,j

uk
i+3/2,j − uk

i−1,j

2∆x
+ v̄k

i+1/2,j

uk
i+1/2,j+1 − uk

i+1/2,j−1

2∆y

]
+

ν∆t

(
uk

i+3/2,j − 2uk
i+1/2,j + uk

i−1/2,j

(∆x)2 +
uk

i+1/2,j+1 − 2uk
i+1/2,j + uk

i+1/2,j−1

(∆y)2 +

)
,

(13.15)

Gvk
i,j+1/2 = vk

i,j+1/2−

∆t

[
ūk

i,j+1/2

vk
i+1,j+1/2 − vk

i−1,j+1/2

2∆x
+ vk

i,j+1/2

vk
i,j+3/2 − vk

i,j−1/2

2∆y

]
+

ν∆t

(
vk

i+1,j+1/2 − 2vk
i,j+1/2 + vk

i−1/2,j+1/2

(∆x)2 +
vk

i,j+3/2 − 2vk
i,j+1/2 + vk

i,j−1/2

(∆y)2 +

)
.

(13.16)

The operators contain the “averages” ū and v̄. The reason is that (for example) v
is not defined at the center of a vertical side of a cell, thus it has to be calculated

v̄k
i+1/2,j =

1
4

(
vk

i,j+1/2 + vk
i,j−1/2 + vk

i+1,j+1/2 + vk
i+1,j−1/2

)
. (13.17)

The same happens at the center of an horizontal side for the u component:

ūk
i,j+1/2 =

1
4

(
uk

i+1/2,j + uk
i−1/2,j + uk

i+1/2,j+1 + uk
i−1/2,j+1

)
. (13.18)

The outlined scheme is explicit, but still it cannot be used right away, since the
values of the pressure Pk

i,j are not fixed. In order to complete the scheme, we have
to take into account the incompressibility condition of Eq. 13.4 which in its dis-
cretized form is

uk+1
i+1/2,j − uk+1

i−1/2,j

∆x
+

vk+1
i,j+1/2 − vk+1

i,j−1/2

∆y
= 0 , (13.19)

175

CHAPTER 13. THE NAVIER-STOKES EQUATIONS

for i = 1, 2, .., n and j = 1, 2, .., m.
Inserting the boundary conditions Eq. 13.11 in the discretized Navier-Stokes equa-
tions 13.13, 13.14 and in the incompressibility condition Eq. 13.19, we obtain

• A linear algebric system of 2nm− n−m equations,

• nm unknown pressure values at time tk,

• m(n− 1) unknown velocities of the u component at time tk+1.

• n(m− 1) unknown velocities of the v component at time tk+1.

Solving this system for the previously listed unknowns, provides values for the
successive time step.

176

Chapter 14 | The Fourier Transform

14.1 Introduction

The (continuous) Fourier transform (FT) is defined as

f (ν) = Ft[f (t)](ν) =
∫ +∞

−∞
f (t)e−2πiνtdt . (14.1)

The discrete version of the previous integral is

Fn =
N−1

∑
k=0

fke−2πink/N =
N−1

∑
k=0

fkwkn
N , (14.2)

where we introduced the complex number wkn
N = e−2πink/N for simplifying the

notation. In the discretized formula (discrete Fourier transform, DFT), the variable
t (usually the time) becomes the discrete variable tk = k∆t with k = 0, 1, .., N− 1,
while the “frequency” ν becomes the discrete variable n.
The discrete inverse transform is

fk =
1
N

N−1

∑
n=0

Fne2πink/N . (14.3)

Sometimes, it is convenient to rewrite the DFT in matrix form
F0
F1
...
...

FN−1

 =

1 1 1 .. 1
1 w w2 .. wN−1

1 w2 w4 .. w2N−2

..
1 wN−1 w2(N−1) .. w(N−1)2

×

f0
f1
...
...

fN−1

 (14.4)

From the last expression, it is clear that the DFT has a time-complexity which
scales as O(N2). The FT is important since it recovers periodicities in the input

177

CHAPTER 14. THE FOURIER TRANSFORM

function and the strenght of each periodic component.
Since the transform contains a complex exponential, in general even if the input is
real, the transform can be complex. If fk are all real numbers the following relation
holds

FN−n = F̄n , (14.5)

which implies that an input periodic function will be transformed into peaks which
are “doubled” into complex positive and negative frequancies.

