Numerical Programming Projects (WS 22/23)

¢ All the projects have to be presented with the corresponding code
(Python, C++, ..). An efficient/elegant implementation will be taken
into account.

The presentation (slides or blackboard) must contain a general in-
troduction to the problem, a discussion of the implementation, and
results in numerical and graphical form.

After a discussion about the project, questions related to other con-
nected topics discussed during the course will follow.

. Root Finding with numerical derivatives

Newton’s method for root finding is based on the knowledge of
the function’s first derivative. If an analitical expression for f'(x) is
not pre-calculated, a numerical approximation can be used. Write a
code implementing the Newton’s method coupled with a numerical
determination of the derivative of your choice. Assess the precision
of the root finding as a function of the parameters of the numerical
derivative (e.g. the step h).

. Modification of the fixed-step root finding

Consider the fixed-step root finding algorithm and modify it with a
simple adaptive-step solution. The idea consists in stepping back
while halving the step if the solution is crossed. Check if this
method can improve the root finding precision and speed. Remem-
ber to implement all the checks for stopping the algorithm. Com-
pare the algorithm with the fixed step one.

. Pivoting

Wirte a program which implements the pivoting procedure for the
solution of lienar systems. Compare the pivoting algorithm to the
non-pivoting one on suitable test-systems where pivot elements are
small/zero. Investigate how the algorithm scales as a funciton of
the matrix dimension (time-complexity).

. Epidemiological Model 1
Implement the simple SIRV epidemiological model (4 coupled lin-



ear differential equations). Compare the solutions with the Eu-
ler’s method with the Runge-Kutta method. Calculate the (time-
dependent) difference betweeen the two solutions.
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. Epidemiological Model 2

Implement the simple SIRD epidemiological model (4 coupled lin-
ear differential equations). Compare the solutions with the Eu-
ler’s method with the Runge-Kutta method. Calculate the (time-
dependent) difference betweeen the two solutions.
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. Lorenz System Implement the Lorenz chaotic system (3 coupled dif-
ferential equations). Compare the solutions with the Euler’s method
with the Runge-Kutta method. Calculate the (time-dependent) dif-
ference betweeen the two solutions.
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with ¢ = 10, B = 8/3, p = 28. Consider also the case p < 0 and
compare it with the previous (chaotic) case.

. Multidimensional Newton’s algorithm Implement the multidimen-
sional Newton’s algorithm for finding a root. Couple it with the
Gauss Elimination algorithm for solving the Joacobian equation.

. Compare Integration Methods: Trapezoid vs Simpson Implement
(as functions) the trapezoid and Simpson methods and compare
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their numerical precision using them on functions with a known
integral and growing difficulty. Compare the scaling of the time
complexity as function of h.

Compare Integration Methods: Simpson vs Romberg Implement
(as functions) the Simpson and Romberg methods and compare
their numerical precision using them on functions with a known
integral and growing difficulty. Compare the scaling of the time
complexity as function of h.

Compare Integration Methods: Monte Carlo vs Importance Sam-
pling Implement (as functions) the MC and MC+IS methods and
compare their numerical precision using them on functions with a
known integral (e.g. the Gaussian or a polynomial). Compare the
scaling of the time complexity as function of h.

Dimensionality in Integration problems Compare the precision
and speed of the MC method and a simple integration routine in
3 dimensions.

Compare Iterative algorithms: Steepest Descent vs Conjugated
Gradient Compare the speed and precision of the steepest descent
and conjugated gradient methods as function of the matrix dimen-
sion.

Compare Root finding algorithms: Bisection vs Brent’s method
Compare speed and precision of the bisection and the Brent method.

Numerical differentiation: Backwards/Forwards Differences vs Cen-

tral Differences Verify experimentally writing a suitable program,
that central differences are more accurate than backwards/forwards
differences in estimating the derivatives of a function. Check this
with functions of growing difficulty (faster variation).

Choleski Decomposition Solve a liner system with Gauss elimina-
tion and compare it with a solution based on the Choleski decompo-
sition. Use an appropriate matrix and compare the time-complexity
of the two algorithms as the dimension of the matrix increases.

LU Decomposition Solve a liner system with Gauss elimination and
compare it with a solution based on the LU decomposition. Use
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an appropriate matrix and compare the time-complexity of the two
algorithms as the dimension of the matrix increases.

Elliptic Equation 1 The Jacobi iteration is a relatively simple way
to solve the Laplace equation. An alternative is the solution of the
equivalent matrix equation: use one algorithm for solving linear
systems for solving the Laplace equation and compare the solution
to the Jacobi iteration method.

Elliptic Equation 2 Solve with a Jacobi iteration the elliptic equation

Pxx + Pyy + A(ypx + x¢py) =0 4)

Choose equal steps in the two dimensions (h=k) and derive the cor-
responding numerical approximation using central differences for
all the derivatives. Use f(x,y) = x?> — y? as boundary condition on
a grid of positive numbers (x > 0,y > 0). Show different solutions
as the free parameter A varies.

Parabolic Equation
Solve the parabolic equation

Pt = Prx + (x —2)Ppx — 3¢ ®)

with the initial boundary conditions

¢(x,0) = x> —4x+5for 0 < x < 4 and

$(0,t) = ¢(4,t) = 5e ! with t > 0.

Show that the numerical result approximates the exact solution
P(x,t) = (x> —4x +5)e .

Solve the problem with an explicit central difference numerical scheme.

Fitting 1 Implement the linear fitting algorithm in the most efficient
way you are able to find. Create random datasets and verify the
functionality of the algorithm. Modify it adding errors to each point
and take them into account in the fit.

Fitting 2 Derive the formulas for the fit of a parabola y = a + bx + ¢?
and write the corresponding code for the estimation of the three free
parameters a,b,c. Try to optimize the code for limiting the amount
of calculations. Fit with the parabola many randomly generated
datasets and check the distribution of the obtained parameters.



22. 3-Dimensional Integration Implement the 3D integration algorithm
and compare the performance of the Trapeziod vs the Simpson in-
tegration. Show how the time-complexity scales as you go from
dimension 1 to dimension 3 integration.

23. Integration of Mechanical Systems Implement an integration scheme
of your choice for the differential equation describing the motion of
a pendulum
2
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Confront and discuss the solution of the latter equation with the
known analytical solution obtained with the approximation sin6 ~
6. Solve numerically a second differential equation with the im-
proved approximation sinf ~ 6 — (1/3!)6° and compare it to the
previous results.

24. The Predator-Prey Lotka-Volterra Model Implement two integra-
tion schemes and solve with them the “predator-prey” system of

equations
dx
= ax — bx
{ i )
i = coxy—ay

Discuss the differences between the solutions obtained with the two
integration methods as the parameters vary.

25. The Wave Equation Implement an explicit difference scheme for
solving the wave equation ¢,y — ¢y = 0 with the initial/boundary

conditions:

a=1

gi(t)=e!

galt) =2 = 1t

fi(x) =2x+¢*

f2(x) = —e*. The exact solution is ¢ = 2x + e*~¥: compare it with

your numerical procedure.