14.2 Fast Fourier Transform

In the following, we describe one of the existing algorithms for reducing the com-
putational complexity of the Fourier transform. These algorithms are known under
the generic name of Fast Fourier Transform (FFT) methods. The following algo-
rithm is called Cooley-Tukey Algorithm.
Defining the (discrete) FT as

X(k) =
N−1

∑
n=0

x(n)wkn
n , n, k = 0, .., N − 1 , (14.6)

where
wkn

N = e−
2π
N j . (14.7)

In the last expression, j is the imaginary unit and it will remain “hidden” into w so
that we will use j as an index in the next calculations (committing a small abuse of
notation for clarity).
We assume now that N can be written as the product of two other integers N =
n1n2.
Now (this is a major point) we rewrite the input vector x and the output vector X
as matrices with the following definition

n = n1i + j with i = 0, .., n2 − 1 j = 0, .., n1 − 1 . (14.8)

k = n2a + b with i = 0, .., n1 − 1 j = 0, .., n2 − 1 . (14.9)

With the latter definitions, Eq. 14.6 becomes

X(n2a + b) =
n2−1

∑
i=0

n1−1

∑
j=0

x(n1i + j)w(n2a+b)(n1i+j)
n . (14.10)

178

CHAPTER 14. THE FOURIER TRANSFORM

In order to simplify the exponent of the complex number w, we use the observa-
tions e−2π = 1 and

wn1
N = wn1

n1n2 = e−
2π

n1n2
jn1 ⇒ wn1

N = wn2 . (14.11)

and Eq. 14.10 can be rewritten as (swapping sums and factors)

X(n2a + b) =
n1−1

∑
j=0

n2−1

∑
i=0

x(n1i + j)wib
n2︸ ︷︷ ︸

For each j,n2−lenght DFT

wbj
N︸︷︷︸

Twiddle factor

waj
n1

︸ ︷︷ ︸
For each i,n1−lenght DFT

. (14.12)

After the last manipulation, Eq. 14.12 shows that the original DFT is reduced to
two nestedDFTs. The inner DFT has length n2 (times the so-called twiddle factors)
and when done, it is used n1 times in the outer DFT, reducing the complexity of
the full DFT.
The DFT implies naively N2 computations. The scheme we derived previously
instead is based on n1 DFTs of length n1 (complexity n1 × n2

2) and n2 DFTs of
lenght n2 (complexity n2 × n2

1), plus N multiplications by the twiddle factors. In
total, the number of computations is

n1n2
2 + n2n2

1 + N = N(n1 + n2 + 1) < N2 (14.13)

The last estimate shows the computational advantage of the FFT scheme with re-
spect to the normal DFT. The steps of the Cooley-Tukey FFT algorithm are vi-
sualized schematically in Fig. 14.1 for n1 = 4 and n2 = 3. The reduction we
proved can be extended breaking n1 and n2 further in their factors (if possible)
and then repeating the Cooley-Tukey scheme until factorization is not possible any-
more. The procedure then starts from the shorter DFTs and proceeds backwards
by recursion to the larger DFTs. There are other FFT algorithms, for example, the
Good-Thomas algorithm (sometimes called Prime Factor Algorithm) which
does not involve the twiddle factors, thus eliminating N multiplications.

14.3 Aliasing

There are some problems connected to the discretized form of the FT. If we would
like to sample a signal with a certain frequency, we cannot do it reliably if the

179

CHAPTER 14. THE FOURIER TRANSFORM

Figure 14.1: Steps involved in the calculation of the fast Fourier transform
according to the Cooley-Tukey algorithm.

Figure 14.2: Example of the aliasing effect: the samples are measured
with a frequency which is lower than the frequency of the signal. The
result is the extraction of a wrong frequency.

180

CHAPTER 14. THE FOURIER TRANSFORM

sample frequency is smaller than the frequency of the signal itself. If this happens,
we will measure a wrong frequency. This effect is called aliasing (See Fig. 14.2).
We can look at aliasing with a concrete example, where we try to sample a signal

A(t) which has a single frequency of f=4 Hz so A(t) = sin(2π f t). If we sample
the signal N times with a lower frequency fs, for example 3 Hz, we measure A(t)
at times tk = k/ fs (k=0,1,..,N-1). The samples are

A(tk) = sin(2π f tk) = sin(8π
k
fs
) = sin(2π +

2πk
3

) = sin(2πtk) .

(14.14)
The last step of the calculation shows that if we sample with 3 Hz frequency the
4 Hz signal, we will reconstruct a 1 Hz signal: we have aliasing.
If we try to sample at a higher rate, for example fs = 6 Hz we will measure a 2 Hz
signal (compute again Eq. 14.14) and aliasing is thus still there.
If we increase the sampling such that we match the signal frequancy fs = f , it is
easy to conclude that we will measure a frequency equal to zero.
This hints to the idea that fs > f : in order to measure a certain frequency, we must
sample at a higher frequency, but how much, al least?
The answer is provided by the sampling theorem:

fs > fmax , (14.15)

that is: in order to avoid aliasing, we have to use a sampling frequency more than
twice as high than the maximum frequency present in the signal. Thinking the
other way around, if we sample with frequency fs, this means that the maximum
frequency we can reliably extract without introducing aliasing is fmax = fs/2:
this maximum frequency is also called Nyquist frequency.

181

CHAPTER 14. THE FOURIER TRANSFORM

182

List of Figures

3.1 Output of the previous code. The steps (bllue line) of the
algorithm are plotted over a contour map of the quadratic
function L(x) = 1

2 xT Ax− bTx. 36

4.1 Linear interpolation of a discrete function. 51
4.2 Parabolic interpolation of a discrete function. 52
4.3 Spline interpolation of a discrete function. 56
4.4 Linear fit of a set of 30 data points generated with function

f (x) = a + bx + RDM and parameters a = 0, b = 1. RDM
is a random number in the range [-2,2]. 64

6.1 Graphical representation of the Romberg integration algo-
rithm steps where two trapezoidal integrations on different
grids are merged through Richardson extrapolation. 84

6.2 (Left) Generated 1000 random points in the unit square.
The ratio between the square and circle area is equal to the
ratio of the number of points landing in the circle (orange)
and the total number of generated points. Right: Value of
π estimated with Monte Carlo integration on a circle as a
function of the number of generated points N. The error
decreases as 1/

√
N. 94

8.1 Dependence of the error in the presence of round-off as a
function of the grid spacing h. The value hoptimal is the best
trade-off between discretization and round-off errors. 105

8.2 Integration of the Lotka-Volterra model for a = b = c =
d = 1 with the RK4 algorithm. 114

183

LIST OF FIGURES

8.3 Left: Percentage difference between the RK2 and RK3 so-
lution for the two populations. Right: Phase space (X vs Y)
of the two integration methods. 115

8.4 Damped harmonic oscillator for 3 values of γ (see legend)
and ω2

0 = 1. 122

9.1 Visualization of the two-dimensional Dirichlet problem: the
function f (x, y) = −x2 − y2 is defined on a set Ω and the
border Γ is a square. On this square, a function g(x, y) = 0
defines the boundary values of the problem. 133

9.2 Stencil diagram of the Jacobi iterations method for the el-
liptic equation. 134

9.3 Graphical representation of the output matrix from code 9.1. 136

10.1 Stencil diagram of the explicit method (with forward time
derivative) for the parabolic equation. 140

10.2 Stencil diagram for the Crank-Nicolson scheme. 143
10.3 Turing instability patterns from the FitzHugh–Nagumo model.146

11.1 Monte Carlo estimation of an European call with an in-
creasing number of samples (blue markers). The red lines
represent the 3σ contours calculated with Eq. 11.46 and the
orange horizontal line the analytic calculation. 160

14.1 Steps involved in the calculation of the fast Fourier trans-
form according to the Cooley-Tukey algorithm. 180

14.2 Example of the aliasing effect: the samples are measured
with a frequency which is lower than the frequency of the
signal. The result is the extraction of a wrong frequency. . . 180

184

List of Tables

7.1 Coefficients of the numerical derivatives up to fourth order. 101

185

	Introduction
	Errors and Number Representation
	Approximation Errors
	Rounding Errors
	Absolute and Relative Errors
	Error Propagation
	Number Representation
	Machine-specific Precision
	Subtraction and Machine Precision
	More on Number Representations

	Linear Systems
	Introduction
	The Condition Number
	Tha Gauss Elimination Algorithm
	Pivoting
	Tri-diagonal and Diagonally Dominant Matrices
	LU Decomposition
	LU Decomposition: General Case
	Choleski Decomposition
	Steepest Descent and Conjugate Gradient Methods
	The Gauss-Seidel Algorithm
	Eigenvalues and Eigenvectors: the Power Method
	Eigenvalues and Eigenvectors: the Jacobi Method

	Approximation and Interpolation
	Linear Interpolation
	Parabolic Interpolation
	Cubic Splines Interpolation
	Cubic Splines with Smooth Second Derivatives
	Lagrange Interpolation
	Least Squares Method
	Linear Interpolation with the Least Squares Method
	Error on the Estimated Linear Parameters

	Root Finding
	Incremental Method
	Bisection Method
	Newton's Method
	Multidimensional Newton's Method
	Secant Method
	Brent's Method

	Numerical Integration
	Introduction
	Newton-Cotes Methods
	The Trapezoidal Rule
	Simpson's Rule
	Romberg Integration
	Gaussian Quadrature: Introduction
	Gaussian Quadrature: a more general case
	Orthogonal Polynomials
	The Gaussian Quadrature Algorithm
	Multidimensional Integration
	Introduction to Stochastic Integration
	Monte Carlo Integration
	Importance Sampling
	Gaussian Random Numbers: Box-Muller Transformation

	Numerical Differentiation
	Backward and Forward Differences
	Central Difference
	Second Derivative
	Another derivation
	Derivatives with Interpolation

	Numerical Ordinary Differential Equations
	Introduction to Initial Value Problems
	Euler's Method
	Runge-Kutta Method: RK2
	Higher-order Runge Kutta Methods: RK4
	Fouth-Order Runge-Kutta Method in two Dimensions
	Fourth-Order Runge-Kutta Method for Second-order Differential Equations
	Taylor Expansion Methods
	Stability Analysis
	Adaptive-Mesh Methods
	Application: Predator-Prey Model
	Boundary Value Problems
	Central Difference Method for Boundary Value Problems
	Upwind Difference Method
	Leapfrog method for second order differential equations
	Leapfrog Method: Application to the Damped Oscillator
	The Numerov Method
	Application to the Schrödinger Equation: Particle in a Box Potential
	Application to the Schrödinger Equation: The Hydrogen Atom

	Elliptic Equations
	Introduction
	Boundary Value Problems for Elliptic Equations
	Dirichlet Problem on a Rectangle

	Parabolic Equations
	Definition of the problem
	Explicit Method for the Initial-Boundary Problem for the Heat Equation
	Explicit Method for the General Parabolic Equation
	Implicit Central Difference Method
	The Crank-Nicolson Method
	Reaction-Diffusion Systems
	Bidimensional Systems: Turing Instability
	A non-linear Turing Instability Example

	Financial Applications
	Introduction: the Ito Formula
	The Black-Scholes Equation
	Analytic Solution
	Numerical schemes for the Black-Scholes Equation
	Monte Carlo Approach

	Hyperbolic Equations
	Introduction
	The Cauchy Problem
	The Initial Boundary Problem

	Explicit Method for the Initial Boundary Problem
	Implicit Method for the Initial Boundary Problem
	The Lax-Wendroff Method

	The Navier-Stokes Equations
	Introduction
	2-Dimensional Flow
	A general Finitie-Difference Scheme
	Boundary conditions
	Numerical approximation scheme

	The Fourier Transform
	Introduction
	Fast Fourier Transform
	Aliasing

